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Using a formalism based on the spectral decomposition of the replicated transfer matrix for disordered
Ising models, we obtain several results that apply both to isolated one-dimensional systems and to locally
treelike graph and factor graph (p-spin) ensembles. We present exact analytical expressions, which can be
efficiently approximated numerically for many types of correlation functions and for the average free energies
of open and closed finite chains. All the results achieved, with the exception of those involving closed chains,
are then rigorously derived without replicas, using a probabilistic approach with the same flavor of cavity
method.
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I. INTRODUCTION

The study of one-dimensional Ising chains with random
bonds and/or fields has a long tradition in the context of
disordered systems. Over the past few years this field has
experienced an interesting change in perspective. Earlier
studies were essentially motivated by the need to obtain
solvable version of three-dimensional models [1–4] and this
line of research culminated with the introduction of specific
random Hamiltonians that are actually solvable analytically
[5–8]. In the past 20 years dynamical approaches have also
been considered as alternatives to equilibrium approaches
[9–12] while developments in the context of static studies
[13,14] have been mainly motivated by the connection be-
tween one-dimensional systems and models defined on sparse
random graphs. Random graphs in turn have many important
applications in the context of computer science, artificial
intelligence, and information theory [15,16]. In this broader
context one is more interested in having a general formalism
that can be applied to any given distribution of the quenched
Hamiltonians at the price of obtaining the result through
numerical solution of implicit equations.

In the general case one would like to study an Ising chain,
either open or closed, of arbitrary length L were the fields and
couplings are independent and identically distributed random
variables. Quantities of interest include the free energy but
also all types of averaged correlation functions. Indeed, at
variance with pure systems, correlations can be averaged
in two different ways: over thermal noise (conventionally
referred as connected correlations) and over the quenched
Hamiltonians (disconnected correlations). This difference is
important at both the theoretical and the practical levels.
Indeed, disconnected correlations happen to be much larger
in random field systems (but not in spin glasses) and lead to a
very complex phenomenology, e.g., the increase in the critical
dimension from D = 4 of the pure ferromagnet to D = 6
[17]. In this paper we show how to complete this program
by means of the replica method, more precisely by means of
the replicated transfer matrix (RTM) approach. As long as
the sources of disorder are independently distributed, one can
express the integer moments of the partition function through

traces of powers of the 2n × 2n transfer matrix of a system of
n replicated spins. Then, as usual with replica calculations, the
analytic continuation to n = 0 is performed. We will derive
expressions for the aforementioned quantities in terms of
the solutions of integral equations that can be solved, for
instance, through population dynamics algorithms. In order
to do so we build on the crucial contribution of Monasson and
Weigt [13], who first characterized the spectral properties of
the RTM. The motivation is not only to have a compilation of
useful formulas but also to present some nontrivial features
of their derivation. The most important is connected with
the fact that in the limit n → 0 two families of eigenvalues
(corresponding to the longitudinal and anomalous sectors in
the spin-glass jargon) become degenerate. From the theoretical
perspective, this determines an anomalous behavior of the
disconnected correlation functions and of corrections to the
free energy of closed chains. On a practical side this implies
that one has to determine not only the eigenvalues and
eigenvectors of the integral equations at n = 0 limit but also
their first O(n) correction.

While the replica method is at present the only way to
derive expressions for all quantities of interest in a compact
form, its well-known drawback is the assumption that one
can make the analytical continuation n → 0 of expressions
whose derivation makes sense only for positive integer n. One
is therefore interested in deriving the same expressions in a
more direct way. Unfortunately there are no general results
or strategies on how to do this and one has to proceed case
by case. We will present a direct probabilistic derivation of
many of the expressions obtained through the replica method.
A particularly nontrivial result is the derivation of the formula
for disconnected correlation functions that has been long
sought. Such a derivation is based on the fact that a direct
physical meaning can be attributed to the continuation of
replica expressions to real n, at variance with other classic
analytical continuation tricks (e.g., dimensional continuation
in field theory). Therefore one can first derive rigorously
an expression at any real n and then safely take the limit
n → 0. The only replica expression whose derivation is left
as an open problem is the free energy of closed chains. We
recall that closed chains are rather important objects that
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appears in perturbative computations developed around the
tree approximation [18].

We conclude this introduction by briefly discussing the
connection between our results and the extensive literature
on disordered Ising chains. As mentioned earlier, studies in
the context of the random field Ising model (RFIM) were
motivated essentially by the possibility of obtaining exact
solutions when dealing with one-dimensional models. It was
immediately recognized [1–3] that the free energy of an infinite
chain can be expressed in terms of an iterative equation which
corresponds to the longitudinal sector in the terminology of
RTM. Exact results can be obtained at zero temperature, where
the equation can be solved explicitly [2] or by enumeration in
the special case in which the random fields are either zero or
infinity [4]. Finally, it was discovered that some models with
specific distributions of the disorder can be solved analytically
[5–8]. Much effort has been put in the study of the iterative
equation relevant to the free energy of the infinite chain,
starting from the observation that when the random fields and
couplings take a discrete number of values (e.g., H = ±1) the
solutions of the equations may display a multifractal structure
[19–22]. The approaches taken to characterize the correlation
functions have been less successful. Connected correlations
where computed exactly for the aforementioned solvable
models but the disconnected correlations resisted all efforts [6]
to capture their expected peculiar features (the double pole)
[17] up to this work. Later, correlations functions were also
studied in a more general framework at zero temperature [23],
but again they did not consider the disconnected correlations.
The results of Ref. [6] are system specific and not based
on iterative methods, and only recently [24–26] it has been
recognized that general iterative expressions for connected
correlations can be obtained by means of cavity arguments
like those presented in the following.

The paper is organized as follows: in Sec. II we define the
model we are considering and expose the main results of this
paper; in Sec. III we develop all the spectral formalism of the
RTM and apply it in Sec. IV to the computation of free energies
and correlation functions. Most of the results obtained with the
RTM are then rederived with a purely probabilistic approach
in Sec. V.

II. DEFINITIONS AND MAIN RESULTS

In this paper we consider a one-dimensional Ising spin
system with independent and identically distributed random
fields and couplings, e.g., an isolated chain or a chain
embedded in a locally treelike graph, described by the product
of uncorrelated 2 × 2 random transfer matrices Mi defined by

Mi(σi+1,σi) = eβJiσi+1σi+hiσi . (1)

The partition function of a closed chain of length � is then a
random variable given by

Z�,c = Tr
�−1∏
i=0

Mi. (2)

A powerful technique to compute the statistical properties of
these kinds of objects is the well-known replica method [15].
As we shall see, as long as the system stays in a replica-

FIG. 1. (Color online) Pictorial representation of the matrix Tn

(left), its powers T �
n (center), and the matrix T̃ (�)

n (right).

symmetric phase, its statistical properties are encoded in the
(replica-symmetric) replicated transfer matrix Tn, where the
2n × 2n matrix is defined by

Tn(σ,τ ) = EJ,h eβJ
∑n

a=1 σaτ a+βh
∑n

a=1 τ a

. (3)

Here and in the following we denote with σ the vector
(σ 1, . . . ,σ n), with the n replicated spins σa taking values in
Z2 = {−1,1}. A similar definition holds for τ . As usual in the
replica method [15] we shall work at the integer value of n and
perform the analytic continuation for n ↓ 0 at the end of the
computations. We shall assume in the following that the field
h is an arbitrary distributed external random field if we are
considering an isolated chain or, if we are considering a chain
embedded in a locally treelike graph, to be a random cavity
field conditioned to act on a spin that is already connected to
two other spins (its neighbors on the chain). See Fig. 1 for a
representation of Tn and its powers T �

n .
A first spectral analysis of Tn was conducted by Weigt and

Monasson [13]. Following their lead we take advantage of
the replica index permutation symmetry of Tn to choose an
appropriate bases to express its right eigenvectors. There
are n + 1 nonequivalent irreducible representation of the
permutation group, which can be glued together to form
the sectors D(q), q = 0,1, . . . ,� n

2 �, partitioning Z⊗n
2 . In the

following, with some abuse of notation, we will denote with
D(q) the set of eigenvalues of Tn with eigenvector in that
sector. The eigenvectors of Tn in the sector D(q) can be
parametrized by functions gλ

q (u) that, in the limit n ↓ 0, satisfy
the eigenvalue equation

λ gλ
q (u) = EJ,h

∫
dv gλ

q (v) δ[u − û(J,v + h)]

(
1

β

∂û

∂v

)q

,

(4)
where û(J,h) = 1

β
atanh(tanh(βJ ) tanh(βh)) is the cavity iter-

ation rule.
In this paper we extend the analysis of the spectral proper-

ties of Tn to achieve a complete description of the n ↓ 0 limit
and derive exact expressions for correlation functions and free
energies of chains. Since Tn is the product of two nonsingular
symmetric matrices, it possess a complete orthonormal (in
the left-right sense) basis of left and right eigenvectors with
real eigenvalue. The left eigenvector corresponding to a
certain right ψR is simply Ehe

βh
∑

a σ a

ψR(σ ) ≡ ρh(σ )ψR(σ ).
Therefore the spectral decomposition of Tn into the subspaces
D(q) is given by

Tn(σ,τ ) =
� n

2 �∑
q=0

∑
λ∈D(q)

λ ρλ
q (σ )ρh(τ )ρλ

q (τ )

×
∑

a1 < · · · < aq

b1 < · · · < bq

Qa1...aq ;b1...bq
σ a1 . . . σ aq τ b1 . . . τ bq .

(5)
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Here we have denoted with ρλ
q (τ ) the replica-symmetric part

of the eigenvector in the sector D(q) with eigenvalue λ. The
second sum is over all the eigenvalues of Tn in the sector
D(q), given in the n ↓ 0 limit by the solutions of Eq. (4). The
coefficients Qa1...aq ;b1...bq

have simple algebraic expressions
in each sector [see Eqs. (27) and (28)] and are invariant
under permutations of any of their two sets of indices. While
a different left-right decomposition of Tn has already been
attempted [14], an unfortunate choice in the parametrization
of the eigenvectors in terms of function of two variables
led to an unmanageable formalism. Thanks to the spectral
representation (5) we can easily take the powers of Tn and
contract the matrix with the quantities we want to average. In
Sec. III we derive Eqs. (4) and (5) and discuss the nontrivial
aspects of the small-n limit.

One of the applications of the spectral formalism is the
computation of the average free energy of open and closed
chains, as exposed in Sec. IV A. Recently it has been shown
[18] that the first finite-size correction to thermodynamic free
energy of systems on diluted graphs can be expressed as a
linear combination of the free energies of closed and open
chains. It has also been argued [18,27] that a perturbative
expansion around the Bethe approximation towards finite-
dimensional lattices shall account for the presence of loops
(closed chains) and will contain the free energies and the
correlation function of one-dimensional objects, motivating
the importance of exact and easily approximable expressions
for their free energies.

Taking the trace of T �
n and performing the n ↓ 0 limit one

obtains the average free energy of a closed chain of size � as
follows:

−βf c
� = −β�f0 +

∑
λ∈D(1)

�λ � λ�−1 +
∞∑

q=1

d̂q

∑
λ∈D(q)

λ�. (6)

The nontrivial feature of this expression is the presence
of a term O(� λ�−1). This is typically not present in an
ordinary eigenvalue decomposition that contains only O(λ�).
Its presence is due to the n → 0 limit combined with the
fact that the longitudinal and anomalous eigenvalues become
degenerate. As stated in the Introduction this is a phenomenon
that has dramatic physical consequences in the RFIM context
[17].

The terms �λ, due to the degeneracy between the eigen-
values of the sectors D(0) and D(1) at n = 0, are expressed in
Eq. (48). The coefficients d̂q are the analytic continuation of
the degeneracies of the eigenvalues and are given in Eq. (41).
We note that the correction to the intensive free energy f0

[expressed in Eq. (43)] is given by a linear combination of
exponential and � times exponential terms. The decaying part
of f c

� is dominated by the largest eigenvalue among the various
sectors.

In the computation of the free energy of an open chain, we
allow for the incoming fields at the extremities of the chain to
be distributed differently from the fields h acting on the internal
spins and denote them by h̃. This is in fact what happens in
general when considering an open chain embedded in a sparse
graph. The expression we derived for the average free energy

of an open chain of length � is

− βf o
� = −�βf0 + Eh̃

∫
du P (u) 2 log cosh (β(u + h̃))

−Eh

∫
dudv P (u)P (v) log cosh[β(u + v + h)]

+ log 2 +
∑

λ∈D(1)

a2
λ,0 λ�, (7)

where P (u) is the distribution of cavity messages along
the chain and the coefficients aλ,0 are related to the left
eigenvectors of the sector D(0) and given in Eq. (59).

Another result we will present is the expression of the
connected correlation functions of two spin at distance �, in a
form that is both analytically exact and easy to approximate
numerically with high precision. In Sec. IV B we derive the
formula

〈σ0σ�〉qc =
∑

λ∈D(q)

a2
λ,q λ�, (8)

where aλ,k can be computed through the eigenfunction gλ
q

using Eq. (64). We indicate with • the average over all kinds of
disorder in the model considered. For the Ising model on sparse
random graphs with mean residual degree z, the susceptibility
χq = ∑

i<j
1
N
E〈σiσj 〉qc diverges when the greatest eigenvalue

of D(q) reaches the value 1/z. Therefore the sectors D(1) and
D(2) are the relevant ones to the ferromagnetic and the spin-
glass transitions, respectively (see Figs. 2 and 3).

T

g1(u)
Eigenfunction

σH  =  0.8
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FIG. 2. (Color online) Top: The leading eigenvalue λ1 of the
sector D(1) in the RFIM, as a function of the temperature and of the
Gaussian external field with variance σ 2

H . Bottom: The corresponding
right eigenfunction g1(u) at σH = 0.8. The random fields h and h̃

are distributed as the cavity fields arriving on a chain embedded in a
random regular graph with connectivity z = 3, therefore the transition
point is localized at λ1 = 1

2 .
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FIG. 3. (Color online) Top: The leading eigenvalue λ2 of the
sector D(2) in a J = ±1 spin glass as a function of the temperature
and of the uniform external field H . The phase diagram is also shown
in the H -T plane. Bottom: The corresponding right eigenfunctions
g2(u) along the orange line of the top picture. The random fields h and
h̃ are distributed as the cavity fields arriving on a chain embedded in a
random regular graph with connectivity z = 3, therefore the transition
point is localized at λ2 = 1

2 .

The computation of the thermally disconnected correlation
function, 〈σ0〉〈σ�〉 − 〈σ0〉 〈σ�〉, particularly relevant to the
RFIM [28], requires a careful treatment of the analytic
continuation to n = 0. The final expression we obtained,
Eq. (71), is not a linear combination of terms involving only
one eigenvalue, as in the previous formulas. The leading term
for large � is easily extracted though: Let λ1 be the greatest
eigenvalue of the sector D(1), then

〈σ0〉〈σ�〉 − 〈σ0〉 〈σ�〉
= �λ1 a2

λ1,1 � λ�−1
1 + O(λ�

1) for � → +∞, (9)

with �λ and aλ,1 given in Eq. (48) and Eq. (64). respectively.
Therefore, on one-dimensional chains and sparse graphs, the
susceptibility corresponding to the thermally disconnected
correlation function present the characteristic double pole
behavior near the transition point, whose prefactor can also
be computed by Eq. (9).

The expressions we found for free energies of chains,
Eqs. (6) and (7), and the correlation function Eqs. (8) and (9),
are exact for every value of the length � of the chain but involve
the computation of infinitely many terms. Fortunately, it turns
out from our numerical simulations that the spectrum of the
integral operator in Eq. (4) is discrete and the eigenvalues are
well spaced. Therefore, considering only the first few highest
eigenvalues, one obtains very good approximations already
at small values of �. They can be computed numerically,
discretizing the kernel of the integral operator of Eq. (4) and
directly computing the eigenvalues of the associated matrix.
Moreover, the leading eigenvector and eigenvalue of each

sector can be efficiently selected with multiple applications
of the discretized operator on an arbitrarily chosen vector (as
it was done to obtain Figs. 2 and 3).

All the results we obtained using the replicated partition
function formalism, with the noticeable exception of the
formula for the average free energies of closed chains Eq. (6),
can be recovered using a purely probabilistic approach in the
same spirit of the usual cavity method [15,16].

In Sec. V A we devise two alternative probabilistic deriva-
tion for the average free energies of open chains. The first
is based on a recursive equation involving the moments of
the partition function, which leads to an expression for the
moment of the random partition function Zn

� of an asymmetric
open chain in terms of the left and right eigenvector of an
integral operator we also encountered in the RTM formalism,

Zn
� (u; x) =

∑
λ∈D(0)

λ�(n) gλ
0 (u; n) Sλ

0 (x; n) [2 cosh(βx)]n. (10)

Here n is not related to the number of replicas, since replicas
are not present in this approach, but is an arbitrarily chosen
real positive number. The other method presented in Sec. V A
is the iteration of the average free energy itself during the
construction of the chain, which requires to keep track of the
message of u� the cavity message propagating through a chain
at distance � from one of the extremities, at each iteration. The
two approaches are deeply related and obviously lead to the
same result.

Crucial to the probabilistic computation of the connected
correlation functions, as has been noted recently [25], is the
random variable X� defined by X� ≡ ∂u�

∂H0
, where the H0

field acts on the same extremity. It turns out that the con-
nected correlation function of Eq. (8) is encoded in the
moments of the joint law of u� and X� at fixed u�. This object,
the function

G(�)
q (u) =

∫
dX P�(u,X) Xq, (11)

obeys a recursion rule, Eq. (87), containing the integral opera-
tor of Eq. (4). Expressing G(�)

q (u) in the basis of the eigenvalues
of D(q) leads then straightforwardly to the expression (8) we
obtained using replicas. Moreover, in Sec. V B, a more general
result is presented in Eq. (90).

The thermally disconnected correlation function σ0σ�〉c is
computed in Sec. V C, using some results we obtained for
the connected correlation function and for the moments of the
partition function of an open chain, thanks to the relation

∂

∂H0

∂

∂H�

Zn
�,o = n 〈σ0σ�〉c Zn

�,o + n2 〈σ0〉〈σ�〉 Zn
�,o. (12)

An alternative approach, technically more difficult, outlined
in Sec. V C, involves the resolution of an iterative equation
for the function R(�)(u) = δ(u − u�)〈σ0〉(�), which takes into
account the shift in the magnetization of the (initial) spin at
the other side of the chain with respect to the spin where a new
spin is attached to increase the length of the chain.

In the following sections we fill in all the technical details
associated with the previous claims.
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III. SPECTRAL DECOMPOSITION

We present an in-depth treatment of the spectral theory
of the replica-symmetric RTM. In Sec. III A we discuss the
spectral decomposition of the matrix for integer values of the
number of replicas n. We introduce in Sec. III B an integral
representation of the eigenvectors in order to discuss the main
features of the analytic continuation to small values of n in
Sec. III C. In Sec. III D we discuss some technicalities related
to a peculiar aspect of the n ↓ 0 limit, the degeneracy between
the longitudinal and the anomalous sectors.

A. The permutation group

The 2n × 2n matrix Tn defined by Eq. (3) is invariant
under the action of the group of permutations among the
replicated spins: For each permutation π acting on the n

spin, we have the equivalence Tn(π (σ ),π (τ )) = Tn(σ,τ ). This
symmetry allows us to block-diagonalize Tn according to the
irreducible representations of the permutation group. This idea
has been first introduced by Weigt and Monasson [13] in order
to compute the eigenvalue spectrum of Tn.

For the sake of completeness we now review Weigt and
Monasson’s method, and then we extend it further in order to
achieve the decomposition of the transfer matrix in terms of left
and right eigenvectors. The replicated space is Z⊗n

2 . Let us call
�m, with m = 0, . . . ,n, the subspace of configurations having
exactly m spins up. These subspaces are clearly invariant under
any permutation of the replicas, therefore we can consider
the representation of the permutation group in the n + 1
subspaces �m and look for the irreducible ones. The complete
decomposition of �m into irreducible subspaces D(m,q) has
been done by Wigner [29]. It reads as follows:

�0 = D(0,0),

�1 = D(1,0) ⊕ D(1,1),

. . .

�m = D(m,0) ⊕ . . . ⊕ D(m, min(m,n−m)),

. . .

�n−1 = D(n−1,0) ⊕ D(n−1,1),

�n = D(n,0).

(13)

Representations D(m,q), at fixed q, are isomorphic and have
dimension

dq ≡ dim(D(m,q)) =
(

n

q

)
−

(
n

q − 1

)

q = 0, . . . ,�n/2�, (14)

where �x� is the smallest integer part of x. Notice that,
by definition, d0 = 0. As we have (n + 1 − 2q) subspaces
D(m,q), the q sector of our matrix Tn will contain (n + 1 −
2q) eigenvalues with degeneracy dq . One can check that∑�n/2�

q=0 dq (n + 1 − 2q) = 2n.

A vector of the space D(m,q) can be constructed using Young
tableaux [24] and has the form

|m,q〉 = (|+〉|−〉 − |−〉|+〉)q SYM(|+〉m−q |−〉n−m−q ),
(15)

where the operation SYM means a complete symmetrization
with respect to the n − 2q last entries (the first 2q entries
are, instead, antisymmetrized). A basis of the subspace D(m,q)

can be constructed by applying all the transformations of the
permutation group to the vector |m,q〉 in Eq. (15) and choosing
a maximal linearly independent subset.

We look for the eigenvectors of Tn in the subspaces

D(q) =
n−q⊕
m=q

D(m,q) q = 0, . . . ,
⌊n

2

⌋
(16)

of dimension dq(n + 1 − 2q). Since Tn has no symmetries
besides the replica permutation one, it has n + 1 − 2q different
eigenvalues in D(q), each with multiplicity dq . In the following
we will refer to the subspaces D(q) as sectors. Moreover, with
a slight abuse in the notation, we shall use the symbol D(q)

for the set of eigenvalues corresponding to eigenvectors in that
sector.

Of particular relevance are the sectors D(0), D(1), and
D

(2)
0 since they are associated to the longitudinal, anomalous,

and replicon modes, respectively, from mean-field spin-glass
theory [30], as we will later show when discussing correlation
functions in Sec. IV B.

By Eqs. (15) and (16) it is possible to factorize the replica-
symmetric part in the eigenvectors ψλ

q (σ ) of the transfer matrix
in the sector D(q); that is, we can write

ψλ
q (σ ) = ρλ

q

( ∑
a

σ a

) ∑
a1<···<aq

Ca1...aq
σ a1 . . . σ aq , (17)

where the replica-symmetric part ρλ
q of the eigenvectors is the

one relevant to the computation of the eigenvalues. By last
equation the eigenvectors of the sector D(0) are completely
replica symmetric. The coefficients Ca1...aq

are invariant for
any permutation of the indices and are equal to zero if any
two of the indices are equal. Moreover, they have to satisfy the
constraint

n∑
a1=1

Ca1...aq
= 0, (18)

which is a necessary and sufficient condition for any vector of
the form of Eq. (17) to belong to the subspace D(q). Any set of
dq linearly independent coefficient vectors C can be chosen as
an appropriate basis for the subspace. It is easy to prove that
the product of two nonsingular symmetric matrices possess
a complete orthonormal (in the left-right sense) basis of left
and right eigenvectors with real eigenvalues, and this is indeed
case for Tn. In fact, if we define, with a little notation abuse,
the vector

ρh(σ ) ≡ Ehe
βh

∑
a σ a

, (19)

then Tn(σ,τ ) = ∑
σ ′ EJ eβJσσ ′ × δσ ′τ ρh(τ ). Moreover, the left

eigenvector ψL corresponding to a certain right ψR(σ ; λ,k) is
simply given by

ψL(σ ; λ,k) = ρh(σ )ψR(σ ; λ,k), (20)
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where k denotes one choice of the coefficients Ca1...aq
among

the dq possible. Imposing the orthonormality condition∑
σ

ψL(σ ; λ,k) ψR(σ ; λ′,k′) = δλλ′ δkk′, (21)

with the sum ranging over all the 2n configuration of the
replicated spin, and after successive application of Eq. (18),
we obtain

∑
σ

ρλ
q (σ )ρh(σ )ρλ′

q (σ )
q∏

a=1

(1 − σ 2a−1σ 2a) = δλλ′ (22)

along with ∑
a1<···<aq

Ck
a1...aq

Ck′
a1...aq

= δkk′ . (23)

We are now able to write the transfer matrix in the spectral
form

Tn(σ,τ ) =
� n

2 �∑
q=0

Tn,q(σ,τ ), (24)

where Tn,q is the restriction of Tn to the subspace D(q), defined
by

Tn,q(σ,τ ) =
∑

λ∈D(q)

λ ρλ
q (σ )ρh(τ )ρλ

q (τ )
∑

a1 < · · · < aq

b1 < · · · < bq

×Qa1...aq ;b1...bq
σ a1 . . . σ aq τ b1 . . . τ bq . (25)

The coefficients Q appearing in last expression are invariant
for any permutation of the set of indices a or b, therefore
they depend only on the number of equal indexes in the sets
{a1, . . . ,aq} and {b1, . . . ,bq}. They are defined by

Qa1...aq ;b1...bq
=

dq∑
k=1

Ck
a1...aq

Ck
b1...bq

, (26)

and their (q + 1) different values can be computed applying
recursively Eqs. (18) and (23). If we denote as Q

(q)
p the

coefficient in the sector D(q) with p pairs of different indexes,
for the first sectors we have

Q
(1)
0 = n − 1

n
, Q

(1)
1 = −1

n
, (27)

Q
(2)
0 = n − 3

2(n − 1)
, Q

(2)
1 = − Q

(2)
0

n − 2
, Q

(2)
2 = − 2Q

(2)
1

n − 3
.

(28)

B. Integral representations

In order to perform the limit n ↓ 0 it is convenient to find a
suitable parametrization for the eigenvectors of the form (17).
For the replica-symmetric part of the eigenvectors ψλ

q , see
Eq. (17), we employ the standard parametrization,

ρλ
q (σ ) =

∫
du gλ

q (u; n)
eβu

∑
a σ a

[2 cosh(βu)]n
, (29)

in terms of the functions gλ
q (u; n). It turns out that all the

functions gλ
q parameterizing the eigenvectors of the sector D(0)

are by themselves the eigenfunctions of an integral operator
associated to that sector. In fact, expressing the linear terms in
Eq. (17) through the identity

σa1 . . . σaq
= ∂

∂εa1

. . .
∂

∂εaq

∣∣∣∣
ε=0

e
∑

a εaσ
a

(30)

and plugging Eq. (29) into the eigenvalue equation Tnψq =
λ ψq , we obtain, after some manipulations, the new eigenvalue
equation,

λ gλ
q (u; n) = EJ,h

∫
dv δ[u − û(J,h + v)]

(
1

β

∂û

∂v

)q

×Zn(J,h,v) gλ
q (v; n). (31)

The function û(J,x), defined by

û(J,x) = 1

β
atanh ( tanh(βJ ) tanh(βx)), (32)

will be recognized by the learned reader as the update rule for
cavity messages. As we shall see, the function

Z(J,h,v) = 2 cosh(βJ ) cosh (β(v + h))
cosh(βv)

(33)

is related to the intensive free energy of an chain. Notice
that in writing Eq. (31) we have shifted the problem of
finding a complete bases of eigenvectors for the matrix Tn

to the equivalent problem of the spectral decomposition of the
integral operators of Eq. (31) for q = 0, . . . ,� n

2 �. It turns out
that, for a given sector D(q), the integral operator has a set of
left eigenfunctions in the form

Sλ
q (v; n) = Eh

∫
du gλ

q (u; n)

{
cosh[β(u + v + h)]

2 cosh(βu) cosh(βv)

}n

×{1 − tanh2[β(u + v + h)]}q, (34)

as can be inferred from Eq. (20) and can be directly verified.
In the rest of the paper we will assume that the left and right
eigenfunctions of the sector D(q) satisfy the normalization
condition ∫

du Sλ
q (u; n) gλ′

q (u; n) = δλλ′ , (35)

derived from Eq. (22). We are now ready to take the n ↓ 0
limit and discuss its nontrivial aspects.

C. The small n limit

In the limit n ↓ 0 we obtain an infinite number of sectors
D(q), q = 0,1, . . ., in a fashion that is characteristic to replicas
computations. Setting n = 0 in Eq. (31) we obtain Eq. (4),
which we rewrite for convenience as follows:

λ gλ
q (u) = EJ,h

∫
dv δ[u − û(J,h + v)]

(
1

β

∂û

∂v

)q

gλ
q (v).

(36)
From now on we shall refer to gλ

q (v) as a solution of last
equation and shall explicitly express the n dependence for the
solutions of (31) at finite n. In Fig. 2 and Fig. 3 we show two
examples of eigenvalues and eigenfunctions in the sector D(1)

and D(2), respectively.
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For q = 0, i.e., in the sector D(0), Eq. (36) admits a unique
maximum eigenvalue λ = 1 by Perron-Frobenius theorem.
The corresponding eigenfunction is the probability distribution
of cavity biases, which we call P (u) [16]. We have thus
established a first connection between the cavity method and
the RTM formalism, and we shall enforce this connection in
Sec. V. The other eigenfunctions of D(0) are characterized by∫

du gλ
0 (u) = 0 at n = 0. It is convenient, when we held the

compatibility with the normalization condition Eq. (35), as we
will see, to impose a diverging scaling for all the eigenfunctions
of D(0) except for the first one,

gλ
0 (u; n) ∼ 1√

n

[
gλ

0 (u) + n g̃λ
0 (u)

]
. (37)

The symbol ∼ denotes equivalence between the right-hand side
and left-hand side up to the higher-order correction in n, and g̃λ

0
is the first correction to the leading order of the eigenfunction
in D(0). Using Eq. (37) for the right eigenfunctions and
considering also the correction in n to the eigenvalues, we
can compute the left eigenfunctions of D(0) from Eq. (34). In
fact, we obtain at the leading order

Sλ
0 (v; n) ∼ √

n Sλ
0 (v)

= √
n

(
cλ +Eh

∫
du gλ

0 (u) log

{
cosh[β(u+ v + h)]

cosh(βu)

})
,

(38)

where cλ is the normalization of the first-order correction to
the eigenfunction gλ

0 , that is,

cλ ≡
∫

du g̃λ
0 (u)

= 1

λ − 1
Eh

∫
du gλ

0 (u) log

{
cosh[β(u + h)]

cosh(βu)

}
. (39)

In all calculations involving the sector D(0) we will express
the eigenvectors using Eqs. (37) and (38) and then proceed
carefully to take the n ↓ 0 limit.

To find an expression for the left eigenfunctions in the other
sectors no such care is needed to take the n ↓ 0 limit in Eq. (34),
therefore we straightforwardly obtain

Sλ
q (v) = Eh

∫
du gλ

q (u){1 − tanh2[β(u + v + h)]}q

for q � 1. (40)

The degeneracy between D(0) and D(1) corresponds to the
degeneracy between the longitudinal and anomalous eigen-
values in the Hessian of the Sherrington-Kirkpatrick model
[30,31]. The multiplicity of the eigenvalues in the two sectors,
d0 = 1 and d1 = n − 1, sum up give an O(n) contribution
as should be expected, while from Eq. (14) the other sectors
have degeneracies of order O(n) without the need of further
elisions. Therefore it is convenient to define

d̂q =
{

1 for q = 1,

limn→0
dq

n
= (−1)q+1 2q−1

q(q−1) for q � 2.
(41)

The first eigenvalue of D(0) requires separate considera-
tions. We define the coefficient f0 from its n expansion as

follows:

λ(n) ∼ 1 − βf0n. (42)

As we already noted, the cavity messages distribution P (u)
is the eigenvector associated to the largest eigenvalue of the
sector D(0) for n = 0. The corresponding left eigenvalue is
S(u) ≡ 1. In Sec. IV A we shall see that f0 is the intensive free
energy of a chain. From Eq. (47) we obtain

−βf0 = EJ,h

∫
dv log[Z(J,h,v)]P (v). (43)

D. The degeneracy between the longitudinal
and the anomalous sectors

A close inspection of the eigenvalue equation (36) reveals
a surprising relation between the sectors D(0) and D(1) at
n = 0. It can be shown, respectively deriving or integrating
both members of Eq. (36) for q = 1 and q = 0, that all the
eigenfunctions of D(1) have a corresponding eigenfunction
in D(0) with the same eigenvalue. On the other hand, all
the eigenfunctions of D(0), except for the first one, i.e., the
ones having zero sum, have a corresponding eigenfunction
in D(1) with the same eigenvalue. We have thus established
a degeneracy between the longitudinal and the anomalous
sectors. The following relations hold:

gλ
0 (u) = 1

β
∂u gλ

1 (u);
1

β
∂u Sλ

0 (u) = −Sλ
1 (u). (44)

Particular attention has to be taken in the limits involving
these two sectors, keeping track of the O(n) corrections both
to eigenvalues and eigenvectors. A double pole contribution
to some observables, as we shall later see, stems from the first
correction in n to the paired eigenvalues in D(0) and D(1). In
fact if we define the eigenvalue shifts δλ0 and δλ1 by

λ0(n) ∼ λ + n δλ0, (45)

λ1(n) ∼ λ + n δλ1, (46)

and consider the expansion to the first order in n of the
eigenvalue equation (31) for q =, from standard perturbation
theory we have

δλq = EJ,h

∫
dudv Sλ

q (u) log[Z(J,h,v)]

× δ [u − û(J,h + v)]

(
1

β

∂û

∂v

)q

gλ
q (v). (47)

The shift difference �λ = δλ0 − δλ1 is the relevant quantity
we are looking for, since it arises in the calculation of the free
energies of closed chains and of the thermally disconnecter
correlation function, see Sec. IV. Using Eq. (47) and the
relation (44) between the eigenfunctions in the two sectors,
we obtain the expression

�λ = −EJ,h

∫
dudv Sλ

0 (u)δ[u − û(J,v + h)]

× [tanh(β(v + h)) − tanh(βv)]gλ
1 (v). (48)
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If we call (•,•) the scalar product in L2 and define the kernel

Q(u,v)=EJ,h δ[u−û(J,v+h)][tanh(β(v+h))− tanh(βv)],
(49)

then Eq. (48) can be rewritten as

�λ = −(
Sλ

0 ,Q gλ
1

)
. (50)

In the next section we shall apply the formalism we have
developed to the computation of some physically relevant
quantities.

IV. SOME APPLICATIONS OF THE FORMALISM

A. Free energy of chains

Let us first consider the average free energy of a closed
chain of length �, each node receiving independent and
identically distributed random fields h, and call it f c

� . If the
chain considered is embedded in a locally treelike graph,
the random fields h are distributed according to the cavity
messages distribution on that graph ensemble. Since Tr T �

n is
the replicated partition function of this system, the free energy
is given by

−βf c
� = lim

n→0
∂n Tr T �

n , (51)

where, thanks to the orthonormal decomposition of Tn, the
trace can be written in the form

Tr T �
n =

n
2∑

q=0

dq

∑
λ∈D(q)

λ�. (52)

In last equation the eigenvalue degeneracies dq are given in
Eq. (14), and the eigenvalues λ depend implicitly on n. In the
small n limit the sum over q can be extended to infinity. The
considerations over the eigenvalues’ shifts and degeneracies
of last section lead to the final expression,

−βf c
� = −β�f0 +

∑
λ∈D(1)

�λ � λ�−1 +
∞∑

q=1

d̂q

∑
λ∈D(q)

λ�. (53)

The coefficients d̂q are given by Eq. (41), the shift differences
�λ are given by Eq. (48), and an expression for the intensive
free energy f0 is found in Eq. (43). We notice that all the
quantities entering Eq. (53) can be expressed in terms of the
eigenvalues and eigenfunctions of Eq. (36).

The computation of the average free energy of open chains
is a little more involved. In the definition of open chains, we
allow the spins at the extremities to receive a random field h̃

that could have a distribution that differs from that of the fields
acting on the internal spins of the chain. We introduce this
relaxation of the model in order to apply our formalism to the
case of open chains embedded in a generic treelike random
graph.

It is convenient to define the replicated partition function of
an open chain of length �, conditioned on the configuration of
the replicated spins at its extrema in the following way: Starting
from T �

n , we remove the field h on the right and substitute it
with a field h̃, and then we add the other field h̃ on the left (see
Fig. 1). Therefore we define

T̃ (�)
n (σ,τ ) ≡ ρh̃(σ ) T �

n (σ,τ ) ρ−1
h (τ )ρh̃(τ ), (54)

where, with a little abuse of notation, the vector ρh̃ is defined
by

ρh̃(σ ) ≡ Eh̃ eβh̃
∑

a σ a

. (55)

By definition the matrix T̃ (�)
n is symmetric (see Fig. 1 for a

pictorial representation). From Eq. (54) and Eq. (24) we obtain
the spectral decomposition

T̃ (�)
n (σ,τ ) =

� n
2 �∑

q=0

∑
λ∈D(q)

λ� ρh̃(σ )ρλ
q (σ )ρh̃(τ )ρλ

q (τ )

×
∑

a1 < · · · < aq

b1 < · · · < bq

Qa1...aq ;b1...bq
σ a1 . . . σ aq τ b1 . . . τ bq .

(56)

The average free energy of an open chain of length � is then
given by

−βf o
� = lim

n→0
∂n

∑
σ,τ

T̃ (�)
n (σ,τ ). (57)

From Eq. (56) it easy to see that only the D(0) sector of T̃ (�)
n

contributes to last equation.
A different behavior characterize the terms corresponding

to the leading eigenvalue at n = 0 (the cavity one) from the
others. As in the case of the closed chain, the extensive con-
tribution to the free energy comes from the leading eigenvalue
of D(0), λ ∼ 1 − nβf0. An O(1) contribution comes from the
leading eigenfunction gλ

0 (u; n) = P (u) + O(n), while every
other eigenvalue, those degenerate with D(0), give an expo-
nential term. Therefore, after a careful treatment of the small
n limit, we arrive at the following expression:

−βf o
� = − �βf0 + Eh̃

∫
du P (u) 2 log cosh (β(u + h̃))

− Eh

∫
dudv P (u)P (v) log cosh (β(u + v + h))

+ log 2 +
∑

λ∈D(1)

a2
λ,0 λ�, (58)

with

aλ,0 = 1

λ − 1
Eh

∫
du gλ

0 (u) log

[
cosh (β(u + h))

cosh(βu)

]

+Eh̃

∫
du gλ

0 (u) log

[
cosh (β(u + h̃))

cosh(βu)

]
. (59)

In Eq. (58) it is clearly expressed at the order O(1) in � the free
energy shift, with respect to the free energy of a closed chain,
due to the addition of two extremal spins and the removal of
an internal one.

The coefficients aλ,0 are strictly related to the left eigen-
functions Sλ

0 defined in Eq. (38). In fact, if the random field at
the extremities of the chain are distributed as the one on the
internal spins, i.e., h̃

d= h as in the case of a chain embedded in
a Poissonian random graph, then aλ,0 = Sλ

0 (0). More generally
if a probability distribution G(0)(u) exists such that

P̃ (h̃) = Eh

∫
du G(0)(u) δ[h̃ − (u + h)] (60)
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holds, then Eq. (59) can be written in the compact form

aλ,0 = (Sλ
0 ,G(0)). Obviously, if h̃

d= h we have G(0)(u) = δ(u).
For a chain embedded in a random regular graphs ensemble
instead, G(0)(u) is given by the distribution of cavity biases
Pcav(u) [16], which corresponds to the first eigenvector of
the longitudinal sector. Therefore in the random regular graph
ensemble (Sλ

0 ,G(0)) = 0 and no exponential decays are present
in the expression (58) for the free energy of open chains.

B. Correlation functions

We take advantage of the spectral representation of the
RTM to find some analytical expressions for the two-point
correlation functions. We consider two spins, σ0 and σ�, at
distance � along a chain. As in the previous paragraph, we
admit the possibility for the chain to be embedded in a locally
treelike graph; therefore the random fields h̃ acting on σ0 and
σ� can be distributed differently from the fields h on the internal
spin of the chain. The decomposition of T̃ (�)

n (σ,τ ) in Eq. (56)
can be exploited to obtain the correlation functions. In fact,
contracting T̃n

�
(σ,τ ) with two spins having the same replica

index constrains them to be in the same thermal state, as
in 〈σ0σ�〉 = limn→0

∑
σ,τ σ 1 T̃ (�)

n (σ,τ ) τ 1. Choosing different
replica indexes instead corresponds to choosing different
thermal states, e.g., 〈σ0〉〈σ�〉 = limn→0

∑
σ,τ σ 1 T̃ (�)

n (σ,τ ) τ 2.
Generalizing this considerations is easy to obtain,

〈σ0σ�〉k = lim
n→0

∑
σ,τ

σ 1 . . . σ k T̃ (�)
n (σ,τ ) τ 1 . . . τ k. (61)

Since vectors of the form σ 1 . . . σ k have nonzero projections
in D(q) only for q � k, only these sectors of the spectral
representation of T̃ (�)

n contribute to Eq. (61). The expression for
〈σ0σ�〉k is quite complicated and it involves also the correction
for small n to the eigenfunction of D(0) and D(1), as in the case
of the thermally disconnected correlation function we shall
later see. Therefore, since this kind of correlation function has
little physical relevance, we will not report its expression in
terms of the transfer matrix eigenvalues and eigenfunctions.

Far more interesting from the physical viewpoint are
the connected correlation functions. The ferromagnetic con-
nected correlation functions can be expressed as 〈σ0σ�〉c =
limn→0

1
2

∑
σ,τ (σ 1 − σ 2) T̃ (�)

n (σ,τ ) (τ 1 − τ 2), as one can
rapidly check, and this expression can be easily generalized to

〈σ0σ�〉kc = lim
n→0

1

2k

∑
σ,τ

(σ 1 − σ 2) . . . (σ 2k−1 − σ 2k)

× T̃ (�)
n (σ,τ ) (τ 1 − τ 2) . . . (τ 2k−1 − τ 2k). (62)

It is worth noticing that the vector v = (σ 1 −
σ 2) . . . (σ 2k−1 − σ 2k) belongs to the subspace D(k), therefore
we can choose a basis for the spectral representation of T̃ (�)

n

such that all but one vectors are orthogonal to v. This leads to
the following compact expression for the connected correlation
functions:

〈σ0σ�〉kc =
∑

λ∈D(k)

a2
λ,k λ�, (63)

with the coefficients aλ,k given by

aλ,k = Eh̃

∫
du gλ

k (u) [1 − tanh2 (β(u + h̃))]k. (64)

As in the case of the coefficient aλ,0 defined in Eq. (59), if a
solution G(0) of (60) exists then aλ,k is simply given by the
projection of G(0) on Sλ

k , that is, aλ,k = (Sλ
k ,G(0)).

Equation (63) allows us to easily compute the suscepti-
bilities χk = limN→∞ 1

N

∑
i,j 〈σiσj 〉kc in a random graph with

mean degree and mean residual degree z0 and z, respectively.
In fact, in the thermodynamic limit we have

χk = (1 − m2)k +
∞∑

�=1

z0z
�−1 〈σ0σ�〉kc

= (1 − m2)k + z0

∑
λ∈D(k)

a2
λ,k

λ

1 − zλ
. (65)

At a transition point the largest eigenvalue of one of the sectors
D(q) reaches the value 1

z
and the corresponding susceptibility

diverges. Assuming a smooth behavior for the eigenvalue in
the high-temperature region before the transition, λ(T ) = 1

z
+

O(T − Tc) for T → T +
c , we obtain the mean-field critical

exponent γ = 1.
The computation of the thermal disconnected correlation

function 〈σ0〉〈σ�〉, relevant to the RFIM transition, is more
complicated, since it involves the subleading corrections in n

to the eigenvectors of Tn. Great care has to be taken in the
limit limn→0

∑
σ,τ σ 1 T̃ (�)

n (σ,τ ) τ 2 = 〈σ0〉〈σ�〉. As in Eq. (37),
let us call g̃λ

0 (u) the correction to the eigenfunction gλ
0 (u). We

denote with 〈•〉q the expectation over T̃ (�)
n (σ,τ ) restricted to

the sector D(q). Then, in D(0), we obtain

〈σ 1τ 2〉0 ∼ 〈σ∞〉2+
∑

λ∈D(1)

1

n
a2

λ,1 λ�+a2
λ,1 � δλ0 λ�−1

− 2aλ,1 λ�

[ ∫
du g̃λ

0 (u) tanh (β(u + h̃))

+
∫

du gλ
0 (u) tanh (β(u + h̃))

× log
cosh (β(u + h̃))

cosh(βu)

]
, (66)

where the contribution 〈σ∞〉 comes from the cavity eigenvector
and is the average magnetization of a spin at the end of an
infinite chain.

Similarly, if we define g̃λ
1 (u) by gλ

1 (u; n) ∼ gλ
1 (u) + n g̃λ

1 (u),
in the sector D(1) we have

〈σ 1τ 2〉1 ∼
∑

λ∈D(1)

−1

n
a2

λ,1 λ� − a2
λ,1 � δλ1 λ�−1

− 2aλ,1 λ�

{ ∫
du g̃λ

1 (u)[1 − tanh2 (β(u + h̃))]

+
∫

du gλ
1 (u)(1 − tanh2(β(u + h̃)))

× log
cosh (β(u + h̃))

cosh(βu)

}

(67)
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Summing the two contributions, the final result for the
disconnected correlation function is

〈σ0〉〈σ�〉 = 〈σ∞〉2 +
∑

λ∈D(1)

�λ a2
λ,1 � λ�−1 + αλ λ�. (68)

Therefore each eigenvalue of the anomalous sector contributes
to 〈σ0〉〈σ�〉 with a simple exponential term and with a term that
leads to a double pole behavior in the associated susceptibility,
with coefficients �λ given in Eq. (48). The coefficients αλ of
the exponential decays instead are given by

αλ = 2 aλ,1

{∫
du gλ

1 (u) tanh (β(u + h̃))

× [tanh (β(u + h̃)) − tanh(βu)]

−
∫

du g̃λ
1 (u)[1 − tanh2 (β(u + h̃))]

−
∫

du g̃λ
0 (u) tanh (β(u + h̃))

}
. (69)

Since the magnetization of a spin conditioned to be to be
the extremity of a chain of size � is given by

〈σ�〉 = lim
n→0

∑
σ,τ

σ 1 T̃ (�)
n (σ,τ ) = 〈σ∞〉 −

∑
λ∈D(1)

aλ,1 aλ,0 λ�,

(70)
if we call � the highest eigenvalue of the sector D(1), the most
relevant contributions to the thermally disconnected disorder-
connected correlation function is given by

〈σ0〉〈σ�〉 − 〈σ0〉 〈σ�〉
= �� a2

�,1 ���−1 + (α� − 2〈σ∞〉 a�,1 a�,0)��

+o(��) for � → +∞. (71)

We notice that, while the coefficient of the exponential term
is quite difficult to compute, the coefficient a2

�,1��, which
regulates the leading behavior, has a much simpler expression
given in Eq. (48) and Eq. (64). From Eq. (71) it turns
out that near a ferromagnetic transition point, i.e., � = 1

z
,

as long as �� is not zero, the leading behavior of the
disconnected susceptibility χdisc = ∑

i,j 〈σ0〉〈σ�〉 − 〈σ0〉 〈σ�〉
reads as follows:

χdisc � z0 �� a2
�,1

1

(1 − z�)2
. (72)

The expected double-pole behavior of the disconnected sus-
ceptibility is thus recovered.

V. CAVITY DERIVATION

In this section we present the derivation of several of the
results of last section using a probabilistic approach, in the
same spirit of the usual cavity method calculations [15,16].
While this approach is more physically intuitive than the RTM
formalism, it requires the setup of an ad hoc recursion rule for
each observable. Noticeably, we could not recover Eq. (53) for
the free energy of closed chains.

A. Open chains

We want to study the statistical properties of a random
Ising open chain without the use of replicas. We start with an

asymmetric chain of length �, whose random partition function
we denote with Z�, constructed iteratively according to the
following procedure: Z0 is the partition function of a single
spin receiving a random field u0, i.e., Z0 = 2 cosh(βu0). At
the i-th step of the construction we add a spin σi , a random
coupling Ji between σi and σi−1, and a random field hi−1 on
σi−1; the random variable Z� is the partition function of the
system obtained after the �-th step of the procedure. Note that
the last spin added to the chain has no external fields acting on
it. The following distributional identity can be easily derived
as follows:

Z�+1 = 2 cosh(βJ�) cosh(β(u� + h�))

cosh(βu�)
Z�

≡ Z(J�,h�,u�)Z�. (73)

It is convenient to introduce the quantity Zn
� (u) ≡

δ(u − u�) Zn
� , which corresponds to the expectation of Zn

�

along with the indicator function of the event u� = u. Here n

is an arbitrary chosen positive real number, the symbol being
chosen to stress the analogy with the replica formalism where
the quantity n (integer in this case) is the number of replicated
systems. Using this definition from Eq. (73) follows readily

Zn
�+1(u) = EJ,h

∫
dv δ[u − û(J,v + h)] Zn(J,h,v) Zn

� (v),

(74)
where ũ(J,x) = 1

β
atanh ( tanh(βJ ) tanh(βx)) is the usual

message passing rule. The integral operator of Eq. (74) is
the same found in the RTM formalism in Eq. (31) for the
sector D(0), therefore we can make use of the spectral analysis
result from those paragraphs, in particular of the completeness
relation

EJ,h δ[u − û(J,v + h)] Zn(J,h,v)

=
∑

λ∈D(0)

λ(n) gλ
0 (u; n) Sλ

0 (v; n) (75)

between the left and right eigenvectors. The definition of the
left eigenfunctions of D(0) was already given in Eq. (34), but
we rewrite it for convenience as follows:

Sλ
0 (v; n) = Eh

∫
du gλ

0 (u; n)

[
cosh (β(u + v + h))
2 cosh(βu) cosh(βv)

]n

. (76)

Let us define another random partition function, Z�(u; x),
obtained from Z�(u) conditioning on the value of the message
u0 on the first spin, that is, Z�(u; x) = Z�(u)|(u0 = x). Since
also Zn

� (u; x) as a function of u obeys equation (74), using
the decomposition Eq. (75) and the initial condition Z0 =
2 cosh(βu0) we arrive at the important result

Zn
� (u; x) =

∑
λ∈D(0)

λ�(n) gλ
0 (u; n) Sλ

0 (x; n) [2 cosh(βx)]n. (77)

Using last equation it is easy to compute any moment Zn
� ,

n not necessarily an integer, of the partition function of a
random asymmetric Ising chain of length �. More interesting
is the computation of the properties of a symmetric Ising open
chain, the one considered in Sec. IV A, which receives on each
extremity an external field distributed according to a certain
probability distribution P̃ (h̃). As already stated, this definition
stems from the need to cover the important case of a chain
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embedded in a locally treelike graph. Let us call Z�,o the
random partition function of this open chain. It is related to
the random partition function Z� of the asymmetric open chain
by

Z�,o = cosh (β(u� + h̃�))
cosh(βu�)

Z�−1(u�; u1)
2 cosh(βJ0) cosh(βh̃0)

cosh(βu1)
,

(78)
where u1 is distributed as ũ(J0,h̃0). From Eq. (78) along
with Eq. (77) and Eq. (76), we derive the main result of this
paragraph as follows:

Zn
�,o =

∑
λ∈D(0)

λ�(n) a2
λ,0(n), (79)

where aλ,0(n) is defined by

aλ,0(n) ≡ Eh̃

∫
du

[
cosh (β(u + h̃))

cosh(βu)

]n

gλ
0 (u; n). (80)

In the RTM formalism of Secs. III and IV, the last expression
could be derived from T̃ (�)

n defined in Eq. (56) by analytic
continuation of Zn

�,o = ∑
σ,τ T̃ (�)

n (σ,τ ) to noninteger n.
The average free energy of an open chain of length � can

then be obtained by

−βf o
� = lim

n→0
∂n Zn

�,o. (81)

The computation involves computing the order n of all the
quantities present in Eq. (79), as was done in Sec. IV A. In
this paragraph, however, without any use of replicas, we gave
a purely probabilistic argument valid for any real value of n.
We refer therefore to Sec. IV A for the successive step of the
computation of f o

� , leading to the final result, Eq. (58). Notice
that in the notation of that paragraph aλ,0 is related to aλ,0(n)
defined in Eq. (80) by aλ,0(n) ∼ √

n aλ,0.
The expression (58) for f o

� could also be obtained by use of
a different approach that does not involve any limit n ↓ 0 but
is technically more difficult. We define the function ϕ(�)(u) by

ϕ(�)(u) ≡ δ(u − u�) log Z� (82)

and observe that given the distribution of the cavity message at
distance � along the chain, u�, which we call G

(�)
0 (u), it obeys

the iterative rule

ϕ(�+1)(u) = EJ,h

∫
dv δ [u − û(J,h + v)] ϕ(�)(v)

+EJ,h

∫
dv δ[u − û(J,h + v)]

× log

[
2 cosh(βJ ) cosh (β(v + h))

cosh(βv)

]
G

(�)
0 (v).

(83)

The last equation can be solved by decomposing ϕ(�)(u) and
G

(�)
0 (v) along the eigenfunctions of D(0) at n = 0, and then

ϕ(�)(u) can be used to obtain f o
� .

B. Connected correlation functions

Let us derive the eigenvalue equation (4) and the expression
for the connected correlation functions Eq. (8) without making
any use of replicas. Here we consider straightforwardly the

random open chain with partition function Z�,o, characterized
by independent random external field distributes a h on the
internal spins and as h̃ on the extremities. The connected
correlation function 〈σ0σ�〉c = 1

β

∂〈σ�〉
∂H0

, where H0 is an auxiliary
field acting on σ0, can be expressed as a function of the message
u�, coming through the chain to the spin σ�, and its derivative
with respect to H0. In fact, we have

〈σ0σ�〉c = [1 − tanh2 (β(h̃� + u�))]
∂u�

∂H0
, (84)

where h̃�, as usual, is the random effective field acting on
σ� and coming eventually from the rest of the graph. Let us
define the random variable X� by X� ≡ ∂u�

∂H0
. The average over

disorder of Eq. (84) and its moments 〈σ0σ�〉qc then can be
computed once we know the joint law of the random variables
u� and X�, which we call P�(u,X). Since X� obeys the chain
rule X�+1 = ∂u�+1

∂u�
X� the recursion rule for P� reads

P�+1(u,X) = EJ,h

∫
dv dY δ

(
X − ∂û

∂v
Y

)

× δ[u − û(J,h + v)] P�(v,Y ), (85)

where û is the message passing rule defined in Eq. (32). From
last expression it turns out we can write an iteration rule for
the momenta of X� at fixed u�,

G(�)
q (u) =

∫
dX P�(u,X) Xq, (86)

which reads

G(�+1)
q (u) = EJ,h

∫
dv δ[u − û(J,h + v)]

(
∂û

∂v

)q

G(�)
q (v).

(87)
Equations (85) and (87) with q = 2 have been recently
introduced in the literature [25] in order to derive an analytical
expression for the spin-glass susceptibility.

We note that the knowledge of the maximum eigenvalue of
the integral operator of Eq. (87) for a generic q allows one to
reconstruct the full distribution of the connected correlation
function at large distance [32].

From the last equation it is clear the relation of G(�)
q with

the eigenfunctions gλ
q of Eq. (4). In fact, decomposing G(�)

q (u)
along the eigenfunctions of D(0), projecting Eq. (87) onto the
left eigenvectors Sλ

q (u) and with some computations analogous
to the ones leading from Eq. (79) to Eq. (80), we arrive at the
following:

G(�)
q (u) =

∑
λ∈D(q)

aλ,q λ� gλ
q (u), (88)

where aλ,q is defined in Eq. (64). Equation (88), along with
Eq. (84), gives the expression (63) obtained with the RTM
formalism for the connected correlation functions.

Following the lead of the previous paragraph, we can extend
the above derivation to compute the disorder averages 〈σ0σ�〉qc
along with an arbitrary power of Z�,o. The generalization of
Eq. (87) in fact becomes

G(�+1)
q (u; n) = EJ,h

∫
dv δ[u − û(J,h + v)]

(
∂û

∂v

)q

×Z(J,h,v) G(�)
q (v; n), (89)
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and Eq. (88) generalizes trivially as well. The final result is

〈σ0σ�〉qc Zn
�,o =

∑
λ∈D(q)

λ�(n) a2
λ,q(n), (90)

which extrapolates smoothly to the result we obtained for n =
0, i.e., Eq. (63). In the last equation the coefficients aλ,q(n) are
defined by

aλ,q(n) ≡ Eh̃

∫
du

[
cosh (β(u + h̃))

cosh(βu)

]n

× [1 − tanh2 (β(u + h̃))]qgλ
q (u; n), (91)

such that aλ,q(0) = aλ,q .

C. The disconnected correlation function

The computations of the thermally disconnected correlation
function 〈σ0〉〈σ�〉 are straightforward once we use the results
we obtained in the two preceding paragraphs. In fact, calling
H0 and H� two auxiliary fields, we add to the first and the
last spin of the chain, respectively, and setting to zero after the
computation, the following relation holds:

∂

∂H0

∂

∂H�

Zn
�,o = n 〈σ0σ�〉c Zn

�,o + n2 〈σ0〉〈σ�〉 Zn
�,o. (92)

Using Eqs. (79) and (90) last expression leads to the main
result of this paragraph, that is,

〈σ0〉〈σ�〉 Zn
�,o=

1

n

[ ∑
λ∈D(0)

λ�(n) b2
λ,0(n) −

∑
λ∈D(1)

λ�(n) a2
λ,1(n)

]
,

(93)
where the coefficient bλ,0(n) ≡ ∂ aλ,0(n)

∂H0/�
reads

bλ,0(n) = Eh̃

∫
du

[
cosh (β(u + h̃))

cosh(βu)

]n

× tanh (β(u + h̃))
√

n gλ
0 (u; n). (94)

We included a factor
√

n in the definition of bλ,0(n) to facilitate
the extrapolation of Eq. (93) to small n. In fact, for all but
the first eigenfunctions of D(0) the normalization condition
imposes the scaling gλ

0 (u; n) ∼ 1√
n

[gλ
0 (u) + n g̃λ

0 (u)].
We could derive Eq. (93) also in the RTM formalism for

integer values of n and then perform an analytic continuation
to arbitrary real n. In the limit n ↓ 0 it is easy to see that the
contribution to 〈σ0〉〈σ�〉 from the first and the second sums
of Eq. (93) are given in Eqs. (66) and (67) of Sec. IV B,
respectively.

An alternative probabilistic derivation of the formula (68)
for 〈σ0〉〈σ�〉, which does not require the knowledge of the
moments of the partition function and of 〈σ0σ�〉c Zn

�,o, goes
through the definition of

R(�)(u) ≡ δ(u − u�)〈σ0〉(�). (95)

We used the symbol 〈σ0〉(�) to denote the magnetization of
the first spin at the �-th iteration of the construction of the
asymmetric chain described in Sec. V A. It can be easily
shown that the knowledge of R(�)(u) allows the computation
of 〈σ0〉〈σ�〉. Since 〈σ0〉(�) is given by the derivative of the free
energy of the chain at the step � with respect to a field on the

the first spin, considering the free-energy difference after an
iteration it is easy to arrive at the relation

〈σ0〉(�+1) = 〈σ0〉(�) + [tanh (β(u� + h)) − tanh(βu�)]
∂u�

∂h0
.

(96)

Therefore the recursion rule for R(�)(u) is given by

R(�+1)(u) = EJ,h

∫
dv R(�)(v) δ[u − û(J,h + v)]

+EJ,h

∫
dv G

(�)
1 (v) δ[u − û(J,h + v)]

× [tanh (β(v + h)) − tanh(βv)], (97)

where G
(�)
1 (v) was defined in Eq. (88) in the last paragraph.

The last equation can be solved decomposing R(�)(u) along the
eigenfunctions of D(0) at n = 0 and using Eq. (88) for G

(�)
1 (v).

The computation is lengthy and nontrivial, since it involves
expressing g̃λ

0 and g̃λ
1 (defined in Sec. IV B), respectively,

in terms of the basis of D(0) and D(1) at n = 0. In the end,
though, one arrives at the expression (68) for the disconnected
correlation function.

VI. CONCLUSIONS

In the present paper we presented a thorough analysis of
the spectral properties of the RTM. We have developed a
formalism that is suitable to compute many different types
of connected and disconnected correlation functions and can
be applied both to one-dimensional systems and to locally
treelike graphs. The expressions we found are exact for
any value � of the spin distance and can be approximated
numerically considering only the top eigenvalues of cer-
tain integral operators. Also the formalism can be trivially
adapted to perform the same computations in diluted p-spin
models.

We also managed to obtain exact formulas for the moments
of the partition function and of the average free energies of
open and closed chains of finite length. It has been recently
found that short chains have an important role in the finite-size
corrections to disordered models on diluted graphs [18] and
in perturbative expansions around the Bethe approximation on
Euclidean systems [27]. Therefore the analytical tools we have
developed also apply to these contexts.

Most of the results have also been derived using rigor-
ous probabilistic arguments. This approach has the merits
of avoiding the complication of the decomposition of the
replicated space Z⊗n

2 and of being more physically intuitive
than the replica one. The advantage of the replica method
instead is that once the spectral representation of the RTM
is obtained all the observables can be computed just with
opportune contraction. In the cavity analysis an ad hoc iterative
function or a computation strategy has to be devised for each
observable.

Noticeably, we did not manage to derive Eq. (53) for the free
energy of closed chains using a cavity argument. This is the
only point withstanding the proof of the complete equivalence
between the two methods.

A limitation of both the RTM formalism and of its cavity
counterpart is the fact that it is applicable to the analysis
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of disordered Ising models only in their replica-symmetric
phase. This includes all isolated one-dimensional systems
but not diluted models in the spin-glass phase. Therefore an
investigation of the spectral properties of the 1RSB replicated
transfer matrix, extending Wigner’s decomposition [29] to the
1RSB symmetry group, is desirable. Another direction for
the extension of our results, which should not require too

much analytical effort [33], is toward the investigation of Potts
models.
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