
PHYSICAL REVIEW E 90, 012137 (2014)

Nonequilibrium dynamics of four-point correlations of collective density fluctuations
in a supercooled liquid

Bhaskar Sen Gupta and Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

(Received 5 December 2013; revised manuscript received 3 June 2014; published 29 July 2014)

In this paper we study the four-point correlation function χ4 of collective density fluctuations in a nonequilib-
rium liquid. The equilibration is controlled by a modified stretched exponential behavior {exp[−(tw/τ )β ]} having
the relaxation time τ dependent on the aging time tw . Similar aging behavior has been seen experimentally in
supercooled liquids. The basic equations of fluctuating nonlinear hydrodynamics are solved here numerically
to obtain χ4 for equilibrium and non equilibrium states. We also identify a dynamic length scale ξ from the
equilibrated function. ξ (T ) grows with fall of temperature T . From a broader perspective, we demonstrate here
that the characteristic signatures of dynamical heterogeneities in a supercooled liquid, observed previously in
computer simulations of the dynamics of a small number of particles, are also present in the coarse grained
equations of generalized hydrodynamics.
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I. INTRODUCTION

A general feature emerging from simulations [1,2] of the
particle dynamics in a liquid is that at a given instant the
atomic motions in different environments in the structurally
disordered system evolve differently. And yet the fluid particles
constantly move and rearrange so that the distinctions between
different spatial environments of the fluid are transient.
Understanding this complex and evolving situation, generally
termed dynamic heterogeneities [3], is facilitated through
the study of the multiparticle correlation functions. The
multipoint structure of the correlation function is useful in
probing the cooperative nature of the dynamics since it
involves incorporating the information at two different spatial
points corresponding to two different times simultaneously.
In a number of recent works, a dynamic length scale [4–7]
depicting the strongly correlated nature of the supercooled
liquid dynamics has been obtained analyzing a four-point
correlation function [8]. The different types of four-point
functions which have been studied in this respect involve some
distinct property of the fluid [9–13] like mobility or density of
a tagged particle. In the present paper we study the dynamics
in terms of that of the set {ρ(x,t),g(x,t)} respectively denoting
the local densities of mass and momentum of the fluid. The
nature of decay in the fluctuations of these conserved fields is
also the focus of the microscopic theory, termed mode coupling
theory (MCT), for the slow dynamics in a supercooled liquid.

Let δρ(q,t) denote the Fourier transform of the density fluc-
tuation δρ(x,t) = ρ(x,t) − ρ0 corresponding to wave vector q

at time t . ρ0 denotes the average density. We consider the
product

F (q; t,tw) ≡ δρ(q,t + tw)δρ(−q,tw) (1)

of the respective Fourier transforms of δρ at times t + tw and
tw. In the following tw will be referred to as the waiting or
aging time. The normalized two-point function is defined as
the noise-averaged quantity:

C(q,t + tw,tw) = 〈F (q; t,tw)〉
〈F (q,0,tw)〉 . (2)

For an equilibrium state time translation invariance holds, and
we have the two-point function depending only on time t ,
C(q,t + tw,tw) ≡ C(q,t). The long-time limit f (q) of C(q,t)
changes discontinuously at the ergodicity nonergodicity (ENE)
transition of the MCT discussed above and is generally termed
the nonergodicity parameter.

On the other hand the four-point function χ4(q; t,tw) is
defined in a form normalized with respect to its initial value:

χ4(q; t,tw) = 〈F (q; t,tw)F (−q; t,tw)〉
|F (q; 0,0)|2 . (3)

In this paper we compute the time dependent correlation
function χ4(qm,t) involving the collective densities ρ(x,t) at
four points. Here qm corresponds to the first maximum of
structure factor. The four-point function develops a sharp peak
at a time t = tp (say) and eventually decays out at larger times.
The dynamic length ξ (T ), identified from analyzing [14] the
four-point function χ4(q,tp), grows roughly by a factor of
three over the corresponding temperature range. The quantity
χ0 ≡ χ4(0,tp) grows as ξ (2−η) with the correlation length
ξ with the exponent 2 − η = 2.1. In the nonequilibrium
state without time translation invariance [15], the four-point
function χ4(t,tw) for several different values of the waiting
(aging) time tw is seen to overlap in the α-relaxation regime.
The corresponding frequency transforms χ4(ω,tw) collapse on
a modified Kohlrausch-Williams-Watts (MKWW) relaxation
curve relaxation time τ (tw) dependent on tw. This is similar to
the behavior seen in two-point correlations [16,17].

The dynamics of short length scale fluctuations in a dense
liquid going beyond the low order mode-coupling approach
has been studied by various methods. A study by Fuckizaki
and Kawasaki [18] involved mapping the problem to a kinetic
lattice gas-type model. In this approach density is treated as
the only relevant variable, and its dynamics is studied with a
discretized version of the Fokker-Planck equation in the form
of a mesoscopic kinetic equation. Another nonperturbative
approach [19,20] is to solve numerically the equations of
fluctuating nonlinear hydrodynamics (FNH) for a small set
of slow modes for the many-particle system. These studies so
far were generally for two-point equilibrium correlations. We
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solve the FNH equations taking into account the short wave
length fluctuations and going up to long times to consider
both equilibrium and nonequilibrium correlations at two-
and four-point levels. The paper is organized as follows. In
the next section we describe the equations of generalized
hydrodynamics. In Sec. III we discuss the specific model for
which these equations are solved. In Sec. IV we present the
results. The paper is concluded with a short discussion of the
results.

II. GENERALIZED HYDRODYNAMICS

To calculate these time correlation functions we need the
dynamical equations controlling the time evolution of density
fluctuations in the liquid. In the generalized hydrodynamic
description, the equations of motion for the set of coarse-
grained densities φi(x,t) are obtained in the form of Langevin
equations [21]:

∂φi

∂t
= Vi[φ] −

∑
j

L0
ij

δF

δφj

+ θi . (4)

Vi[φ] is the “streaming velocity” representing the reversible
part of the equation of motion and is given by

Vi[φ] =
∑

j

{φi,φj } δF

δφj

, (5)

where we have used the usual convention of repeated indices
being summed over. {φi,φj } is the Poisson bracket [22]
between the “slow” variables and is obtained by using the
definitions of the corresponding microscopic densities {φ̂i}.
The quantity F [φ] is the effective Hamiltonian governing the
equilibrium averages of the fields φi at equal times, given by

〈φiφj 〉 =
∫

D(φ)e−βF [φ]φiφj/Z, (6)

where

Z =
∫

D(φ)e−βF [φ] (7)

is the partition function, β = (kBT )−1, and D(φ) indicates a
functional integral over the fields φi . The irreversible part of
the dynamics is incorporated via the damping coefficient Lij

and the thermal noise term θi . The second moment of θi is
given by

〈θi(x,t)θj (x′t ′)〉 = 2kBT L0
ij δ(x − x′)δ(t − t ′). (8)

The damping matrix L0
ij is interpreted as the “bare” or

local approximation for the transport coefficients, which are
determined by short-range interactions.

For the compressible liquid, which is our focus here,
we consider the dynamics in terms of two coarse-grained
fluctuating variables, namely, the mass density ρ(r,t) and
the momentum density g(r,t). The reversible parts Vi of
the respective generalized Langevin equations (4), involving
the Poisson brackets, are obtained using the microscopic
expressions for the corresponding slow modes. Their calcu-
lation is standard and is described in Ref. [23]. The effective
Hamiltonian or the so-called free energy functional F [φ] is a

function of the coarse-grained densities ρ(x) and g(x):

F [ρ,g] ≡ FK [ρ,g] + FU [ρ]. (9)

The kinetic part is dependent on the momentum density

FK =
∫

dx
g2(x)

2ρ(x)
, (10)

and the so-called potential part is given by FU = Fid + Fin.
The ideal gas contribution Fid and the interaction part Fin are,
respectively, given by

βFid = 1

m

∫
drρ(r)

[
ln

(
ρ(r)

ρ0

)
− 1

]
, (11)

βFin = − 1

2m2

∫
dx

∫
dx′δρ(x)c(x − x ′)δρ(x′). (12)

For the interaction part Fin we have used the Ramakrishnan-
Yussouff (RY) [24] form of the interaction free energy (up
to second order) used in the static density functional theory.
With the results stated above F is quadratic in the density
fluctuations, and the probability e−F of the equilibrium state
is Gaussian.

The equation for mass density ρ(x,t) is the continuity
equation

∂ρ

∂t
+ ∇ · g = 0. (13)

The streaming velocity for the current g(x,t) is given by

V i
g (x) = −∇j

[
gigj

ρ

]
− v2

0[∇iρ − ρ∇if (r)], (14)

where v0 = 1/
√

βm is the thermal speed and f (r) is the
convolution matrix,

f (r) = m−1
∫

dr′c(r − r′)δρ(r′,t). (15)

The nonlinear equations for the components of the momentum
density g are therefore obtained in a generalized form of the
Navier-Stokes equation:

∂gi

∂t
+ ∇j

[
gigj

ρ

]
+ v2

0{∇iρ − ρ∇if (r)} + Lij

gj

ρ
= θi .

(16)

Here v0 = 1/
√

βm denotes the thermal speed at temperature
T . The second term on the LHS of Eq. (16) refers to the well-
known Navier-Stokes nonlinearity and is a result of coupling
of convective currents. The stochastic term in the generalized
Langevin equation (16) is denoted by the noise θi , which is
assumed to be Gaussian. The correlation of the noise is related
to to the bare damping matrix L0

ij through the fluctuation-
dissipation relation (8). The matrix L0

ij is given by

L0
ij (x) = −η0

(
1
3∇i∇j + δij∇2

) − ζ0∇i∇j , (17)

where η0 and ζ0 are bare shear and bare bulk viscosities,
respectively. L0

ij is treated as an input in the calculation.
We use for these bare transport coefficients Enskog-type
expressions [25], which describe the short-time behavior for
the liquid well. These expressions for the transport coefficients
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are identified by the constructing the equations of generalized
hydrodynamics from microscopic description of the fluid:

q2ζ0(q) = 2

3tE
[1 − j0(qσ ) + 2j2(qσ )], (18)

q2η0(q) = 2

3tE
[1 − j0(qσ ) − j2(qσ )]. (19)

Here jn is the spherical Bessel function of order n and tE is
the Enskog collision time [26].

Equations (13) and (16) form the basic set of nonlinear fluc-
tuating hydrodynamic equations for {ρ,g}. For compressible
liquids the convective term [the third term of Eq. (16)] as well
as the dissipative term [the fourth term of Eq. (16)] contain
the 1/ρ nonlinearity. The density nonlinearity present in the
reversible part of the equation of motion (16) has important
consequences for the dynamics of the compressible liquids.
This is included in the fourth term representing the pressure
functional. The function f (x,t) signifies the role of interaction
between the fluid particles and is obtained in Eq. (15) as a
convolution function of the direct correlation function c(x)
and the density fluctuation δρ(x,t). The slow dynamics of the
MCT originates from a feedback mechanism caused by the
density nonlinearities in the FNH Eq. (16). We have ignored
the convective nonlinearities in Eq. (16) to focus on the role
of the coupling of density fluctuations.

III. THE MODEL STUDIED

We present here the numerical scheme followed in solving
the above described FNH equation. We consider here a classi-
cal system of N particles, each of mass m interacting through
the Lennard-Jones (LJ) potential of characteristic length scale
σ . The thermodynamic state of the fluid is described in terms
of the reduced density n∗

0 = n0σ
3 and the reduced temperature

T ∗ = (kBT )/ε. n0 is the average number density of particles
with ρ0 = mn0. The FNH equations are solved numerically
on a cubic grid with mesh size h in three dimensions. We
scale length with respect to the grid length h and time with
respect to τ̄o ≡ h/c0 where c0 is the speed of sound in the
hydrodynamic limit, i.e., c2

0 = kBT /[mS(0)] = v2
0/S(0). In

terms of the usual LJ time scale τ0, we have τ̄ = τ0S(0)/
√

T ∗.
For numerical solution the conserved densities and momentum
are scaled to dimensionless forms. The mass and momentum
densities are, respectively, scaled as ρ(x,t)⇒[(m/h3)]n(x,t)
and g(x,t) ⇒ [mc0/h3]j(x,t). In terms of these new rescaled
variables n(r,t) and j (x,t), the fluctuating equations have the
form

∂n(r,t)
∂t

+ α[∇ · j] = 0, (20)

∂ji(r,t)
∂t

+ S(0)[∇iδn(r,t) − n(r,t)∇i f̃ (r,t)] + L̄0
ik

jk(r,t)
n(r,t)

= θ̄i(r,t). (21)

The fluctuation is defined as δn(r,t) = n(r,t) − n̄0 where n̄0 =
n0h

3 = n∗α−3 and α = h/σ . The function f (r,t) defined in

Eq. (15) is obtained in the dimensionless form as f̃ (r,t):

f̃ (r,t) =
∫

drc(r − r
′
)δn(r

′
,t). (22)

θ̄i is the noise reduced to dimensionless form, and its
correlation is related to the bare transport matrix L̄0

ij . For the
isotropic liquid L̄0

ij is expressed in terms of two independent
transport coefficients given by

L̄0
ij = (ζ̄0 + η̄0/3)δij∇2 + η̄0∇i∇j . (23)

In the small wave number limit, ζ̄0 and η̄0 are the bare bulk
and shear viscosities, respectively. Since we will be applying
the equations for finite wavelengths here, more generalized
expressions for these quantities are necessary. We use here the
Enskog-type expression [25] for this purpose, which describe
the short-time behavior for the liquid quite well:

ζ̄0(x)x2 = ν0[1 − j0(x) + 2j2(x)], (24)

η̄0(x)x2 = ν0[1 − j0(x) − j2(x)], (25)

where j (x) is the spherical bessel function for the scaled wave
number x = qσ and the unit ν0 = (2σ )/(3v0tE) in terms of the
Enskog collision time tE [26].

The numerical solution scheme used here starts with an
initial distribution of the fluctuating variables n(r) and j(r) over
a set of points 203 on a cubic lattice. The equation of motion
for the density variable n(x,t), i.e., the continuity equation,
is linear. Let us consider the various nonlinear terms present
in the equation of motion for the momentum density. First,
the nonlocal integral f̃ (r,t) defined in Eq. (15) appears in the
reversible part of the equation of motion and is evaluated as a
sum of contributions from the successive shells,

f̃ (r,t) = h3
∑

i

c(Ri)
∑

α

δn
(
Rα

i ,t
)
, (26)

where Rα
i for α = 1, . . . ,mi , respectively, denote radii vectors

of the mi lattice points in the ith spherical shell of radius Ri .
Second, the 1/n(x,t) nonlinearity in the dissipative term of
the momentum equation is computed by replacing the density
field in the denominator with the n(x) averaged over a length
scale close to σ around the corresponding point r. Finally we
ignore the convective nonlinearity in the present calculation
and focus on the role of the pressure nonlinearity in producing
the slow dynamics.

To avoid the spurious instability due to the density becom-
ing negative on a grid point in the numerical solution scheme,
we adopt a coarse-graining scheme [27] in which the density
n(x,t) on the grid is redefined at each step of the numerical
integration.

Equations (13)–(16) of FNH are solved numerically on
a cubic lattice of size 20 with a grid length h. Two inputs
are required here. First is the direct correlation function
c(r) related to the structure of the liquid [28]. Second, the
bare transport coefficients L0

ij defining the noise correlations
are chosen such that the corresponding short-time dynamics
agrees with computer simulation data. For displaying the
figures time is scaled with τ0 = (mσ 2/ε)

1
2 and length with

lattice constant h. Starting from an uniform configuration of
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density and momentum density on the grid of points, we solve
the equations of motion progressively in time and the results
for the density fluctuations are saved in selected time bins.
The whole array consisting of the density fluctuations n(x,t)
at different lattice points x are then transformed using fast
Fourier transform subroutines and stored as n(k,t) in selected
time bins. These data repeated over different sets of initial
conditions are averaged to obtain the correlation functions.
The density fluctuations are saved in selected time bins. A
whole array consisting of the density fluctuations ρ(x,t) on
the cubic lattice x are transformed using fast Fourier transform
subroutines. From this data the two-point and four-point
correlation functions are respectively obtained. Several runs
for the dynamic evolution of the system driven by the noise
is considered. Equilibrium is inferred when time translational
invariance of the correlation function is observed; i.e., the two
time correlation function C(tw,t + tw) depends on t only. This
is attained at increasingly larger tw as the liquid is further
supercooled.

IV. RESULTS

We equilibrated the system at average density ρ∗
0 = 1.10

and temperatures, respectively, at T ∗ = 1.0, 0.8, 0.7, 0.6, and
0.5. For even lower temperatures T ∗ = 0.4 the system does
not equilibrate within the maximum time limit of computation
time. The ratio of the two characteristic lengths σ/h = 4.6
is kept fixed. The data for ρ(x,t) and g(x,t) at each of the
grid points are stored for times at equal intervals extending
up to a maximum time tmax depending on the temperature T ∗.
For T ∗ = 0.6 we have tmax (2000τ0). To study the equilibrium
correlation functions, we consider large enough initial times
tw. Figure 1 displays the time dependence of the four-point
function χ4(t) obtained by evaluating the RHS of Eq. (3)
for q = qm. The time axis is plotted on the logarithm to the
base 10. From the same data for the ρ(x,t) the two-point
equilibrium correlation function C(t + tw,tw) ≡ C(t) is also
obtained, and the time dependence is displayed in Fig. 2 for

1.5 2 2.5 3
log10(t)

0

20

40

χ4(t)

FIG. 1. (Color online) The normalized four-point functions χ4(t)
at q = qm vs time t at n∗

0 = 1.10 and T ∗ = 1.0 (circles), 0.8 (squares),
0.7 (triangles), 0.6 (diamonds), 0.5 (stars). Solid lines are the best fit
curves of Lorentzian form.

1 2 3
log10(t)

0

0.2

0.4

0.6

0.8

1

C(
t)

1 2
log(t)

0

0.4

0.8

C(
t)

FIG. 2. (Color online) The normalized two-point function C(t)
at n∗

0 = 1.10 and T ∗ = 0.8 (solid), 0.7 (dashed), and 0.6 (dashed-
dotted). In the inset the solid and dashed curves indicate the respective
power law fits predicted in MCT for T ∗ = 0.8.

temperatures T = 0.8,0.7, and 0.6. The two-point function
C(t) reaches a small plateau value fc = 0.87 at T ∗ = 0.8.
Following the predictions of MCT [29] the exponents a and b

corresponding to the power law and subsequent von Schneider
relaxation are 1.27 and 1.18, respectively. These values are
obtained from simply fitting the equilibrated time correlation
function to the two respective power law forms. Thus we see
some signatures of the MCT-type power law relaxation here
though the exponents are not related by the standard equation
of the one-loop MCT in terms of the gamma functions. The
corresponding temperature Tc is obtained from the nonzero
solution of the integral equations (for the NEPs) obtained in
the one-loop model. With the input static structure factor for
the liquid, which is same as that used in the FNH equations,
the Tc obtained from solution of the integral equations of MCT
is in fact much higher and is close to the temperatures studied
here. In the nonperturbative calculation quantitative agreement
with the one-loop MCT is absent. The functional form for the
final decay of the two-point density correlation function is a
stretched exponential function exp[−(t/τ )β].

For the four-point function χ4 shown in Fig. 1 the peak
height χP is attained at t = tp, which grows with supercooling
indicating the growth of amorphous cluster size. We obtain
χP ∼ (T − To)−1.2 with To = 0.2 as shown in Fig. 3. The
growth of tp observed with fall of T is not as strong as that
of the α-relaxation time τα over the same temperature change.
The inset of Fig. 3 displays the dependence χP ∼ t

μ
p with the

exponent μ = 0.47. In Fig. 4 we show how the α-relaxation
time grows with lowering of the temperature. By fitting the
α-relaxation time τα to a power law divergence form we
obtain Tc = 0.4 in the present case [17] of a one-component
LJ system.

The four-point correlation function χ4(q,t) obtained above
is further analyzed to obtain the dynamic correlation length
ξ . In Fig. 5 we show the scaling of the peak height
χ4(q,tp) ≡ χP (q) for different values of wave vector q using
the Ornstein-Zernike form, which includes the O(q4) [10,30]
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-0.5 -0.4 -0.3 -0.2 -0.1
log10(T-To)

1.2

1.4

1.6

1.8

lo
g 1
0

χP

2 2.4 2.8
log10(tp)

1.2

1.4

1.6

lo
g 1
0

χP

FIG. 3. (Color online) The peak χP of χ4(t) at t = tp appear
to diverge around To = 0.2 with exponent α = 1.21. Inset shows
χP ∼ tμ

p behavior with the exponent μ = 0.47.

contribution. From the wave vector-dependent data at a fixed
T , the correlation length ξ (T ) is obtained. Figure 5(a) shows in
the ξ (T ) versus T plot that the dynamic correlation length does
not diverge around the so-called MCT transition temperature
Tc. The length ξ (T ) increases by only a factor of 3, which
is close to corresponding results seen in MD simulation of
a binary LJ mixture [9] over a similar temperature range. In
Figure 5(b) a plot of the peak height χ0 ≡ χ4(q = 0,T ) versus
the correlation length ξ shows that χ0 ∼ ξ (2−η) with 2 − η =
2.1. The corresponding value of (2 − η) from simulation of
Ref. [14] is 2.2–2.4. With a simplified form of the MCT model
in terms of density only, summing a class of ladder diagrams
for the four-point functions [31], however, obtains a different
prediction 2 − η = 4. The two- and the four-point correlation
functions are computed here using the same density fluctuation
data obtained from the solution of the FNH equations. From
the two-point correlation C(t) the relaxation time τα(T ) is
obtained, while the the dynamic length scale ξ (T ) follows from
the study of the four-point functions χ4(t). The temperature

-0.6 -0.4 -0.2
log10(T-Tc)

1.5

2

2.5

3

lo
g 1
0

τ

FIG. 4. (Color online) The α-relaxation time τα vs T . The fit
shows a power law divergence around Tc = 0.4.

0 2 4 6
qξ

10-4

10-2

100

χP
(q
)/χ

P (
0)

0 0.2 0.4
log10 ξ

2

3

4

lo
g 1
0

χ 0

-0.6 -0.4 -0.2
log10(T-To)

0.2

0.4

0.6

lo
g 1
0

ξ

(a)

(b)

FIG. 5. (Color online) The normalized χP (q)/χP (0) for density
n∗

0 = 1.10 and different temperatures T ∗ = 1.0 (circles), 0.8 (squares),
0.7 (diamonds), 0.6 (triangles), and 0.5 (stars) plotted with corre-
sponding qξ (T ). Dashed line is the best fit to an Ornstein-Zernike
form (see text). Inset (a) divergence ξ around the To = 0.2 and
exponent 1.4; (b) χP (q = 0) ≡ χ0 ∼ ξ (2−η) with 2 − η = 2.1.

dependence of the different characteristic properties τ and ξ

differs qualitatively. The relaxation time τα(T ) tends to diverge
around a relatively higher temperature (Tc), while the growth
of ξ (T ) does not show any change of behavior around Tc, but
increases around a lower temperature.

To focus on the nonequilibrium dynamics we study the
waiting time (tw) dependence of the four-point function
χ4(t,tw) defined in Eq. (3) for tw = 200,400,600,800,1000.
The χ4(t) in each case grows to a peak of height χP (tw) (say)
at time t = tp(tw). This is shown in Fig. 6. The peak time tp
grows with tw and reaches a maximum at an intermediate
tw before equilibrating for even longer waiting times as

2.6 2.8 3 3.2
log10(t)

10

20

30

40

50

χ 4(t)

400 800
tw

1000

1200
tp

FIG. 6. (Color online) The nonequilibrium χ4(t,tw) vs t for dif-
ferent values of the waiting time tw= 200 (circles), 400 (diamonds),
600 (triangles), 800 (squares), and 1000 (stars) corresponding to
T ∗ = 0.4 and n∗

0 = 1.10. Inset: peak time tp vs tw .
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0.1 0.2 0.3 0.4 0.5 0.6
1-C~(t,tw)

0.5

0.6

0.7

0.8

0.9

1
χ 4(
t,t
w
)/χ

4P (
t w
)

0 400 800
tw

10

20

30

40

χP

600 700 800 900
tw

0

0.1

0.2
f(
t w
)

(a)

(b)

FIG. 7. (Color online) At T ∗ = 0.6 and n∗
0 = 1.10, parametric

plot of normalized χ4(t,tw)/χP (tw) vs 1 − C̃(t,tw) (see text). Equili-
bration with waiting time tw: Inset (a) the peak value χP ; (b) f (tw)
(defined in text).

shown in the inset of Fig. 6. The peak height χP of the
corresponding χ4(t,tw) increases with tw, signifying growing
dynamic correlation. A parametric plot of χ4(t,tw) versus
C(t,tw) is useful for understanding the evolution of the two-
and four-point correlations in the nonequilibrium system.
The α-relaxation parts of the χ4(t,tw) curves for different tw
overlap [32] with the corresponding two-point function C(t,tw)
being shifted by a t-independent part f (tw). We plot in Fig. 7
the χ4(t,tw) with respect to the quantity

C̃(t,tw) = C(t,tw) + f (tw). (27)

The part f (tw) decays to zero as equilibrium is reached as
shown in the inset of Fig. 7. We transform the χ4(t,tw)
with respect to time t to obtain χ4(ω,tw) corresponding to
frequencies given by ωτ0 = 0.0001,0.0005,0.001, and 0.01.
The data for all ω values fit well to the form

χ (ω,tw) = [χi(ω) − χf (ω)]g(tw) + χf (ω), (28)

where χi(ω) and χf (ω), respectively, denote the initial and
final values of the χ4 at the corresponding ω. The relaxation
function g(tw) has limiting values 1 and 0, respectively, as
tw→0 and ∞. In the main panel of Fig. 8 we show how the data
for all frequencies at T ∗ = 0.6 collapse on a single curve (solid
line) giving a frequency-independent g(tw). The inset displays
the tw dependence of the relaxation time τ (tw) characterizing
the MKWW form of g(tw). The relaxation time τ (tw) increases
with tw, implying that aging slows at the longer waiting time tw .
This is similar to the observed behavior [16,17] with respect
to the two-point functions (dashed line in the main figure)
obtained from experimental data. However for the four-point
functions the time tw to reach saturation in τ (tw) is much longer
than that for two-point case and is shown in the inset of Fig. 8.

V. DISCUSSION

The method followed in the present work has its roots in
Refs. [18,19] used in dynamic density functional approach. We
have demonstrated here that the appearance of a growing peak
in the four-point correlation function χ4(t) is a general feature
of the dynamics of supercooled liquid, and it follows from
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FIG. 8. (Color online) Data collapse (solid line) on the scaling
function g(tw) (defined in the text) vs tw corresponding to four
different frequencies ωτ0 = 0.0001 (circle), 0.0005 (diamond),
0.001 (triangle), and 0.01 (star) at T ∗ = 0.6 and n∗

0 = 1.10. Scaling
function corresponding to two-point functions (dashed line). The tw
dependence of relaxation times of MKWW scaling functions: Inset
(a) τ4(tw) for four-point functions; (b) τ2(tw) for two-point functions.

the basic equations of generalized hydrodynamics signifying
conservation laws. This holds even if the two-step process
(power law and von Schneider law) predicted in the simple
MCT [29] is not very clearly visible in the relaxation of
two-point correlation function C(t). Indeed, for the simple LJ
system considered here C(t), shown in the inset of Fig. 1,
hardly freezes on any plateau so as to justify a two-step
relaxation process. The same density fluctuation data obtain
the prominent peak in the four-point function χ4(t) growing
with fall of temperature.

The choice of the grid size of h ≈ 0.2σ allows taking into
account fluctuations up to short length scales. However, this
makes the size of the box small (about 4.3σ ). For calculating
correlations near the peak of the structure factor, taking a larger
sized box than what has been used here does not influence
the results strongly [33]. It should be noted also that the
dynamic correlation length found in this case as well as in the
simulations [9] are less than 10σ and not largely affected by
relatively small size of the box. We also maintain the periodic
boundary conditions to reduce finite size effects.

A key observation from our computation of the two- and
the four-point correlation functions, using the same density
fluctuation data is that the temperature dependence of the
relaxation time τα(T ) [obtained from C(t)] differs qualitatively
from that of the dynamic length scale ξ (T ) [obtained from
χ4(t)]. We observe that the τα(T ) tends to diverge around a
relatively higher temperature (Tc) while the growth of ξ (T )
appears at best to be linked to an underlying transition at Tg or
TK [34] and not to the MCT transition at Tc. At a quantitative
level, however, the results for χ4 obtained from the present
work differ from the predictions of a simplified MCT model,
which involves an ideal ENE transition. This is perhaps not
unexpected given the fact that the oversimplified treatment
of MCT gets modified in the extended MCT [23] when the
implications of the 1/ρ nonlinearities are taken into account.
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From a wider perspective what is more relevant [35] is that the
general features of dynamical heterogeneities follow from the
basic equations of FNH, which are also the starting point of
the MCT.
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