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The kinetic Monte Carlo method is used to model the dynamic properties of proton diffusion in anhydrous
proton conductors. The results have been discussed with reference to a two-step process called the Grotthuss
mechanism. There is a widespread belief that this mechanism is responsible for fast proton mobility. We showed in
detail that the relative frequency of reorientation and diffusion processes is crucial for the conductivity. Moreover,
the current dependence on proton concentration has been analyzed. In order to test our microscopic model the
proton transport in polymer electrolyte membranes based on benzimidazole C7H6N2 molecules is studied.
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I. INTRODUCTION

Proton transfer is of great general importance to many
processes in chemical and biochemical reactions. Historically,
it appeared first in the context of the fast proton charge
transport in water and ice. What is crucial is that the high
mobility of the proton stems from the fact that it does not
move freely but is passed by successive water molecules via
the so-called Grotthuss mechanism [1].

Recently the polymeric systems which conduct protons
in the absence of any water have become the subject of
intensive research. This can be associated with the fact that
proton conductivity of some water containing compounds
suffers from substantial proton conductivity decrease with
decreasing degree of hydration. In most cases it takes place at
temperatures close to the boiling point of water (373.15 K). So,
the promising strategy is to substitute water with a high boiling
proton solvent (e.g., the benzimidazole with the melting
temperature 447 K). There are also other anhydrous proton
conductors as the solid acids with the formula MHnXO4,
where M is a metal like Cs,K,Rb or an organic monovalent
cation and XO4 is the tetrahedral anionic group, where
X = S,Se,P,As [2,3]. In the phase with high conductivity they
exhibit anhydrous proton transport with conductivities of the
order of 10−2 Scm−1 at the temperature of about 400–450 K.

There have been many attempts to describe the properties
of proton conductors using the soliton approach [4–6], the
polaron mechanism [7,8], the MD calculation [9,10], and
recently the kinetic Monte Carlo (KMC) method [11]. Al-
though the description of the mechanism of proton mobility
still cannot be regarded as satisfactory, it seems that the key
elements are common for a wide range of compounds. In
a similar fashion to the proton conductivity in water they
are realized by a two-stage mechanism [2,7] consisting of
thermally induced structural reorganization (e.g., rotations of
the tetrahedra for the solid acids) and proton tunneling in
hydrogen bonds (H-bonds).
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Because the diffusion of protons is performed along
hydrogen-bond networks whose dimensionality varies from
0 to 3 [12–16], a low-dimensional model can also be a good
candidate for realistic compounds [14]. An example is the
microscopic model introduced by Pavlenko and Stasyuk [7,8]
where besides the proton transport mechanism, the effect of
displacement of the nearest oxygens during hydrogen-bond
formation is also introduced, leading to the polaronic effect.
In this quantum mechanical model a two-stage mechanism
is realized in a zigzag hydrogen-bonded chain by the creation
and annihilation of quasiparticles with two transfer parameters
corresponding to rotations and tunnelings. Unfortunately,
computational difficulties require additional simplifications,
such as the use of linear response Kubo theory, but even then
only small systems can be examined.

Then a natural way to explore the Grotthuss mechanism is to
use numerical simulations that have become an indispensable
tool for the investigation of various physical processes. One
of the principal methods is molecular dynamics simulations
which are very often applied to mass transport problems, with
time scale of the order of nanoseconds. However, to achieve
the typical time scale for proton transport [11] the time scale
of the order of microseconds is required. Such time scales are
not accessible to conventional molecular dynamics, but can
be accessed with the KMC approach [17–21]. Moreover, the
KMC-based simulations are simple enough to effectively test
the hypothesis arising from the experiment but they are also
capable of covering all the necessary constituents responsible
for protons dynamics.

The main aim of our paper is to propose the microscopic
model of proton conductivity in anhydrous proton conductors,
such as polymeric systems or solid acids. In order to verify its
usefulness, proton conductivity results have been compared
with the experimental data for a polycrystalline sample of the
benzimidazole. Our research can shed some light on proton
mobility in anhydrous systems.

II. THE MODEL

Since the proton diffusion process may be divided into
sub-processes separated in time and localized in space, as is
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FIG. 1. A possible distribution of protons (solid dots) and allowed
movements in the chain. Upper arrows represent rod rotations by
angle π that may but do not have to lead to a different configuration
(this happens if the rotating rod is not occupied or occupied by two
protons). Lower arrows represent acceptable hoppings of a proton
between the neighboring rods for the particular configuration in the
picture. The periodic boundary conditions permit a hop from the
rightmost rod to the leftmost one.

the case of the Grotthuss mechanism, the KMC method is a
natural choice for the analysis of phenomena during protons
flow. As the model system we propose a chain of parallel rigid
rods whose ends can be occupied by protons, one proton per
end. Rods with or without protons can independently rotate by
the angle π .

Protons can also migrate by hopping from one rod to the
nearest one provided the end of the adjacent rod is empty (see
Fig. 1). Rods should be considered as, e.g., benzimidazole
molecules making the 180◦ flip or the one-dimensional
realization of tetrahedral anionic groups in the solid acids.
In turn, the hopping from one rod to the neighboring one
corresponds to the transfer of a proton in a hydrogen bond
which is created between electronegative atoms of neighboring
anionic groups.

The number of protons in the system may be freely adjusted
from 0 to 2N , where N is the number of rods. It gives us
more flexibility than is possible in nature where only specific
concentrations of protons are realized [13–16]. By the proton
concentration we mean the ratio c = n/(2N ), where n is the
number of protons.

In the presence of the external electric field the proton
diffusion is ordered. To make the current flow possible the
periodic boundary conditions are imposed. The KMC method
yields time evolution of the system, thus if we count protons
crossing a specified position in a chain then we are able to
calculate the proton current. At this stage of our considerations
only dc current is considered.

A. Kinetic Monte Carlo

The time-evolution of the system is realized by a jump of
a particle from one local energy minimum to another. For this
purpose one needs to know a priori all transition rates from
every configuration to every other allowed one [19]. It may
happen that after a transition the system will be in the same
configuration, e.g., when a rod without protons rotates.

When all allowed configurations and all transition rates are
known the KMC method gives the answer to the questions of
how long the system remains in the same configuration and
to what configuration it will evolve [17]. If we denote by γij

the transition rate from configuration i to j and define �i
n =∑n

j γij then the system will be transformed to configuration l

satisfying the following relation:
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FIG. 2. (Color online) A schematic description of the new con-
figuration choice in the KMC algorithm. For the situation presented
in the picture, provided that a number u1 will be drawn the system is
transformed to configuration number 2.

where Ni is the number of all possible configurations acces-
sible from i and 0 < u1 � 1 is a number from the uniform
distribution that has to be generated (see Fig. 2).

The selection of a new configuration using Eq. (1) costs
the time of order O(Ni/2), but we may speed up this process
significantly by applying the binning method [22,23] for the
KMC algorithm. In this case transition rates are stored on the
special binary tree which reduces the computational time to
the order of log2 Ni .

Another uniform random number, u2, is necessary to
determine the life-time of the configuration i using the
following formula:

�t = − log u2

�Ni

, (2)

according to the assumption that the lifetime follows the
Poisson distribution, which is a manifestation of the pre-
sumption that all transitions are independent. When the new
configuration l is chosen we repeat the above steps treating l

as the starting configuration.

B. Bjerrum D and L defects

As the elementary charge is carried by a single proton, it
is energetically unfavorable when two protons occupy both
minima of the same H-bond (in hydrogen-bonded systems
such an orientational defect is referred as Bjerrum D defect),
or if both minima are not occupied (Bjerrum L defect) because
of interacting electron clouds. This is included in our model by
introducing an additional Boltzmann factor. In the presented
model these defects give rise to transition rates only when they
appear together (see Fig. 3), so without the loss of generality
we assume the energies of both defects to be equal to VCoul

and the corresponding Boltzmann factor is equal to

γC = exp

(
−2VCoul

kBT

)
. (3)

According to Hassan et al. [24] the energies of D and L defects
for ice are similar and of order 0.4 eV.

For all other situations, including inverse ones to that in
Fig. 3, i.e., those in which before the rotation two protons
occupy both minima in one H-bond and there are no protons
in the second H-bond, we put γC = 1. Finally, the transition
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after

before

FIG. 3. There are only two configurations requiring the additional
factor representing effective Coulomb forces: one presented in the
picture above and its mirror reflection. The dashed lines represent
H-bond potentials. For the initial configuration above with one proton
in each H-bond before the rod’s rotation there is one proton and one
vacancy in each H-bond which is energetically favorable. After the
rotation two protons meet in one H-bond and two vacancies in another.

rate for a rotation, γR , is given by

γR = νRγC, (4)

where νR is frequency of rotation alone.

C. The relative frequency

The Grotthuss mechanism consists of two kind of pro-
cesses: the hoppings and the rotations. Thus the behavior
of the current is modeled by the ratio of the characteristic
frequencies for hopping (γT ) and rotation (γR). As the the
relative frequency varies we observe a nontrivial crossover
behavior of the proton current around γT /γR = 1 (see Fig. 4).
In the rotation-dominated regime the thick dashed line has
slope equal to 1 resulting in the linear dependence of the
proton current on the relative frequency. It is a consequence
of the fact that protons are supplied “on time” by rotating
molecules. Contrary to this in the tunneling-dominated regime
the current saturates within a broad relative frequency range.
This means that when the tunneling frequency is very high,
rotating molecules are not able to transfer protons on quickly
enough.
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FIG. 4. (Color online) The log-log dependence of the proton
current on the relative frequency γT /γR for the half-filling case
c = 0.5. The individual curves are parametrized by the Coulomb
potential VCoul.
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FIG. 5. (Color online) The current dependence on the proton
concentration including the presence of the Coulomb repulsion for
different values of VCoul. The temperature and the external electric
field are fixed.

It is worth stressing that although the plot was made for
the proton concentration c = 0.5 a similar dependence can
be observed for the proton concentration c �= 0.5. The only
difference is that far from c = 0.5 the dependence on VCoul

vanishes for γT /γR < 1, while for γT /γR > 1 the differences
between curves with different values of VCoul are reduced by
some orders of magnitude in comparison to the case with
c = 0.5.

D. Current dependence on the proton concentration

As one can see in Fig. 4 there is a nonmonotonic dependence
of the current with respect to the Coulomb potential VCoul at
half-filling. In the tunneling-dominated regime a monotonic
decrease of the current with VCoul can be observed whereas
the maximal current is for a nonvanishing potential in the
rotation-dominated regime. As one leaves the vicinity of the
half-filling, then the behavior is monotonic over a wide range
of relative frequency.

In order to examine the concentration dependence of the
current we fixed the relative frequency at 0.01 which naturally
means we are in the rotation-dominated regime. As one
can see in Fig. 5 the positions of points are symmetrical
about c = 0.5, which is a reflection of the particle-hole
symmetry in the model. For VCoul = 0 eV the current has
a maximum at c = 0.5. The current slowly rises with the
increase of VCoul to reach the maximum at about 0.02 eV
which is of the order of the thermal energy (T = 353 K
in Fig. 5). Above this value the local minimum appears
at c = 0.5 instead of maximum together with two local
maxima traveling from c = 0.5 to approximately c = 0.5 ±
0.175. For VCoul > 0.1 eV the minimum goes to zero, while
maxima are stable in their values.

This peculiar behavior stems from the fact that the flow
of protons is possible when, after a rod rotation, the proton
meets a vacancy on the neighboring rod. This happens when
the symmetry of the proton arrangement in the chain is not too
high. When VCoul = 0 and an external electric field is weak,
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protons (vacancies) have a tendency to form uniform clusters,
which inhibits proton diffusion. A large value of VCoul results
in the high-symmetry configurations (one proton per rod on
the same end of each rod) so the presence of protons in the
neighboring minima is very unfavorable, which implies a loss
of current flow. Therefore, a small value of VCoul is optimal for
a fast diffusion.

This behavior is in agreement with the theoretical predic-
tions derived in the one-dimensional lattice gas model [25]
for small values of VCoul. The initial growth of the current
with the proton concentration is also in agreement with data
observed experimentally, e.g., for Nafion, for different values
of hydration [26]. Furthermore, the conductivity for mobile
ions in a two-dimensional periodic potential [27] also exhibits
the absolute minimum at c = 0.5, though it has a richer
behavior where more minima and maxima are present.

III. DETAILS OF DYNAMICS SIMULATIONS

The main idea behind the kinetic Monte Carlo method is to
use transition rates that depend on the energy barrier between
the states. A technical issue is to choose appropriate method to
determine the transitions rates. When the rate constants of all
processes are known, we can perform the KMC simulations
in the time domain. It is worth noting that in our model the
presence of the external electric field modifies rod rotations as
well as proton hoppings.

A. Rotations

Herein, the internal rotations of rods are treated as the
thermally activated process satisfying the Arrhenius law

νR = ν0
R exp

(
− Vact

kBT

)
max

[
1, exp

(
−|e|Kb

kBT

)]
. (5)

This formula together with Eq. (4) gives the transition rates
for rotations.

The last factor represents interaction with the external
electric field K , e is the elementary charge, b—the size of
a rod, ν0

R is the frequency of rotation, and Vact the activation
energy for rotation in the absence of the external electric field.
We assume that these values do not depend on temperature.
The quantity ν0

R can be determined by the energy difference
of the two lowest states of the quantum rigid rotor governed
by the Schrödinger equation[

− �
2

2I

d2

dφ2
+ VR(φ)

]
ψ(φ) = Eψ(φ), (6)

with the potential

VR(φ) = Vact

2
[1 + cos(2φ)] + |e|Kb cos(φ − φ0). (7)

The first part of VR(φ) is a harmonic twofold potential
and the second one describes interaction of a proton with the
external electric field forming the angle φ0 with the chain
direction. The moment of inertia I depends on the masses and
geometry of the molecule. It is noteworthy that for a vanishing
electric field the solutions of Eq. (6) can be expressed by
Mathieu functions.

Let us note that when changing the angle between the chain
and the applied field, then changing the two lowest states of
the quantum rotor. Since the individual chains are distributed
randomly in a macroscopic sample, we have to take this into
account.

B. Hopping

The migration of a proton from one rod to another represents
the hopping between the minima of the H-bond potential.
Hopping is defined as the thermally assisted tunneling which
is an extension of the purely classical Arrhenius behavior.
We approximate the H-bond potential by the fuzzy Morse
potentials originating in rod ends as they represent anionic
groups between which the H-bonds are created in real
materials. In our model the size of the rod is kept fixed while the
distance between rods may vary somewhat with temperature.

Va(x) = 1

2a

∫ a

−a

[
VMorse

(
d

2
− x + y

)

+VMorse

(
x − y − d

2

)]
dy, (8)

VMorse(x) = g

[
exp

(
−2x

b

)
− 2 exp

(
−x

b

)]
. (9)

Va(x) is the single or double well potential but we focus only
on the second one in this paper. The parameter a controls the
dispersion in the position of the anionic groups forming the
H-bond and it represents the lattice vibrations (the influence of
phonons on the potential). The choice of the Morse potential
is dictated by the fact that it can be very well fitted to H-
bond potentials [28], but this does not mean that this choice is
decisive for our considerations (i.e., we could use the Lennard-
Jones potential and get similar results).

We assume the thermal dependencies of the a and d

parameters, see Eqs. (8) and (9), are linear in the temperature
range corresponding to that examined in the experiments:

a(T ) = a0 + a1 (T − T0), (10)

d(T ) = d0 + d1 (T − T0). (11)

The parameters g and b of the Morse potential are fitted in
such a way as to get the distance between the minima of the
double well potential Va equal to �x together with the height
of the barrier equal to h.

In the presence of the external electric field, K , the potential
of the H-bond is modified by the term |e|Kx, so we define

V (x) = Va(x) + |e|Kx. (12)

If the external electric field is not too strong V (x) is the double
potential.
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FIG. 6. (Color online) The shape of the potential V (x) in the
presence of an external electric field. The dark shaded area (strips)
shows the contribution to integral (15) determined by the value of
E, the brighter one shows the range of energies contributing to
Eq. (13). The hopping from the lower minimum, V−, to the upper
one, V+, introduces the factor exp[−(V+ − V−)/(kBT )] to overcome
the physically forbidden region for a proton with energy less than V+.
The energy in Eqs. (13)–(15) is measured from the upper minimum,
i.e., V+ = 0.

The tunneling rate is calculated using Bell’s formula [29]1

τT = 1

kBT

∫ ∞

0
G(E) exp

(
− E

kBT

)
dE (13)

with [30]

G(E) =
{

1/
[
1 + G−1

WKB(E)
]

, for E � Vmax ,

1 , for E > Vmax ,
(14)

where

GWKB(E) = exp

(
−2

�

∫ x2(E)

x1(E)

√
2m[V (x) − E] dx

)
(15)

is the WKB quantum permeability of the proton with energy
E traveling between classical return points x1(E) and x2(E)
of the potential V (x), see Fig. 6. Thus, the calculation of
the tunneling rate τT requires two successive one-dimensional
integrations.

When K �= 0 the minima of V (x) have different energies.
The proton located at the lower minimum, V−, cannot tunnel
to the upper one, V+. To take this into account we introduce
the extra Boltzmann factor exp[−(V+ − V−)/kBT ] for the
hop from the lower to the upper minimum in addition to
the tunneling rate (13) which represents the tunneling rate
for the hop from the upper to the lower minimum. Thus, the
total hopping rate becomes

γT = ν0
T τT ×

{
1, hopping from V+ to V−,

exp
(−V+−V−

kBT

)
, hopping from V− to V+.

(16)

1This formula is just the quantum mechanical version of the
Arrhenius law which is easily seen after rewriting

exp

(
− Eact

kBT

)
= 1

kBT

∫ ∞

0
θ (E − Eact) exp

(
− E

kBT

)
dE

and replacing the classical Heaviside function θ (E − Eact) by the
quantum permeability G(E).
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FIG. 7. (Color online) The current flow stabilizes after less than
5 × 10−5 s, thus the switch-on effect may be neglected. Inset: the
exemplary results for different system sizes converging quickly with
the system size (the first two points are for N = 50 and 100).

The form of Eq. (16) ensures that the detailed balance is
fulfilled because it is of the Metropolis-like rate type [19].

C. Finite-size effects

The current was measured by counting the protons hopping
from rod N/2 to rod N/2 + 1, where N is the length
of the chain, minus the number of protons moving in the
opposite direction during the time of calculations. The initial
configuration was randomly chosen and the final result for the
proton current was the average of several initial configurations.
Such a small number of initial configurations was good enough
because the saturation time was much less than the time needed
to observe the current flow, Fig. 7.

The number of KMC steps during an individual program
run was of the order 107–109 (0.01–1 s of the time evolution)
which gave several hundred protons counted to yield the value
of the current with the numerical accuracy better than 5%.

In the inset of Fig. 7 the dependence on the chain length,
N , is presented confirming that finite-size effects become
negligible for larger systems.

IV. BENZIMIDAZOLE AS AN EXAMPLE OF MODEL
IMPLEMENTATION

The benzimidazole belongs to the large family of hete-
rocycles, which are possible alternative material for mem-
branes functioning in the intermediate operating temperature
range [31–34]. The crystal structure of the polycrystalline
benzimidazole [35–38] revealed the hydrogen bond formation
of the N–H· · · N type (with hydrogen bond distances of
2.885 Å) among the adjacent benzimidazole molecules. The
H-bond is almost linear (the angle �(NHN)= 172◦ [37]) thus,
our description by the one-dimensional potential is reasonable.
The characteristic structural features of the benzimidazole
crystal are parallel two-dimensional layers. In each layer one
can distinguish the infinite ribbons made of benzimidazole
molecules linked by the N–H· · · N hydrogen bridge that play
the role of the conducting paths.
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TABLE I. Values of parameters for benzimidazole simulations.

Parameter Symbol Value Derivation

Frequency of rotation prefactora ν0
R 1012 Hz Eq. (6)

Activation energy for rotations Vact 0.269 eV Ref. [39]
Rods length b 3.84 Å Ref. [37]
Moment of inertia I 123.6 u Å2 Ref. [37]
External electric fieldb K 0.005 V/Å
Bond length d0 2.886 Å Ref. [37]
Thermal expansion coefficient d1 1.1×10−5 Å/K Ref. [41]
Va barrier height h(T0) 0.38 eV Ref. [28].
Distance between minima of Va �x(T0) 0.77 Å Ref. [28].
Reference temperature T0 393 K
D and L defects energy VCoul 0.04 eV Fitted, see Fig. 8
Frequency of hopping prefactor ν0

T 109 Hz Fitted, see Fig. 8
Lattice vibration amplitude a0 0.2 Å Fitted, see Fig. 8
Thermal susceptibility of a a1 0.002 Å/K Fitted, see Fig. 8

aFor the benzimidazole (Vact = 0.269 eV) the lowest states are degenerated forming doublets when the electric field K is zero. The value of ν0
R

is determined by the energy difference between the lowest two doublets. When the electric field is non-zero then the degeneracy is intact for
φ0 = 0,π and ν0

R changes only slightly. When φ0 �= 0,π the degeneracy is quickly removed and ν0
R , calculated now from the energy difference

of two lowest states, reaches the maxima for φ0 = −π/2,π/2. Fortunately, it turns out that ν0
R for the electric field perpendicular to the chain

of rods (φ0 = −π/2,π/2) is almost equal to the parallel case (φ0 = 0,π ). Therefore, for simplicity, we assume that the electric field is always
parallel to the chain axis.
bThere is a linear response regime.

According to impedance spectroscopy and 1H NMR
experimental results [39] the proton conduction process of
the benzimidazole can be considered as a cooperative one
involving both molecular motions prior to the proton exchange
and migration along the hydrogen bonded chain via the
N–H· · · N bridges. The first process occurs due to the 180◦ flip
of a bicyclic molecule (the fusion of benzene and imidazole)
which was confirmed in experimental studies of the 1H
NMR second moment temperature dependence [39]. For this
reason, it should be well described by our model system
of rods each of which has only two positions. In addition,
the well-known structure of the benzimidazole crystal makes
it an excellent model molecular system for investigation of
the electric conductivity process efficiency at the microscopic
level. The benzimidazole was chosen as the proton carrying
compound also due to high chemical and thermal stability.
Benzimidazolium cations do not diffuse in the bulk of the
sample even near melting temperature.

We are going to test our model by comparing experimental
results and computer simulations for the electrical conductivity
of the benzimidazole, where the proton concentration is 1/2.
The moment of inertia of the benzimidazole molecule is
calculated with respect to the longitudinal axis around which
the molecule flips through π radians. Moreover the rods
length, b can be accurately determined by the geometry of the
benzimidazole molecule. The values of all parameters used for
simulations are given in Table I. The system size for simula-
tions N = 400 is large enough to avoid finite-size effects.

The electric conductivity measurements of the benzimida-
zole were carried out by means of impedance spectroscopy
using a Novocontrol Alpha A Frequency Analyzer in the
frequency range from 1 Hz to 10 MHz. The real resistance
of the material was evaluated by a fitting procedure using the
parallel RC equivalent circuit model. The current (the σdc

conductivity) of the sample calculated from its bulk resistance
R is displayed as a function of inverse temperature in Fig. 8
(crosses). Measurements were made in the temperature range,
from 353 K to above 431 K, near the melting point. The
temperature of the sample was stabilized to the accuracy of
0.01 K using a Novocontrol Quatro Cryosystem.

What is characteristic of the benzimidazole is that its con-
ductivity increases rapidly as is the case in our measurements,
wherein the current increases by five orders of magnitude
in the temperature range of 80 K. As can be inferred from
Fig. 4, such a huge increase in conductivity must be due to
a significant change of the relative frequency γT /γR . The
rotation frequency, for this fairly narrow temperature range,
varies no more than an order of magnitude. Thus, the change
in the relative frequency can only be the result of changes in

2.3 2.4 2.5 2.6 2.7 2.8
1000/T (K-1)

10-8

10-6

10-4

10-2

σ dc
 (S

m
-1

)

Model
Experiment

FIG. 8. (Color online) Comparison between the measured and
simulated data for the benzimidazole.
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the tunneling frequency. As the barrier height of the H-bond
potential grows with the bond distance [the parameter d in
Eq. (11)], the only way to lower this barrier and increase
the tunneling frequency is to account the thermal lattice
vibrations. Due to vibrations the Morse potential barrier is
lowered effectively and a current flows more easily. Indeed, the
value of a of the order 0.2–0.3 Å can cause changes in νT even
as six orders of magnitude. Therefore, the role of parameter
a, responsible for the thermal lattice vibrations, proved to be
crucial.

The frequency of tunneling depends on ν0
T and the shape

of the potential Va determined by the six parameters: g, b,
d0, d1, a0, and a1 [see Eqs. (8),(9)]. The parameters d0 and
d1 are known while g and b can be fitted directly from the
Duan analysis [28,40] carried out for the parametrization of
N–H· · · N potential at the temperature T = 393 K. Thus, only
three parameters responsible for the frequency of tunneling
ν0

T , a0, a1, and VCoul, related to the dynamical modification of
the frequency of rotations, are free. Fortunately, we were able
to set physically meaningful values of these parameters to get
a very good agreement with experimental data (see Table I and
Fig. 8). The mutual interplay between d1, a0, a1, and the ratio
γT /γR is responsible for the concavity of the simulation curve.

V. CONCLUSIONS

The proton conduction is of outstanding importance for
a wide range of technologically significant processes. Its
theoretical description provides a challenge since it comprises
classical and quantum transport phenomena. We have pro-
posed a microscopic model of the proton conductivity based
on the kinetic Monte Carlo approach adequate to characteristic
time scales for the proton conduction. It has been examined
that our one-dimensional model can describe qualitatively

and quantitatively the proton diffusion in anhydrous proton
conductors.

Generally the proton conducting polymers can be divided
into two types: hydrous proton conducting polymers with a
solvent assisted proton transfer and anhydrous ones where
protons are transferred via the Grotthuss mechanism. The
latter, similarly as the solid acids, can operate at high
temperature (above the water boiling point) and are the main
object of our interest. We have implemented the two-stage
Grotthuss proton migration mechanism into our model and
showed in detail that the relative frequency of reorientation
and diffusion processes is crucial for the proton conductivity.

Our model has been applied successfully to describe
the proton transport in the polycrystalline benzimidazole. It
is worth stressing that most of the parameters have been
estimated on the basis of experimental data or the quantum-
mechanical calculations. Our simulations of the proton current
have demonstrated not only the very good agreement with the
experimental data, but furthermore, proved that the thermal
lattice vibrations, which modify the H-bond potential, play an
essential role in the conduction process.

In our opinion the proposed model could be extended
in several directions. First, it could be applied to at least
some of other anhydrous proton conductors including two-
or three-dimensional systems. Second, our model can be
used to examine effects of hydrostatic pressure elevation—
our preliminary results for the benzimidazolium azelate are
promising. Another attractive perspective is the study of the
alternating current conductivity.
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