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We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼
|x|α of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on
statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual
realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function
P (x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the
degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations
increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical
value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law
behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of
the time-averaged mean-squared displacement do not converge for increasing number of realizations. From
a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with
the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and
diverging characteristic waiting time.
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I. INTRODUCTION

Over the past 20 years there has been a surge of studies
in anomalous diffusion, characterized by the deviation of the
mean-squared displacement (MSD),

〈x2(t)〉 =
∫ ∞

−∞
x2P (x,t)dx, (1)

of a stochastic process with the probability density function
P (x,t) to find the particle at position x at time t , from the
linear time dependence 〈x2(t)〉 = 2Dt of ordinary Brownian
motion [1]. Anomalous diffusion is usually characterized in
terms of the power-law form

〈x2(t)〉 ∼ 2Dβtβ (2)

with the anomalous diffusion coefficient Dβ of physical
dimension cm2/sβ and the anomalous diffusion exponent β.
Depending on the value of β we distinguish subdiffusion
(0 < β < 1) and superdiffusion (β > 1). Ballistic motion
corresponds to β = 2 and the value β > 2 is often called
hyperdiffusive [2,3].

Since the milestone discoveries of superdiffusion in turbu-
lence as early as 1926 [4] and of subdiffusion in amorphous
semiconductors in 1975 [5], the recent vast increase of interest
in anomalous diffusion is due to its discovery in numerous
microscopic systems, in particular in biological contexts. The
cytoplasm of biological cells is heavily crowded with various
obstacles, including proteins, nucleic acids, ribosomes, the cy-
toskeleton, as well as internal membranes compartmentalizing
the cell [6,7]. Diffusion of natural and artificial tracers in this
complex environment is often subdiffusive. Similar situations
are encountered in cell membranes [8,9]. The experimental
evidence for subdiffusion in the crowded cytoplasm of living
cells ranges from the motion of small labeled proteins [10,11]
over mRNA molecules and chromosomal loci [12,13], lipid
and insulin granules [14,15], virus particles [16,17], as well
as include the subdiffusion of chromosomal telomeres [18]

and Cajal bodies [19] inside the nucleus. Subdiffusion was ob-
served for membrane resident proteins experimentally [9,20]
and for membrane lipid molecules in computer simulations
[21]. In controlled in vitro experiments with artificial crowders,
anomalous diffusion was consistently measured [22,23]. On
larger scales, anomalous diffusion was observed, for instance,
for the motion of bacteria in a biofilm [24].

The observed subdiffusion was ascribed to various phys-
ical mechanisms [25–29]. Apart from the apparent transient
anomalous diffusion caused by a crossover from free normal
diffusion to the plateau value of the MSD [25,30], typically,
three main families of anomalous diffusion processes are
considered: (i) diffusion in a fractal environment where dead
ends and bottlenecks slow down the motion on all scales [31];
(ii) motion in a viscoelastic environment, in which the effective
anomalous motion of a tracer particle in the correlated many-
body environment shows long-ranged antipersistent motion
[32]—the latter process is associated with fractional Brownian
motion (FBM) and generalized Langevin equation motion with
a power-law memory form of the friction kernel [33,34]—;
and (iii) continuous time random walk (CTRW) models, in
which the moving particle is successively trapped by binding
events to the environment or caging effects for waiting times
τ distributed like a power law ψ(τ ) � τ−1−β with 0 < β < 1
[5,35]. All three mechanisms lead to the power-law MSD (2)
and they were indeed identified as processes generating the
motion of different tracers in different cellular environments
[13–15,20–23,26–29] or in colloidal systems in vitro [36].
These three anomalous diffusion mechanisms characterized
by a constant-in-time generalized diffusivity were found in
experiments involving fairly large endogenous as well as
artificial tracers.

Recent experiments on eukaryotic cells [37] using con-
siderably smaller tracer proteins sampling over much larger
subvolumes of the cell indicated a systematic variation of
the cytoplasmic diffusivity with the separation from the cell
nucleus. These spatial diffusivity gradients are due partly to
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FIG. 1. (Color online) Schematic for the spatially varying dif-
fusivity due to temperature or mobility gradients, shown here for
the case of subdiffusion with D(x) = D0/(x2

off + x2). The diffusivity
of the random walker is coupled to the spatial variation of the
temperature of the environment, as symbolized by the speed of the
runner.

the nonuniform distribution of crowders in the cytoplasm. This
distribution can nontrivially affect the diffusion of tracers of
different sizes in the cell cytoplasm. In vitro, steep gradients
of the diffusivity can be realized, for instance, via a local
variation of the temperature in thermophoresis experiments
[38,39], as sketched in Fig. 1. The diffusion of Brownian
particles in explicit solvents with temperature gradients was
recently studied by multiparticle collision dynamics [40].
Fluctuation-dissipation relations and spurious drift effects
in systems with spatially varying friction coefficient were
recently treated theoretically in Ref. [41].

On larger scales, the diffusion of water molecules monitored
by diffusive magnetic resonance imaging in the brain white
matter was demonstrated to be heterogeneous and strongly
anisotropic [42]. The anisotropy is due to the presence of
some spatially oriented structures in the tissue and obstacles
which give rise to a tensorial character of the apparent diffusion
coefficient. The existence of a population splitting into two
pools of water molecules with slow and fast diffusivities
was shown for brain white matter [42]. Finally, spatial
heterogeneities are also abundant in the completely different
context of anomalous diffusion in subsurface hydrology [43].

In the present study we examine the effects of the strength
of the diffusivity gradient as defined by the scaling exponent α

and of the initial particle position x0 in heterogeneous diffusion
processes (HDPs) with space-dependent diffusion coefficient
D(x) ∼ D0|x|α . We pay particular attention to a phenomenon
that recently received considerable attention for its immediate
relevance to the surging field of single-particle tracking
experiments in microscopic systems, namely the so-called
weak ergodicity breaking. This is the distinct disparity between
physical observables depending on whether they are evaluated
in the conventional ensemble sense or from measured time
series x(t) of the particle position in terms of time averages
[27–29,44,45]. We find that the HDP process gives rise to
weakly nonergodic behavior with a pronounced amplitude
scatter of the time-averaged MSD of individual trajectories.
We obtain details of the distribution of this scatter as well as
the frequently used ergodicity breaking and non-Gaussianity
parameters. Our analysis uncovers remarkable similarities of
the HDP process with those of CTRW motion. In particular,

we study the behavior of the HDP at the critical value of the
scaling exponent of the diffusivity, α = 2.

The paper is organized as follows. We introduce the HDP
model with x-dependent diffusivity in Sec. II. The main results
for the evolution of the MSD, the time-averaged MSD, the
probability density function, and the ergodicity breaking and
non-Gaussianity parameters in the whole range of the model
parameters are then presented in Sec. III. We discuss our results
and point out the directions for future research in Sec. IV.

II. HETEROGENEOUS DIFFUSION PROCESSES

HDPs are defined in terms of the multiplicative yet
Markovian Langevin equation [46]

d

dt
x(t) =

√
2D(x) × ζ (t), (3)

where D(x) is the position-dependent diffusion coefficient
and ζ (t) represents white Gaussian noise. In what follows
we concentrate on the power-law form

D(x) = D0

{
|x|α + |xoff|α, α > 0

1/(|x|−α + |xoff|−α), α < 0
(4)

for the diffusivity, where the amplitude D0 has dimension
cm2−α/s. Logarithmic and exponential forms for D(x) were
considered in Ref. [46]. The offset xoff in Eq. (4) avoids either
divergencies of D(x) (α < 0) or stalling of the particle (α > 0)
around x = 0 in the simulations. In the following calculations
we use the scaling form

D(x) ∼ D0|x|α (5)

corresponding to the limit |x| � |xoff| in Eq. (4). We interpret
the Langevin equation (3) in the Stratonovich sense [1,46].

The MSD following from the stochastic equation (3) with
diffusivity (4) takes on the power-law form [46]

〈x2(t)〉 = �(p + 1/2)√
π

(
2

p

)2p

(D0t)
p, (6)

where we introduced the scaling exponent

p = 2

2 − α
, (7)

which denotes superdiffusion for 2 > α > 0 and subdiffusion
for α < 0. For α > 0 the diffusivity grows away from the
origin, leading to a progressive acceleration of the particle as
it ventures into more distant regions from the origin and vice
versa for α < 0. In the special case α = 2, the theory developed
in Ref. [46] breaks down as the scaling exponent (7) diverges.
In Refs. [47,48] an exponential growth of the MSD was found
at α = 2, see the discussion below. For even larger values of
α the anomalous diffusion exponent p becomes negative, i.e.,
we observe a strong localization, see the discussion below. The
probability density function (PDF) of the HDP is given by the
stretched or compressed Gaussian [46]

P (x,t) = |x|−α/2

√
4πD0t

exp

(
− |x|2−α

(2 − α)2D0t

)
. (8)

For positive α it exhibits a cusp, while for negative α the PDF
features a dip to zero at the origin, its bimodal behavior being
characterized by two spreading wings.
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In single-particle tracking experiments one measures the
time series x(t) of the particle position for a time span T . It is
usually evaluated in terms of the time-averaged MSD [27–29]

δ2(
) = 1

T − 


∫ T −


0
[x(t + 
) − x(t)]2dt, (9)

where 
 is the lag time. Brownian motion is ergodic and for
sufficiently long measurement times T the equality 〈x2(
)〉 =
δ2(
) holds for all 
 	 T [49,50]. Anomalous diffusion
of the form (2) described by FBM or fractional Langevin
equation motion is asymptotically ergodic [32,51] but may
feature transiently nonergodic behavior [23,52] in confinement
as well as transient aging [53], the explicit dependence on the
time span elapsing between initial preparation of the system
and start of the recording of the position.

CTRW processes with diverging time scales of the waiting
time distribution ψ(τ ) show weakly nonergodic behavior for
all 
. Namely, despite the scaling (2) of the MSD, δ2 scales
linearly with 
. More precisely, if we average over sufficiently
many trajectories, the quantity

〈
δ2(
)

〉 = 1

N

N∑
i=1

δ2
i (
) (10)

for CTRWs scales like 〈δ2(
)〉 � 2Dβ
/T 1−β [49,50,54,55].
This linear dependence on 
 is preserved for aging CTRWs
[56]. Apart from this linear 
 dependence we also observe the
dependence on the process time T , a signature of aging [29].

Interestingly, the HDP with diffusivity (4) displays weak
ergodicity breaking of the form [46,48,57]

〈
δ2(
)

〉 =
(




T

)1−p

〈x2(
)〉

= �(p + 1/2)√
π

(
2

p

)2p



T 1−p
. (11)

This behavior is analogous to that of scale-free CTRW motion,
despite the fact that the increment correlation function of HDPs
are (anti-)persistent in analogy to the ergodic FBM [46,51].
We note that also other processes such as CTRWs in an ageing
environment and correlated CTRWs [58,59] as well as scaled
Brownian motion with time-dependent diffusivity [48,60,61]
exhibit the duality between (2) and a linear 
 dependence
of δ2. Equation (11) shows the T p−1 scaling as function of
the process time T . For subdiffusion with 0 < p < 1, that is,
the effective diffusivity of the process decays over time, as
the particle ventures into low-diffusivity areas. Conversely,
for p > 1 the diffusivity increases over time, as the particle
discovers areas with increasingly higher D(x).

In the current paper we perform a detailed analysis of
the MSD and the time-averaged MSD in the entire range
of α, including the critical value α = 2. We are particularly
interested in the extent of the weakly nonergodic behavior,
especially the fluctuations of the time-averaged MSD around
the mean value 〈δ2〉 characterized by the ergodicity breaking
parameter. Moreover we analyze the non-Gaussianity of the
process. In our analysis we study effects of the scaling
exponent α of D(x) as well as the initial position x0 of the

particle. The latter is known to affect the time scales at which
anomalous diffusion becomes significant [46,62]. We combine
analytical and numerical approaches. The simulations scheme
for HDPs was introduced in Ref. [46], to which we refer the
reader for details.

III. RESULTS

In this section we start with the analysis of the MSD and the
time-averaged MSD with its amplitude fluctuations, the latter
being quantified by the corresponding scatter distribution.
We then analyze the ergodicity breaking and non-Gaussianity
parameters. Finally, we study the PDF of the function that
quantifies the degree of particle dispersion as function of time.

A. MSD and time-averaged MSD

Figure 2 shows the results from computer simulations
for the MSD 〈x2(t)〉 and the time-averaged MSD δ2 from
individual realizations along with the average 〈δ2〉 taken over
all time traces. The values for the scaling exponent α of
the diffusivity (4) studied in Fig. 2 cover both the sub- and
superdiffusive domains and include, in particular, the critical
value α = 2 where the scaling exponent p of the MSD (2)
diverges. For each α we show N = 103 trajectories. In all
cases, apart from the critical point, the scaling of the MSD
〈x2(t)〉 and both individual δ2 and mean 〈δ2〉 time-averaged
MSDs agree well with the expected analytical behavior shown
by the dashed lines: The scaling exponent of the MSD varies
consistently with α, while the time-averaged MSD grows
linearly with the lag time 
 throughout. The initial disparity
between theory and simulated MSDs is due to the choice for
the initial position x0 = 0.1, whose influence relaxes on a time
scale depending on both x0 and α. The deviations of individual
time traces δ2 at long lag times from the predicted behavior is
due to unavoidable, bad statistics when the lag time gets close
to the overall length T of the time series.

Irreproducibility of time averages of physical observables
such as the MSD is an intrinsic property of weakly nonergodic
processes [29,49,50,54]. For CTRW processes with scale-
free waiting time distribution individual traces x(t) contain
one or few dominating waiting time events that effect the
amplitude scatter between different trajectories or, in other
words, fluctuations of the apparent effective diffusion constant.
This phenomenon occurs no matter how long the measurement
time T is chosen. For HDPs in contrast, the scatter is due to the
difference in the extent of excursions to regions of significantly
different diffusivity.

The amplitude scatter between individual realizations δ2 in
our HDP shown in Fig. 2 varies significantly with the value
of the scaling exponent α: Away from the Brownian value
α = 0 in both subdiffusive (α < 0) and superdiffusive (α > 0)
cases the fluctuations of δ2 become more pronounced when the
modulus of α increases. At the critical point the fluctuations
of δ2 appear to diverge, while beyond this critical point, the
fluctuations decrease again. Moreover, a population splitting
in a faster (steeper slope of δ2) and slower (shallower slope)
fraction of trajectories appears, see especially the panel for
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FIG. 2. (Color online) MSD of the heterogeneous diffusion process with power-law diffusivity (4). The MSD 〈x2(t)〉 is represented by the
thick blue curves, whose scaling exponent (7) varies with the power-law exponent α of D(x). The individual time-averaged MSD traces δ2

appear as thin red curves, and the mean time-averaged MSD 〈δ2〉 as the thick blue curves, all of which have unit slope, apart from the critical
case α = 2, where the functional MSD dependence is exponential. The theoretical asymptotes (6) for 〈x2(t)〉 and (11) for 〈δ2〉 correspond to the
dashed black lines. The horizontal axis in the plots has the meaning of the diffusion time for the MSD and the lag time 
 for the time-averaged
MSD. The analytical values for 〈x(
)2〉 and 〈δ(
)2〉 coincide in the limit 
 = T . For α = 6 or p = −1/2 the theoretical asymptote (6) does not
hold. We used the following parameters: for each α we show N = 103 traces of length T = 104, we use the offset |xoff |α = 0.001, D0 = 0.01,
and the starting point x0 = 0.1.

α = 6. In terms of the dimensionless variable

ξ = δ2(
)〈
δ2(
)

〉 (12)

the amplitude scatter distribution φ(ξ ) reflects the randomness
of individual time averages of the MSD. For a sub- and
a superdiffusive α it was analyzed in Ref. [46]. As shown
here for a whole spectrum of α values, there is a clear trend
towards extreme fluctuations at the critical point α = 2, but
even for considerably smaller values such as α = 7/4 the
fluctuations around the mean 〈δ2〉 are enormous. The width of
the fluctuations of δ2 in each panel varies only moderately with
the lag time 
, apart from the behavior at 
 → T . As studied
in Ref. [46], the relative amplitude scatter distribution φ(ξ ) can
be fitted with a generalized � distribution. In particular, it tends
to zero at ξ = 0, in contrast to subdiffusive CTRW processes,
for which φ(0) is always positive, indicating completely stalled
trajectories [29,49,50,63].

We note that when the exponent α approaches the critical
value α = 2, the number of steps t
 necessary to approach the
theoretically predicted asymptote (6) increases significantly.
Thus, as seen from Fig. 2, for x0 = 0.1 only a few simulation
steps, t
 ≈ 2 are needed for negative α with larger modulus.
It increases to t
 ≈ 10 steps for α = 1/2, t
 ≈ 100 for α = 1,
and already t
 ≈ 1000 for α = 7/4.

Once the anomalous diffusion exponent p becomes nega-
tive, that is, for values of α larger than the critical value α = 2,
the MSD (6) becomes a decreasing function of time. This
follows from our simulations if x0 is chosen sufficiently large to
enable the relaxation to the theoretical asymptote. For instance,
for the extreme value α = 20 and values of the initial position
of x0 = 10 and above the MSD indeed follows the theoretical
prediction 〈x(t)2〉 � t−1/9 (not shown). In this region α > 2
the diffusivity grows very fast away from the origin, and the
decreasing MSD corresponds to the localization of particles
in regions of slow diffusivity, see the detailed discussion in
Sec. III D.

In the limit α → 2, due to the huge spread, one or a few
extremely large amplitudes δ2 of the time-averaged MSD
may substantially affect the mean 〈δ2〉. The MSD in this
limit follows an exponential growth 〈x2(t)〉 � exp(2D0t), as
indicated by the dashed curve in the panel for α = 2 in
Fig. 2. Such a fast increase of the MSD is consistent with the
divergence of the scaling exponent p as function of α in Eq. (6)
as well as with the exponential MSD growth predicted for a
parabolically space-varying diffusivity in Refs. [47,48]. This
property can be straightforwardly inferred from the diffusion
equation,

∂P (x,t)

∂t
= D0

∂

∂x

[(
x2 + x2

off

)∂P (x,t)

∂x

]
. (13)
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Multiplying both sides with x2 and integrating over x one
arrives at [47]

〈x2(t)〉 = x2
0 exp(6D0t) + 1

3x2
off[exp(6D0t) − 1]. (14)

This also rationalizes the observation that the scatter of δ2

is maximal for α = 2 as the particles perform extremely far-
reaching excursions relative to other α values. More details on
the influence of the initial position x0 on the particle motion is
presented in Appendix A.

B. Ergodicity breaking parameters

As introduced in Refs. [44,49] the fluctuations of the time-
averaged MSD δ2 can be quantified by the variance of ξ , the
ergodicity breaking parameter,

EB(
) = lim
T/
→∞

〈
(δ2(
))2

〉 − 〈
δ2(
)

〉2〈
δ2(
)

〉2 . (15)

When EB = 0, it means that the process is perfectly repro-
ducible and all time averages over sufficiently long trajectories
give the same value. This case corresponds to the sharp scatter
distribution φ(ξ ) = δ(ξ − 1) [29,49,50,63]. Here δ(·) denotes
the Dirac δ function. For the canonical Brownian motion
the ergodicity breaking parameter reaches the zero value as
EBBM(
) = 4

3
/T at finite ratio 
/T . Weakly nonergodic
processes have a positive value of EB with a slower decays
to zero at 
/T → 0 or have a finite residual value. An
alternative, weaker condition for ergodicity is when the MSD
(2) and the time-averaged MSD (10) coincide. To measure
the relative deviations from ergodicity, the EB parameter was
introduced [64]

EB(
) =
〈
δ2(
)

〉
〈x2(
)〉 . (16)

For ergodic dynamics its value is unity.
To calculate the EB parameter analytically is not always

an easy task. To see this, note that the MSD follows from
the change of the stochastic variable to the standard Wiener
process in the form y(x(t)) = ∫ x ′

dx ′[2D(x ′)]−1/2 [46]. For

the time-averaged MSD δ2 the calculation is already more
complicated, as it involves the two-point position correlation
function. The latter is expressed via Fox H functions for the
HDP [46]. The analytical derivation of the ergodicity breaking
parameter EB, however, requires fourth-order moments, whose
calculation is a formidable task. So far only approximate
methods are known for HDPs [46]. For subdiffusive CTRW
processes it is possible to obtain the EB parameter more easily
from the conjectured and numerically proven equivalence
ξ = δ2/〈δ2〉 ≡ n(t)/〈n(t)〉 of ξ with the ratio of the number of
steps n(t) in an individual realization and the average 〈n(t)〉
[49,56]. As the limiting distribution for n is known [65], this
allows straightforward calculation of φ(ξ ) and its moments
[49,56]. For the multiplicative process studied here such a
scheme does not work. We also note that another parameter
involving the fourth moment of the particle displacement is
the non-Gaussianity parameter G [28] discussed below. Due
to the lack of an analytical theory, a major reason for the

(a)

(b)

FIG. 3. (Color online) Dependence of the ergodicity breaking
parameters (a) EB and (b) EB on the lag time 
. The Brownian
asymptote EBBM(
) is shown as the dashed curve in panel (a). The
initial position of the particle was x0 = 0.1 and N = 3 × 103 traces
were used for each value of α, all other parameters are the same
as those used in Fig. 2. The symbols in both panels correspond to
the same parameters. The dashed lines in the corresponding color in
panel (b) correspond to Eq. (17).

current simulations study is to explore the behavior of these
two parameters in the whole range of the model parameters.

Figures 3 and 4 display the dependence of the ergodicity
breaking parameters on the lag time 
, the initial position x0,
as well as the scaling exponent p. We find that for standard
Brownian motion with α = 0 the ergodicity breaking param-
eter EB follows the known asymptote EB(
) = EBBM(
).
Concurrently EB(
) → 1 as expected for ergodic motion,
except for very small 
 values because of the initial relaxation
of the influence of the initial position x0. As we depart from
the value α = 0 of Brownian motion, the magnitude of EB
grows and its functional dependence on the lag time becomes
less pronounced, see Fig. 3(a). Approaching the critical
point α = 2, due to huge fluctuations of δ2 and the ensuing
possibility of extreme events the ergodicity breaking parameter
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(a)

(b)

(c)

FIG. 4. (Color online) Dependence on the scaling exponent p,
Eq. (7), of EB(
 = 1) in panel (a) and the magnification in panel (b)
as well as EB(
 = 1) in panel (c). The theoretical predictions from
Ref. [46] correspond to the dashed black curve in panels (a) and (b).
The ergodicity breaking parameter of the subdiffusive CTRW given
by Eq. (18) is shown by the dot-dashed red curve in panel (b). To
compute each point in the graphs for N = 103 traces of T = 104 steps
takes some 2 h on a standard 3-GHz core workstation. Different sets
of the shown points correspond to varying particle initial conditions
x0 indicated by different colors. Note the alternative scale for the
power exponent α = 2 − 2/p on the top axes. Parameters are the
same as in Fig. 2.

also explicitly depends on the number of traces N used for the
averaging and reaches values of EB ∼ 104 and higher. On both
sides of the critical point, corresponding to large positive or
negative values of p, the values of the parameter EB(
 = 1)
approach one another, as seen in Fig. 4(a), while EB(
 = 1)
exhibits a jump, Fig. 4(b).

The parameter EB also depends on the power exponent α

and the initial value x0. As anticipated already from Fig. 2,
for the chosen initial condition x0 = 0.1 the magnitude of
EB decreases as α gets progressively negative, while EB
grows as α increases from 0 to 2, reaching very large values
EB(
/T → 0) at α = 2. This is illustrated in Fig. 3(b), which
is also consistent with the scaling

EB(
) �
(




T

)1−p

(17)

with the lag time at different p = 2/(2 − α) values. Because
of the initial condition x0, similarly to our statements for 〈δ2〉
this asymptote is approached later when α → 2.

In Fig. 4 we also analyze the effects of the initial position
x0 and show the dependence of the ergodicity breaking
parameters for long traces or short lag times, i.e., when
EB(
 = 1), which is practically equivalent to EB(
/T → 0),
versus the anomalous diffusion exponent p. We observe that
in the region p > 1 the values of EB(
 = 1) obtained from
simulations are in good agreement with the analytical estimate
EB(
/T → 0) from Ref. [46], represented by the dashed
curve in Figs. 4(a) and 4(b). These approximations are based on
the asymptotic scaling of D(x) and do not consider the effect
of the initial positions x0, assumed to be relaxed in the relevant

/T → 0 limit. To see their actual impact on the dynamics
we study the ergodicity breaking parameters numerically.

We observe that the value of EB(
 = 1) grows from the
small preasymptotic Brownian value at p = 1 to progressively
larger values at larger modulus of p, as α approaches the
critical value α = 2 from below and above. The functional
dependence of EB(
 = 1,p) obtained from our simulations
follows quite well the predictions from the approximate
calculation [46], particularly in the range 0 < α � 3/2, see
Fig. 4(b). The deviations for even more pronounced variation
of D(x) as α tends to 2 are likely due to insufficient statistics.
As we show in Fig. 4(a) by the circles and triangles, the
value EB(
 = 1,p � 1) reveals measurable deviations for
N = 3 × 103 as compared to N = 103 traces used for the
averaging, while for less extreme α values the two sets yield
nearly identical results. This is a further indication towards
a divergence of the fluctuations at the critical point α = 2.
Namely the chance to find an even larger amplitude of δ2

in a given realization grows with the number of simulated
trajectories.

As already anticipated in Ref. [46] the HDP process
considered here is in some aspects reminiscent of subdif-
fusive CTRW processes with scale-free, power-law waiting
time distributions with regard to the scaling of the MSD and
the time-averaged MSD, compare also Sec. IV. Apparently,
the ergodicity breaking properties of these two processes also
reveal similar features: The fluctuations of δ2 increase when the
anomalous diffusion exponent p becomes successively smaller
than the Brownian value 1. Indeed, as shown in Fig. 4(b) for the
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relevant region 0 < p < 1 there exists even a close agreement
of the quantitative behavior of CTRW and HDP. We show
the ergodicity breaking parameter obtained for the CTRW
process [49],

EBCTRW(
/T → 0) = 2�(1 + β)2

�(1 + 2β)
− 1, (18)

where 0 < β < 1 is the exponent in the PDF ψ(τ ) � τ−1−β of
the waiting times τ [3]. For the CTRW process the exponent β

also occurs in the MSD (2). We note that in contrast to HPDs
in superdiffusive CTRW processes the nonergodic behavior is
merely ultraweak, effecting a different prefactor in the time-
averaged MSD compared to the MSD [64,66].

For α � −2 we find that EB(
 = 1) ∼ 0.4 for initial
positions x0 close to the origin, in agreement with the results
presented in Ref. [46]. For α > 2 or p < 0 the analytical model
of Ref. [46] no longer applies but the simulations yield another
region of growth for the value of EB(
 = 1). The magnitude
of the jumps of EB(
 = 1) where p changes its sign depends
on the initial particle position x0, see Fig. 4(b). Note that
EB(
 = 1) also depends on the trace length T (not shown), as
discussed for two-dimensional HDPs [46].

As we show in Fig. 4(c), the magnitude of EB(
 = 1)
strongly varies with x0. In the region p � 1 the ratio of the
MSDs grows as EB(
 = 1,p) ∝ exp(2p), indicated by the
dashed asymptote in Fig. 4(c), while for large negative p

we observe EB(
 = 1,p) ∝ exp(−6p). We finally note that
EB(
 = 1) reveals a much weaker dependence on the number
N of simulated traces, see the circles and triangles in Fig. 4(c).
The reason is that EB involves only the second moment of
the time-averaged MSD, while the EB is defined in terms
of the fourth-order moment, which is more sensitive to large
variations.

C. Non-Gaussianity parameter

The non-Gaussianity parameter G is a sensitive experi-
mental indicator that often enables one to distinguish the
type of diffusion processes observed in single-particle tracking
experiments [67]. It is related to the stationarity of increments
of the diffusion process and involves the fourth moment
along the time-averaged trajectory. For the diffusion process
in an embedding space of dimension d it is defined via the
experimentally relevant time-averaged quantities as [28]

G(
) = d

d + 2
×

〈
δ4(
)

〉
〈
δ2(
)

〉2 − 1, (19)

where, in analogy to Eq. (9), the fourth moment is defined via

δ4(
) = 1

T − 


∫ T −


0
[x(t + 
) − x(t)]4dt. (20)

For Brownian and fractional Brownian motion, both Gaus-
sian processes, one consistently finds G = 0. For diffusion
processes revealing a transient anomalous diffusion behavior,
this parameter deviates substantially from zero, see, e.g., the
discussion in Ref. [67].

We systematically examine the behavior of G(
) for HDPs
in Fig. 5(a). Corroborating the results for the ergodicity break-
ing parameter, for Brownian motion we obtain approximately

zero values. As the power α in D(x) ∼ |x|α deviates from
zero, the non-Gaussianity parameter reveals a rich behavior as
a function of the lag time 
 and the initial position x0.

More specifically, in the region α < 0 the non-Gaussianity
parameter progressively grows and reaches considerably large
values for large |α|, see the curve for α = −10 in Fig. 5(a). The
value G(
) systematically decreases with the lag time 
 along
the trace for negative α. In the region 0 < α < 2 the value of
G also grows with α but, in contrast to the case α < 0, the
function G(
) stays rather constant with 
. As we approach
the critical α = 2 the non-Gaussianity parameter reaches very
high values. In the region α > 2 the value of G(
) decreases
again. These features of the functional behavior of G(α =
2 − 2/p) correspond with the properties of EB(α), compare
the curves in Fig. 5(a) and 3(a). Note that, similarly to EB, the
statistics required to obtain a smooth curve for G(
) strongly

(a)

(b)

FIG. 5. (Color online) (a) Non-Gaussianity parameter G(
) as
function of the lag time, plotted for the parameters of Fig. 3 with
N = 103 trajectories for each α value. The approximately zero-valued
trace G(
) for Brownian motion (α = 0) is only shown partially in
panel (a). Color coding is the same as in Fig. 3. (b) The value of
G(
 = 1) evaluated for varying exponent α and initial position x0.
The color scheme is the same as in Fig. 4.
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FIG. 6. (Color online) Spreading of diffusing particles for 10 equidistantly placed initial positions. The dashed curves are the theoretical
PDFs given by Eq. (8) in the diffusion limit. Parameters: T = 104, averaged over N = 200 trajectories for each initial position x0, and 5000
bins were used in the range −100 < x < 100.

depends on α: The result from N = 103 traces in Fig. 5(a)
acquires pronouncedly higher fluctuations when we approach
the critical value α = 2.

We find that variations in the initial positions x0 only have
a marginal effect on G(
 = 1,p). In Fig. 5(b) we illustrate the
range of G values for exponents in the range −4 < α < 5/3.
Even for the wide range from x0 = 10 to x0 = 0.001 the value
of G(
 = 1) does not reveal any appreciable variation, in
stark contrast to the strong x0 dependence of EB(
 = 1). This
indicates that for the HDP the non-Gaussianity parameter is
more robust than EB with respect to the choice of the initial
condition. Measuring both parameters EB and G can provide a
decisive quantitative criterion to discriminate among different
anomalous diffusion processes in data from experiments
or simulations. In Fig. 5(b) the dashed line indicates the
proportionality to p4, which nicely matches the measured
shape of G(
 = 1,p).

D. Probability density function and particle focusing

We finally analyze the time evolution of the PDF of the
particle position in Fig. 6 for three different values of the
scaling exponent α, distinguishing superdiffusion (top row
for α = 1, i.e., ballistic motion with p = 2), normal diffusion
(middle row for α = 0 and p = 1), and subdiffusion (bottom
row for α = −2, i.e., p = 1/2). In each row the leftmost panel
represents a very early evolution of the PDF close to the initial
condition, while in the rightmost panel the PDF in some of

the cases has almost reached the diffusion limit, in which the
analytical asymptote (8) is valid.

We observe that for HDPs with positive α, i.e., when the
diffusivity D(x) grows with the modulus of the position, the
PDF for particles with an initial position far away from the
origin, an asymmetric shape of the PDF is effected. Namely
they progressively move towards regions of small diffusivity
and accumulate there. This focusing due to the quenched nature
of the diffusivity erases any memory of the initial condition and
the common asymptote (8) of stretched Gaussian shape (0 <

α < 2) is approached. In the opposite case with negative α the
focusing of particles in lower-diffusivity regions applies again,
albeit at longer times than shown here. This time, however,
instead of the cusp at the origin for positive α, the PDF drops
down to zero at the origin and acquires the bimodal shape
predicted by (8), a compressed Gaussian. For the Brownian
case with vanishing α, no focusing takes place. In the final
panel the distribution is already so broad that the individual,
shifted PDFs appear on top of each other.

Similarly to the evolution of the MSD shown in Fig. 2, the
relaxation time required for the system of diffusing particles
to approach this long-time limit, P (x,t) depends on the power
α of the diffusivity in Eq. (4) and initial position x0. For
more negative α values the traces are not yet relaxed to
the theoretical long-time shape even after T = 104 steps.
The particles starting at larger x0 for the subdiffusive D(x)
profile remain trapped for the whole length of the simulation.
Conversely, when the diffusivity increases fast away from the
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origin (moderate positive α values), the equilibration to the
long-time PDF is relatively fast, see the panel for α = 1 in
Fig. 6.

IV. DISCUSSION AND CONCLUSIONS

For HPD processes whose diffusivity D(x) varies in power-
law form with the distance x from the origin and which
give rise to anomalous diffusion we analyzed in detail the
weakly nonergodic behavior for varying power exponents
α and initial positions x0 of the particles. In particular, we
examined the functional dependencies and magnitudes of the
variation of the ensemble and time-averaged characteristics
of such HDPs with these parameters. The fluctuations of the
amplitude of the time-averaged MSD of individual time traces
were shown to systematically grow with increasing departure
of the anomalous diffusion exponent p from the Brownian
value p = 1, corresponding to the scaling exponent α = 0
in the power-law form for D(x). The fluctuations increase
dramatically when the scaling exponent of D(x) approaches
its critical value α = 2. At that critical point we corroborated
the turnover from the power-law scaling in time of the
MSD to an exponential growth. Beyond the critical point the
fluctuations of the time-averaged MSD become smaller again.
Concurrently, we observe a population splitting into a faster
and slower fraction of time-averaged MSDs.

We paid particular emphasis on several parameters used
to classify the departure from ergodic behavior, namely the
two ergodicity breaking parameters EB and EB as well as the
non-Gaussianity parameter G. While EB is simply defined as
the ratio of the mean time-averaged MSD versus the MSD, both
EB and G are based on the fourth-order moments of the particle
position and are known analytically only from approximate
theories. A detailed numerical analysis of their properties was
therefore used to obtain more concrete information on their
behavior for different values of the scaling exponent α and the
initial particle position x0 in the heterogeneous environment
[68]. Within the analyzed parameter range we find that the
behavior of EB(
 = 1,α) is indeed in agreement with the
heuristic theoretical analysis from Ref. [46]. The parameter
portraits for the ergodicity breaking and non-Gaussianity
parameters obtained from our numerical analysis will be
useful for actual data evaluation. We also explored the detailed
behavior of the HDP dynamics at the critical value α = 2 and
its vicinity, in particular with respect to the huge values reached
by EB reflecting the dramatic fluctuations of the time-averaged
MSD. A systematic numerical analysis of the particle PDF for
varying initial conditions x0 sheds additional light on HDPs
with different exponent α, in particular, the visualization of
the particle focusing in low-diffusivity regions.

In HDPs the nonergodic behavior arises due to the het-
erogeneity of the environment. Physically, this represents a
space-dependent mobility or temperature. It is not a property of
the particle, and each time the particle revisits a given point x in
space it has the same diffusivity D(x). In a random walk sense,
this scenario could also be translated into a local dependence
of the waiting time for a jump event. In that interpretation the
HDP corresponds to a motion in a quenched energy landscape
[2], albeit a deterministic (in contrast to random) one. As
such, the process intrinsically differs from renewal CTRW

processes, which correspond to the motion in an annealed
environment [2].

Nevertheless, we observed that subdiffusive HDPs share a
number of features with subdiffusive CTRWs with scale-free,
power-law waiting time distribution. These features include
the scaling laws for the ensemble and time-averaged MSDs
and the form of the ergodicity breaking parameter EB (in
the relevant range 0 < p < 1). From the sole analysis of
the MSDs 〈x2(t)〉 and δ2 as well as the ergodicity breaking
parameter, a significant distinction between CTRW and HDP
is therefore difficult. Yet there exist some crucial differences
between the HDP and CTRW processes that can be measured
experimentally. Thus, in HDPs with 0 < p < 1 the distribution
φ(ξ ) of the relative amplitude δ2 of individual realizations
decays to zero at ξ = 0, in contrast to the CTRW’s finite
fraction of immobile particles reflected in the finite value
φ(0) > 0. Indeed the scatter distribution φ(ξ ) was previously
advocated as a good diagnosis tool for different stochastic
processes [29,63], complementing other stochastic analysis
methods [67,69,70].

HDPs are physically meaningful alternatives to the estab-
lished stochastic models for anomalous diffusion processes,
namely the CTRW process with long-tailed waiting time dis-
tribution, FBM and fractional Langevin equation motion based
on Gaussian yet long ranged in time correlations, diffusion
in fractal environments, or their combinations [14,15,20,69].
HPDs are weakly nonergodic, sharing some, yet not all, prop-
erties of CTRW processes. It is therefore important to explore
the properties of HDPs in more detail in the future as well
as to develop more sophisticated tools to interpret measured
time series from single-particle tracking experiments and with
confidence identify the underlying stochastic mechanism. In
particular, we will study the properties of confined and aged
HDPs [71] as well as spatially varying diffusivities with a
random component, and the coupling of HDPs with active
motion.
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APPENDIX: INFLUENCE OF THE INITIAL POSITION x0

We here examine the time evolution of the particle
motion as function of the starting position x0. The PDF of
sub- and superdiffusive HDPs with the off-origin initial
condition P (x,t = 0) = δ(x − x0) has the functional form

P (x,t) = N |x|1/p−1

√
4πD0t

exp

[
−

(|x|1/p − x
1/p

0

)2

(2/p)2D0t

]
. (A1)

Its derivation is analogous to the procedure for P (x,t = 0) =
δ(x) outlined in Ref. [46]. The normalization factor is

N = 1

1 + erf
(
x2

0/(4
√

D0t)
) (A2)
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FIG. 7. (Color online) Time evolution of the particles MSD for
sub- and superdiffusive HDPs with p = 1/2 and p = 2 for varying
initial position x0, as indicated in the plots. We used N = 300 traces
for averaging.

for p = 1/2 and

N = 1

1 + erf(
√

x0/(D0t))
(A3)

for p = 2. From the PDF (A1) we obtain the following MSD
of the particle motion:

〈x2(t)〉 = x2
0 + 4

√
D0t√
π

exp
[ − x4

0/(16D0t)
]

1 + erf
(
x2

0/(4
√

D0t)
) (A4)

for p = 1/2 and

〈x2(t)〉 = x2
0 + 3

4
D2

0 t
2 + 3D0tx0

+ exp[−x0/(D0t)]√
π (1 + erf(

√
x0/(D0t)))

× [
5
√

D3
0 t

3x0/2 +
√

D0tx
3
0

]
(A5)

for p = 2. As shown in Fig. 7, these analytical expressions are
in good agreement with our simulations results. The long time
MSD scaling 〈x2(t)〉 = 4

√
D0t/π for p = 1/2 and 〈x2(t)〉 =

3D2
0 t

2/4 for p = 2 are denoted by the dot-dashed lines in
Fig. 7. The MSD starts to grow from the initial values x2

0
and eventually saturates to these scaling laws for the MSD. In
accord with our expectations, the number of steps required to
reach this long-time scaling limit grows for larger off-center
values |x0|. Note that D0 has different dimensions for sub- and
superdiffusive cases, namely [D0] = cm2/p s−1.
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