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In an exclusion process with avalanches, when a particle hops to a neighboring empty site which is adjacent to
an island the particle on the other end of the island immediately hops, and if it joins another island this triggers
another hop. There are no restrictions on the length of the islands and the duration of the avalanche. This process
is well defined in the low-density region ρ < 1

2 . We describe the nature of steady states (on a ring) and determine
all correlation functions. For the asymmetric version of the process, we compute the steady state current, and
we describe shock and rarefaction waves which arise in the evolution of the step-function initial profile. For the
symmetric version, we determine the diffusion coefficient and examine the evolution of a tagged particle.
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I. INTRODUCTION

Lattice models which are endowed with conservative
stochastic dynamics are known as lattice gases. Lattice
gases were originally introduced using the language of spin-
exchange dynamics by Kawasaki [1], and they have played a
crucial role in the following development of nonequilibrium
statistical mechanics, see, e.g., Refs. [2–9] and references
therein. One does not need to go to high dimensions to
observe interesting behaviors in lattice gases—dynamics and
nonequilibrium steady states are surprisingly rich already in
one-dimensional lattice gases.

The simple exclusion process (SEP) is perhaps the most
well known and widely studied interacting lattice gas. In
the SEP, each site is either occupied by a particle or empty,
and particles undergo nearest-neighbor hopping; only hops to
empty sites are allowed, and therefore particles interact only
through the exclusion property. Two most popular versions, the
symmetric simple exclusion process (SSEP) when hopping
is symmetric and the totally asymmetric simple exclusion
process when hopping is only in one direction, have been
thoroughly investigated (see Refs. [4–8]). The simplest one-
dimensional setting is a ring. One is usually interested in the
thermodynamic limit when the number of sites L and the
number of particles N diverge while the density remains fixed:
L → ∞ and N → ∞ with ρ = N/L being fixed. The steady
states of the SEP are thus fully characterized by the density:
0 < ρ < 1.

Numerous generalizations of the SEP, partly inspired by
applications to protein synthesis [10–13] and to vehicular
traffic [14–18], have been investigated. These models often
involve a facilitation mechanism—the hopping rate depends
on more than just the occupancy of the neighboring site
[14–24]. In glassy dynamics, for instance, the particle mobility
decreases as the local density increases [25]; the opposite
occurs for molecular motors where a moving particle exerts a
hydrodynamic force pushing other particles [26].

In extensions of the SEP, the hopping event is determined
by the local environment of the hopping particle, e.g., it
may depend on occupancies of sites on distance � � from
the hopping particle [27] where � is fixed. Another feature
which is always obeyed is that every hopping event involves
a single particle. Lattice gases violating this second property
have been recently investigated [28–30]. In the accelerated

exclusion process [28,29], for instance, the initial hop can
trigger at most one more hop: As in the SEP, particles undergo
nearest-neighbor hopping, and if a particle hops to a vacant
site and joins an island of length � �, the front particle from
that island also hops. (An island is a string of occupied sites
delimited by vacant sites on both ends.) At most one additional
hop is allowed to occur, that is, the second particle cannot
trigger another hop. When � = 0, the accelerated exclusion
process reduces to the SEP.

Here we consider the model with no restrictions on island
length and avalanche size. Thus if a hopping particle joins
an island of arbitrary length, the front particle from this island
hops in the same direction, and this second hopping can trigger
the third, which can in turn trigger the fourth, etc., ad infinitum.
We will call this model an exclusion process with avalanches
(EPA).

One can consider a two-parameter family of models with
thresholds both on the island size and on the duration of
avalanches: An induced hop occurs only after a particle joins
an island of length � �, and the number of induced hops is
� a. In the EPA, whenever a particle joins an island it always
triggers the front particle of that island to hop, and an avalanche
can be arbitrarily long. Thus � = a = ∞ for the EPA. Only the
extreme versions appear solvable, namely, the EPA (as we will
demonstrate in this article) and of course the SEP (for which
a = 0 or equivalently � = 0).

In the next section, we classify the steady states, compute
the current for the totally asymmetric EPA, and determine
various correlation functions. In Sec. III we examine various
hydrodynamic solutions, particularly rarefaction and shock
waves, arising in the realm of the totally asymmetric EPA.
In Sec. IV we consider the symmetric EPA, compute the
density-dependent diffusion coefficient, study the amplitude of
self-diffusion, and compare simulation results with theoretical
predictions for these transport coefficients. We summarize our
results in Sec. V.

II. EPA: STEADY STATES

In this section we consider the EPA on the ring. The
difference in hopping rules of the SEP and EPA is illustrated
in Fig. 1. The initial configuration is shown on the top. We
consider the hopping event which starts when the leftmost
particle (empty circle) makes the hop to the empty site on
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SEP

EPA

FIG. 1. (Color online) A hopping event on a ring with seven
particles and five empty sites. In this example, a particle (shown
as an empty disk) hops to the vacant site on the right. This completes
the hopping event in the case of the SEP, all other particles (filled
disks) remain in their sites. In the case of the EPA, the initial hop
triggers an avalanche with three induced hops (shown is the final
configuration). The initial configuration has four islands. After the
hopping event there are three islands for the SEP and four islands
for the EPA: In the latter case, the total number of islands cannot
decrease.

the right. This completes the hopping event in the case of the
SEP (second row). For the EPA (third column), the primary
hop triggers the second hop, the second hop triggers the third,
which then triggers the fourth, and only then is the hopping
event completed as the last hopping particle has not joined an
island.

For the EPA on a finite ring, the memory of the initial
condition will be eventually forgotten. We want to understand
the nature of the steady states to determine the current (if the
hopping is biased) and to compute density correlations. The
high-density regime ρ > 1/2 is pathological as a never-ending
avalanche will eventually occur. (For instance, after a few
hopping events, the initial configuration shown in Fig. 1 enters
in an infinite avalanche.) Therefore we tacitly assume that
ρ < 1/2 if not stated otherwise.

A. Classification of steady states

The steady states admit a neat classification: They are
configurations with the maximal number of islands. Since
ρ < 1/2, the maximal island configurations are such where
all islands have length one. Therefore after a transient period,
the EPA reaches a configuration, such as

• ◦ ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ , (1)

and it will then forever wander on the phase space of such
maximal-island configurations. In (1) and other illustrations •
denotes a particle, and ◦ denotes a vacancy. Thus in (1) we
have illustrated a steady state on a ring of length L = 20 that
contains N = 8 particles and V = 12 vacancies.

The emergence of the maximal-island configurations is easy
to appreciate: After each completed hopping event, the total
number of islands increases or remains the same, and in the
low-density regime it eventually becomes maximal, and then
it stays maximal forever. The space of maximal-island con-
figurations is connected: Each maximal-island configuration
can evolve into a configuration containing the longest possible
string of alternating particles and vacancies complemented by
the string of vacancies.

It turns out that all maximal-island configurations are
equally probable. This remarkable property is generally valid
for the EPA, irrespective if there is a bias or not. The
totally asymmetric version (say particles hop only to the
right) is slightly simpler as it has twice less possible hops
than the general EPA, so let us focus on it and derive that
maximal-island configurations are equally probable for the
totally asymmetric EPA. Apart from expressions for the current
[Eqs. (7)–(9) below], the results of this section apply to any
EPA.

Let P (C) be the probability that the system is in maximal-
island configuration C. In the steady state,

P (C)
∑
C ′

R(C → C ′) =
∑
C ′′

P (C ′′)R(C ′′ → C), (2)

where R(C → C ′) is the transition rate from C to C ′. This rate
obeys the zero-one law: R = 1 if the evolution is allowed and
0 otherwise. Therefore, we merely need to count the number of
ways into and out of a configuration. Each particle can hop in
the maximal-island configuration, so

∑
C ′ R(C → C ′) = N .

To count the number of maximal-island configurations C ′′ that
can change into C, we use a simple trick: We reverse the
direction of hopping and notice that for each C ′′ → C with
our original hopping to the right we can find a unique inverse
process C → C ′′ with hopping to the left. For the latter, the
number of ways out is equal to N . It must be the same for
the former:

∑
C ′′ R(C ′′ → C) = N . If P (C)’s are equal for all

configurations, Eq. (2) is clearly satisfied.
The probability of a maximum-island configuration is

therefore equal to C−1, where C is the total number of such
configurations with N particles and V vacancies that can be
arranged on a ring of size L = N + V . The total number of
maximum-island configurations is

C =
(

V

N

)
+

(
V − 1

N − 1

)
. (3)

See Refs. [22,27] for a computation of a similar quantity.

B. Current

In a maximum-island configuration, avalanches are trig-
gered by strings of alternating particles and vacancies. For
instance, the snapshot ◦ ◦ • ◦ • ◦ • ◦ • ◦ ◦ represents an al-
ternating string with four particles; the illustration (1) contains
the four-particle string together with the three-particle string
and the one-particle string. Generally, let Ak be the density
of k-particle strings. To determine Ak we need to compute the
number of configurations where N − k remaining particles are
inserted into V − k − 2 possible positions (denoted by ↓),

◦ ◦ • ◦ • ◦ • ◦ •︸ ︷︷ ︸
k particles

◦ ◦
N−k particles︷ ︸︸ ︷

↓ ◦ ↓ ◦ ↓ ◦ ↓ ◦ ↓ ◦ ↓ ◦︸ ︷︷ ︸
V −k−3 vacancies

↓ . (4)

The example (4) is meant to be general, but what is specifically
shown is the alternating string of k = 4 particles on a ring with
total number of vacancies V = 13; the total number of particles
in (4) is not specified, although it is bounded N � 11.
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The total number of configurations (4) is (V − k − 2
N − k ) and

therefore,

Ak =
(
V −k−2
N−k

)
(
V

N

) + (
V −1
N−1

) . (5)

This exact result holds independently of the system size.
Keeping k finite and going to the thermodynamic limit we
find that the density Ak becomes

Ak = (1 − 2ρ)2

1 − ρ

(
ρ

1 − ρ

)k

. (6)

One computes
∑

k�1 kAk = ρ thereby providing a useful
consistency check.

Using (6) we can immediately compute the current in
the totally asymmetric version of the EPA. Each string Ak

contributes 1 + 2 + · · · + k once we take into account possible
choices of the first hopping particle and resulting avalanches.
Therefore,

J =
∑
k�1

k(k + 1)

2
Ak. (7)

Using (6) we determine the current in the thermodynamic limit,

J =
{ ρ(1−ρ)

1−2ρ
, ρ < 1

2 ,

∞, ρ � 1
2 .

(8)

The current is also infinite on finite rings if V � N . When
V > N , the current remains finite. Using (5) and (7) one can
compute the current in this situation,

J = V N

(V − N + 1)(V + N )
. (9)

In particular,

J = N ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N+1
4(N+1/2) , V = N + 1,

N+2
6(N+1) , V = N + 2,

N+3
8(N+3/2) , V = N + 3,

N+4
10(N+2) , V = N + 4.

C. Correlation functions

A configuration at time t is fully described by binary
variables nj (t): If the site j ∈ Z is empty, nj (t) = 0; if it
is occupied, nj (t) = 1. The structure of the steady states in
the EPA is the same as in a repulsion process for which
correlation functions have been recently determined [27].
Using these results we conclude that in the thermodynamic
limit the connected pair correlation function is given by

〈ninj 〉c ≡ 〈ninj 〉 − ρ2 = ρ(1 − ρ)

(
− ρ

1 − ρ

)|j−i|
(10)

for all i and j . Therefore the connected pair correlation
function exhibits a pure exponential decay modulated by an
oscillating sign.

Higher-order correlation functions can be expressed via the
pair correlation function, e.g., the three-particle correlation

function has a neat form

〈ni1ni2ni3〉 = 〈ni1ni2〉〈ni2ni3〉
〈ni2〉

, (11)

reminiscent of the Kirkwood superposition approximation
[31] which is popular in liquid theory [32,33]. (Needless to
say, for the EPA and for the repulsion process studied in
Ref. [27], the above results (10) and (11) are exact rather than
an uncontrolled approximation.) Generally the higher-order
correlation functions can be written as〈

k∏
a=1

nia

〉
= 1

ρk−2

k−1∏
a=1

〈niania+1〉. (12)

III. HYDRODYNAMIC SOLUTIONS

In this section we consider the totally asymmetric EPA.
We study evolving solutions, so our setting is the infinite one-
dimensional lattice rather than the ring. We are interested in
a hydrodynamic description which represents the evolution of
the density ρ(x,t) on large spatial and temporal scales. In the
hydrodynamic regime, the totally asymmetric EPA is described
by the continuity equation with current given by (8),

∂ρ

∂t
+ ∂J

∂x
= 0, J = ρ(1 − ρ)

1 − 2ρ
. (13)

Let us examine solutions which arise when the initial
density is a step function,

ρ =
{
ρ−, x < 0,

ρ+, x > 0.
(14)

There are two types of solutions: Rarefaction waves and shock
waves.

A. Rarefaction and shock waves

We assume that both ρ− < 1
2 and ρ+ < 1

2 so that the system
is in the low-density regime where the current is well defined.
Rarefaction waves arise when ρ− < ρ+ < 1

2 . To determine
how an initial density step evolves, one can use the method of
characteristics [34]. The lack of the spatial scale suggests that
a simpler approach [9] is to use the scaling ansatz ρ(x,t) =
f (x/t). Plugging this ansatz into Eq. (13) and solving the
resulting equation we find

f =
⎧⎨
⎩

ρ−, z < z−,
1
2 [1 − (2z − 1)−1/2], z− < z < z+,

ρ+, z > z+,

(15)

with

2z+ = 1 + 1

(1 − 2ρ+)2
, (16a)

2z− = 1 + 1

(1 − 2ρ−)2
. (16b)

When 1
2 > ρ− > ρ+, the resulting solution is a shock wave.

The density profile (14) translates with velocity,

v = J (ρ+) − J (ρ−)

ρ+ − ρ−
= (1 − ρ−)(1 − ρ+) + ρ−ρ+

(1 − 2ρ−)(1 − 2ρ+)
, (17)

which follows from Eq. (13).
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B. Solutions with ρ+ = 1 or ρ− = 1

Never-ending avalanches arise when 1
2 < ρ < 1, yet the

case of ρ = 1 is nonpathological; it corresponds to the
complete stasis. Let us analyze solutions to Eqs. (13) and (14)
when the density in one of the half-spaces is equal to unity.
The density profile,

ρ =
{
ρ−, x < 0,

1, x > 0,
(18)

with ρ− < 1
2 translates with velocity,

v = − J (ρ−)

1 − ρ−
= − ρ−

1 − 2ρ−
, (19)

so we have a shock wave propagating to the left.
Unexpected results emerge for the complimentary density

profile,

ρ =
{

1, x < 0,

ρ+, x > 0.
(20)

When ρ+ < 1
3 , the solution is a combination of two shock

waves,

f =
⎧⎨
⎩

1, z < −1,
1
3 , −1 < z < v,

ρ+, z > v,

(21)

where ρ(x,t) = f (z) with z = x/t and v = 2−ρ+
1−2ρ+

. To estab-
lish this solution we notice that one shock wave moves to the
left with unit speed and if R is the density to the right of this
shock wave, equating the mass transfer yields 1 − R = J (R),
from which R = 1

3 as is stated in (21). The second shock
moves to the right with velocity found from (17) if we plug in
ρ− = R = 1

3 . The simplest solution of this type describes the
expansion into vacuum,

f =
⎧⎨
⎩

1, z < −1,
1
3 , −1 < z < 2,

0, z > 2.

(22)

When 1
3 < ρ+ < 1

2 , the solution is a combination of a shock
wave and a rarefaction wave,

f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, z < −1,

1
3 , −1 < z < 5,

1
2 [1 − (2z − 1)−1/2], 5 < z < z+,

ρ+, z > z+.

(23)

The right boundary of the rarefaction wave is determined by
Eq. (16a), whereas the left boundary z− = 5 is found after
inserting ρ− = 1

3 into Eq. (16b).

IV. SYMMETRIC EPA

In the symmetric version, hopping to the left occurs with
the same (unit) rate as hopping to the right. Each hopping
event can trigger an avalanche propagating in the direction
of the initiating hop. Steady states are the same as in the
asymmetric version, namely, the system wanders on the
phase space of the maximum-island configurations, and each
such configuration occurs with the same probability. The

interpretation is different, however: The dynamics is now
reversible, and the maximum-island configurations are equilib-
rium configurations since there is no current; mathematically,
previous results (e.g., about correlation functions) continue to
hold.

A. Hydrodynamic regime

To understand the dynamics at a greater depth, one would
like to describe the approach to equilibrium. Similar to other
lattice gases with reversible dynamics, the hydrodynamic
description of the symmetric EPA is provided by the diffusion
equation [2,5,9],

∂ρ

∂t
= ∂

∂x

[
D(ρ)

∂ρ

∂x

]
. (24)

The diffusion coefficient D(ρ) representing the spread
of disturbances generically depends on the density. In rare
cases (the SSEP is the most known example) the diffusion
coefficient is constant. Generally, the computation of D(ρ)
is very challenging, and a few density-dependent diffusion
coefficients have been analytically determined (see, e.g.,
Ref. [27]). This is not surprising if we recall that for classical
gases transport coefficients cannot be computed even for
monoatomic gases with simplest interactions [33]. In addition,
lattice gases are dense, whereas classical gases are diluted;
for dense classical gases and liquids, the computation of
transport coefficients is unimaginable. Stochastic lattice gases
are characterized by a single macroscopic variable, the density,
so they are much simpler than classical gases, and therefore
for some lattice gases the diffusion coefficient is computable.

There is a general scheme based on the Einstein-Green-
Kubo formula [33] that expresses the diffusion coefficient
through the current-current correlation function. Current-
current correlations are very difficult to compute for determin-
istic dense gases. For stochastic lattice gases these correlations
are more transparent [2], yet successful calculations have been
performed in rare cases, mostly for lattice gases satisfying
a gradient condition [2,35], i.e., when the current can be
expressed as a discrete gradient of some function. The EPA
does not satisfy the gradient condition, plus the established
Einstein-Green-Kubo scheme [2] assumes single hopping
events rather than potential avalanches of simultaneous hops.

Here we employ an approach which is less general and
less justified than the Einstein-Green-Kubo formalism. This
approach relies on the knowledge of the steady states and
correlations. The calculations are rather involved, but the chief
prediction is remarkably simple,

D = (1 − 2ρ)−3. (25)

The small-density asymptote corresponds to the diffusion of a
single particle in the empty system, and it coincides of course
with the diffusion coefficient of the SSEP, which is constant:
DSSEP = 1. The divergence of the diffusion coefficient in the
ρ → 1

2 limit is expected, although the precise form may be
surprising.

To derive (25) we assume that the system is already close to
equilibrium so that between any two adjacent particles there
is at least one vacancy. The density at site j can decrease
if the site is occupied and the particle hops to a necessarily
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empty neighboring site j → j ± 1. When a neighboring site
is occupied, the particle can hop to the empty site j , thereby
causing the increase in the density. These direct hops lead to
the change in the average density,

d〈nj 〉
dt

∣∣∣∣
0

= 〈nj−1〉 − 2〈nj 〉 + 〈nj+1〉. (26)

The index on the left-hand side indicates that this change is
initiated by direct hopping (no avalanches).

Similarly we find that the change in the average density due
to the first induced hop after the original hop is described by

d〈nj 〉
dt

∣∣∣∣
1

=〈nj−3nj−1〉 − 〈nj−2nj 〉 − 〈njnj+2〉 + 〈nj+1nj+3〉.

(27)

Extending this argument we determine the change due to the
second induced hop after the original hop,

d〈nj 〉
dt

∣∣∣∣
2

= 〈nj−5nj−3nj−1〉 − 〈nj−4nj−2nj 〉

−〈njnj+2nj+4〉 + 〈nj+1nj+3nj+5〉. (28)

In the hydrodynamic limit the average density varies on
the scales greatly exceeding the lattice spacing. Therefore we
write 〈nj (t)〉 = ρ(x,t) (the notation x = j emphasizes that we
are switching to the continuum description), expand 〈nj±1〉 in
Taylor series,

〈nj±1〉 = ρ ± ρx + 1
2ρxx + · · · ,

and recast the difference-differential equation (26) into a
classical diffusion equation,

∂ρ

∂t

∣∣∣∣
0

= ∂2ρ

∂x2
. (29)

The right-hand side of Eq. (27) can be shortly written
as �

(1)
j−2 − �

(1)
j−1 − �

(1)
j+1 + �

(1)
j+2, where �

(1)
k ≡ 〈nk−1nk+1〉.

Expanding the right-hand side we transform (27) into

∂ρ

∂t

∣∣∣∣
1

= (22 − 12)
∂2�(1)

∂x2
. (30)

Similarly �
(2)
j−3 − �

(2)
j−2 − �

(2)
j+2 + �

(2)
j+3 with the shorthand

notation �
(2)
k ≡ 〈nk−2nknk+2〉 is the right-hand side of (28), so

in the continuum limit (28) becomes

∂ρ

∂t

∣∣∣∣
2

= (32 − 22)
∂2�(2)

∂x2
. (31)

It is now clear that the general contribution describing the
change after the pth induced hop is

∂ρ

∂t

∣∣∣∣
p

= [(p + 1)2 − p2]
∂2�(p)

∂x2
. (32)

The correlation functions �(p) are direct generalizations of the
already defined �(1) and �(2),

�(3) = 〈nj−3nj−1nj+1nj+3〉,
�(4) = 〈nj−4nj−2njnj+2nj+4〉,
�(5) = 〈nj−5nj−3nj−1nj+1nj+3nj+5〉,

etc. Collecting the contributions from (29) and (32) for all p �
1 we conclude that the governing hydrodynamic equation reads

∂ρ

∂t
= ∂2R

∂x2
, R = ρ +

∑
p�1

[(p + 1)2 − p2]�(p). (33)

We can compute �(p) neglecting the variation in the density.
Using (10) we find

�(1) = 〈nj−1nj+1〉 = ρ2 + ρ3

1 − ρ
= ρ2

1 − ρ
,

which in conjunction with (12) give us �(p) for all p � 1,

�(p) =
(

ρ

1 − ρ

)p−1

�(1).

Using these results we compute

R = ρ + ρ
∑
p�1

(2p + 1)

(
ρ

1 − ρ

)p

= ρ − ρ2

(1 − 2ρ)2
. (34)

Equation (33) can be rewritten as the diffusion equation
(24) with D(ρ) = dR

dρ
. Combining this relation with (34) we

arrive at the announced diffusion coefficient (25).
We emphasize that whenever the predictions of the above

perturbative approach were compared with rigorous deriva-
tions available for a few lattice gases satisfying the gradient
condition, e.g., for repulsion processes [27], the results fully
agreed. For lattice gases of nongradient type the perturbative
approach also apparently gives exact results, although the
supporting evidence is mostly numerical (see, e.g., Ref. [36]).

B. Self-diffusion

The phenomenon of self-diffusion refers to the evolution
of a tagged particle. Self-diffusion is interesting when a lattice
gas is at equilibrium (as we will assume in this subsection),
and it can be studied for an arbitrary lattice gas in arbitrary
spatial dimension d. The average position of the tagged particle
remains constant,

〈X(t)〉 = 0. (35)

The most interesting information is provided by the
mean-square displacement. One anticipates that it exhibits a
diffusive growth,

〈X2(t)〉 = 2dDT (ρ)t. (36)

The coefficient of self-diffusion DT (ρ) is unknown even for
simplest lattice gases, e.g., for the SSEP in dimensions d � 2.
[Generally, the diffusion of the tagged particle in higher
dimensions is described by the self-diffusion matrix, so one
should replace (36) by an obvious matrix generalization.]

In one dimension, the coefficient of self-diffusion may
vanish. It happens for all exclusion processes with symmetric
hopping when no more than one particle per site and only
nearest-neighbor jumps are allowed. For such exclusion pro-
cesses the mean-square displacement exhibits a subdiffusive
growth. This was originally discovered for the SSEP where
the mean-square displacement grows as [37–42]

〈X2(t)〉 = D(ρ)
√

t, DSSEP(ρ) = 2√
π

1 − ρ

ρ
. (37)
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Note that as in the general case of normal self-diffusion,
P (X,t) = Prob(X(t) = X) is a Gaussian distribution char-
acterized by the average (35) and the variance (37). The
anomalously slow growth of the variance,

√
t instead of the

usual linear growth, is caused by the fact that the original order
of all the particles is forever preserved in one dimension. The
subdiffusive growth law (37) is not merely an outcome of a
toy model, it has been observed in a number of experimental
realizations, such as diffusion of large molecules in zeolites,
transport in superionic conductors, etc., see Refs. [43–45] and
references therein.

The
√

t growth of the variance should be valid for other
one-dimensional exclusion processes with symmetric nearest-
neighbor hopping. The amplitude D(ρ) generally depends on
the details of the process. The derivation of (37), see, e.g.,
Refs. [40,42,46], suggests that D(ρ) can be expressed through
the diffusion coefficient D(ρ) and the static compressibility
χ (ρ) via

D(ρ) = 2√
π

χ (ρ)

ρ2

√
D(ρ). (38)

The static compressibility (also known as the structure factor)
can be expressed through the connected pair correlation
function [2],

χ =
∞∑

j=−∞
〈n0nj 〉c.

Using (10) we compute the static compressibility,

χ (ρ) = ρ(1 − ρ)(1 − 2ρ). (39)

The range of applicability of (38) is not fully understood. It
is proved to be correct for gradient lattice gases, but the EPA
fails this test, plus all rigorous work disregards avalanches
(only one jump can occur in an infinitesimal time interval).
On the other hand, the validity of Eq. (38) has been recently
justified [46] for a general class of lattice gases with exclusion
constraints; this has been performed in the framework of the
macroscopic fluctuation theory (see Ref. [35] for a review).
With all these caveats, we now substitute (25) and (39) into
(38) and arrive at

D(ρ) = 2√
π

1 − ρ

ρ
√

1 − 2ρ
. (40)

The small-density behavior ofD(ρ) matches the behavior in
the case of the SSEP. The divergence of D(ρ) when ρ → 1/2
is also natural. Note that the behavior of D(ρ) in this limit is
less singular than the behaviors of J (ρ) and D(ρ), see (8) and
(25). The amplitude of self-diffusion (40) is minimal Dmin =
3.757 717 78 · · · at ρ = (3 − √

5)/2 = 0.381 966 012 · · · .

C. Probing the diffusion coefficient and the amplitude
of self-diffusion

One can determine the diffusion coefficient numerically by
measuring the average flux 〈F 〉, namely, the average number
of particles passing through the system of size L during time t :
One sets the density on the left boundary to ρ and the density
on the right boundary to ρ − δρ, assumes δρ � ρ and L  1,

and employs relation,

lim
t→∞

1

t
〈F 〉 = D(ρ)

δρ

L

to probe the diffusion coefficient. This direct method requires
a long running time since the average flux is proportional to δρ,
whereas fluctuations of the flux remain finite even for δρ = 0.

We employ a less direct way of probing the diffusion
coefficient which has an advantage of being resilient towards
fluctuations. The idea is to consider stationary density profiles
with sufficiently different boundary densities. We can compare
the density profile observed numerically with the one found
theoretically using the predicted expression (25) for the
diffusion coefficient.

For concreteness, we choose the boundary conditions,

ρ(0) = ρ0, ρ(L) = 0. (41)

Solving (24) and (25) subject to the boundary conditions (41)
yields the density profile,

2ρ = 1 − 1 − 2ρ0√
1 − 4ρ0(1 − ρ0)ξ

, ξ = x

L
, (42)

which is valid for any ρ0 < 1/2. Let us compare this to the
density profile given by direct simulations of the EPA on the
interval (0,L). To achieve the boundary conditions (41), a
particle at site L − 1 hops to the right with the same rate 1
as in the bulk, but there is no hopping from site L to site
L − 1. And we add particles to site 1 at rate λ. Note that the
introduction of a particle at site 1 will induce an avalanche
if there is a particle at the second site. This causes the first
few sites to behave differently than the bulk for which we
derive the hydrodynamic equations: The first site has a higher
density than the macroscopic prediction; the second site has a
lower density due to an avalanche induced by the injection of
particles at the first site; the third site has a higher density;
and so on. These oscillations die out quickly, and we fit
ρ0 to extrapolated bulk density at x = 0. In the bulk, there
is excellent agreement between simulations and theory (see
Fig. 2).

We numerically study the self-diffusion process on a ring.
Simulations on the ring provide a faithful description of the

 0
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FIG. 2. (Color online) Density profiles: ρ versus the scaled spa-
tial coordinate ξ = x/L. Shown are simulation results for the system
with L = 103 and T = 108 for three different densities on the left.
Also shown are theoretical predictions Eq. (42).
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FIG. 3. (Color online) The amplitude of self-diffusion D(ρ) in
one dimension as a function of density ρ. Shown are simulation
results on the ring of length L = 104 for T = 104; the averaging was
taken over 103 configurations for each ρ. Also shown for reference is
the theoretical prediction Eq. (40).

infinite lattice as long as the observation time is sufficiently
short T � L2. We average the squared displacements over
many configurations. One can also sample multiple-particle
displacements in the same configuration while making sure
that the particles are chosen far enough that the correlations are
minimal. [In our simulations we chose particles such that the
correlations are < 0.005. The spacings between samples can
be estimated by using (10).] Figure 3 shows good agreement
between simulations and theory.

V. SUMMARY

We introduced and investigated exclusion processes with
avalanches. In these processes in addition to the hopping
to neighboring empty sites characterizing simple exclusion
processes, simultaneous hops, the avalanches, can occur. An
avalanche is generated when a particle hops to an empty site
which is adjacent to an island—in this case, the frontmost
particle from this island hops, and if this particle joins another
island, this triggers another hop, etc. There are no restrictions
on the length of the islands and the duration of the avalanche.
Exclusion processes with avalanches are well defined in the
ρ < 1

2 region. Avalanches lead to an accelerated phenomenon
in the sense that both the current and the diffusion coefficient
are convex functions of the density increasing in the 0 < ρ < 1

2
region and diverging in the ρ → 1

2 limit. The amplitude of

self-diffusion is also a convex function of density diverging in
the ρ → 0 and ρ → 1

2 limits.
We showed that for one-dimensional exclusion processes

with avalanches the steady states are configurations with
maximal numbers of islands and all these configurations
are equiprobable. This understanding allowed us to employ
a combinatorial approach to compute the current (for the
asymmetric version) and the correlation functions. In the
asymmetric version, the continuity equation governs hydrody-
namic behaviors, and we determined some key hydrodynamic
solutions, particularly rarefaction and shock waves. For the
symmetric version, the hydrodynamic behavior is governed
by the diffusion equation. We computed the density-dependent
diffusion coefficient. We also studied the phenomenon of self-
diffusion. As in other exclusion processes in one dimension
with nearest-neighbor hopping, the mean-square displacement
of a tracer particle grows as D(ρ)

√
t rather than linearly in

time as in normal diffusion. We determined the amplitude
of self-diffusion D(ρ). The predicted values of the diffusion
coefficient and D(ρ) are in good agreement with simulation
results.

Thus one-dimensional simple exclusion processes with
avalanches of unlimited durations are tractable, e.g., transport
coefficients exhibit nontrivial density dependence, yet they are
computable. Exclusion processes with avalanches of limited
duration constitute an obvious challenge; some of these
processes have been investigated in Refs. [28–30], but they
have not been solved so far.

The one-dimensional exclusion process with avalanches
has intriguing similarities with lattice gas models without
avalanches. One interesting example is an exclusion process
in which particles undergo long “frog-leaping” jumps. This
lattice gas has been studied in the context of the self-organized
criticality [47]. It would be interesting to explore these
similarities further as well as the potential connections with
other lattice gases and with zero range processes. Another
promising direction is to devise higher-dimensional exclusion
processes with avalanches. Naive generalizations appear ill
defined for arbitrarily low densities due to the emergence of
never-ending avalanches.
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