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The computation of interfacial free energies between coexisting phases (e.g., saturated vapor and liquid) by
computer simulation methods is still a challenging problem due to the difficulty of an atomistic identification of an
interface and interfacial fluctuations on all length scales. The approach to estimate the interfacial tension from the
free-energy excess of a system with interfaces relative to corresponding single-phase systems does not suffer from
the first problem but still suffers from the latter. Considering d-dimensional systems with interfacial area Ld−1

and linear dimension Lz in the direction perpendicular to the interface, it is argued that the interfacial fluctuations
cause logarithmic finite-size effects of order ln(L)/Ld−1 and order ln(Lz)/Ld−1, in addition to regular corrections
(with leading-order const /Ld−1). A phenomenological theory predicts that the prefactors of the logarithmic
terms are universal (but depend on the applied boundary conditions and the considered statistical ensemble). The
physical origin of these corrections are the translational entropy of the interface as a whole, “domain breathing”
(coupling of interfacial fluctuations to the bulk order parameter fluctuations of the coexisting domains), and
capillary waves. Using a new variant of the ensemble switch method, interfacial tensions are found from Monte
Carlo simulations of d = 2 and d = 3 Ising models and a Lennard-Jones fluid. The simulation results are fully
consistent with the theoretical predictions.
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I. INTRODUCTION

Interfacial phenomena are ubiquitous in the physics
of condensed matter and materials science: Nucleation of
droplets [1–9] in a supersaturated vapor (or nucleation of
bubbles in an undersaturated liquid) is controlled by a com-
petition between the free-energy cost of forming an interface
and gain in free energy (resulting from the fact that the stable
phase has a lower free energy than the metastable one). Of
course, related phenomena occur in more complex systems
(crystal nucleation from the melt, formation of nematic or
smectic droplets in fluids which can form liquid crystal phases,
etc.) and in various solid phases (nucleation of ferroelectric or
ferromagnetic domains driven by appropriate fields, etc.). In
complex fluids and biosystems heterogeneous structures (such
as mesophases of strongly segregated block copolymers [10])
are often maintained in thermal equilibrium, due to an interplay
of various free-energy contributions, one of them being an
interfacial tension. Stable heterogeneous structures can also
be stabilized in fluids due to the effect of confining walls, e.g.,
wetting layers [11–13] and nanosystems [14].

Thus, the prediction of the excess free energy due to an inter-
face between coexisting phases is a basic task of statistical me-
chanics [15–18]. Although this long has been recognized [19],
and mean-field-type approaches have been developed and are
widely used, e.g., [20–23], such theories are not based on a firm
ground: the existence of a well-defined “intrinsic interfacial
profile” is doubtful [15–17,24–26]. An inevitable input is the
free-energy density of homogeneous states [27] throughout the
two-phase coexistence region: This is again a concept valid for
systems with long-range forces [5,28–30] but ill defined in the
short-range case [5,9,30,31]. While the bulk phase behavior
often can be accounted for rather well by mean-field-type
theories (apart from the neighborhood of critical points, of
course, but there the neglected long-wavelength fluctuations
and the effects caused by them can be well accounted for

by renormalization group theory [32]), this is not the case
for interfacial phenomena. Interfaces (between fluid phases)
have fluctuations on all length scales, and although their long-
wavelength part (capillary waves [33–38]) is well understood,
the interplay of short wavelengths with fluctuations in the
bulk is not yet well understood [26,36–38]. Thus one cannot
improve the mean-field results by fluctuation corrections
systematically.

In view of this dilemma, the prediction of interfacial
free energies by computer simulation methods [18,39–79]
is very important. For many model systems of statistical
mechanics, computer simulation methods can very accurately
predict the equation of state, and thermodynamic properties
derivable from it [80–82]. Of course, computer simulations
deal with systems of finite size, and hence finite-size effects
need to be carefully considered [83–86], in particular near
critical points or if dealing with phase coexistence. However,
finite-size scaling concepts for such problems long have been
established [82–86] and are very successful [80,82].

Unfortunately, with respect to finite-size effects on interfa-
cial phenomena the situation is less satisfactory, although the
problem long has also been considered [85,87–93]. Therefore,
the present paper takes up this task again, reconsidering
the finite-size effects on interfacial tensions for archetypical
model systems, such as the Ising model in d = 2 and d = 3
dimensions, and the Lennard-Jones fluid. Our work is based
on several ingredients as follows:

(i) By further adaptation of the recently developed ensem-
ble switch method [94–96], a computationally very efficient
alternative to existing approaches has become available.

(ii) The computational power of recently available com-
puter hardware exceeds the power that was available 20 to
30 years ago, when most previous studies of this problem
were done but led to less conclusive results by many orders of
magnitude.
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(iii) Unlike most previous work, we vary both the linear
dimension L parallel to the interface and the linear dimension
Lz perpendicular to it systematically. We find that this aspect
is crucial to unambiguously identify the sources of the various
effects.

(iv) We compare systematically the results obtained choos-
ing different boundary conditions (e.g., periodic versus
antiperiodic in the Ising model) and different ensembles
(conserved or nonconserved density when we interpret the
Ising system as lattice gas).

Due to these ingredients (i)–(iv), we have been able to
discover a new mechanism of interfacial fluctuations (“domain
breathing”), which has not been mentioned in the previous
literature. Apart from the domain breathing mechanism,
known effects like the translational entropy of the interface
and capillary wave effects play a major role for our study.

As a disclaimer, we emphasize that some important aspects
will not be studied in this work: We will not address
the interesting crossover [93] of these finite-size effects
towards those associated with the critical point, where the
interfacial tension vanishes; we also ignore the anisotropy
of the interfacial tension (which is present also in the Ising
model [45,66,97] and very important when approaching (in
d = 3) the roughening transition [98] [or zero temperature,
in d = 2]). Of course, this anisotropy must not be ignored
when one considers crystal-fluid interfaces [66–79]. We plan
to study the latter in future work.

The outline of this paper is as follows: in Sec. II, we
describe in detail (a brief summary was already presented in
a Letter [99]) the phenomenological theory of the logarithmic
finite-size effects on interfacial tensions. In Sec. III, we briefly
characterize the models that are studied and describe the
ensemble switch method that is used in the Monte Carlo
simulations. Section IV describes our numerical results for
the d = 2 and d = 3 Ising model and a d = 3 Lennard-Jones
fluid, by which our theoretical predictions are tested. Section V
gives a summary and an outlook on open problems.

II. PHENOMENOLOGICAL THEORY OF FINITE-SIZE
EFFECTS ON INTERFACIAL FREE ENERGIES

A. System geometry and boundary conditions

For simplicity, in most of our discussions we shall focus
on the ferromagnetic Ising system with nearest-neighbor
interactions of strength J , i.e., described by the Hamiltonian
on a square or simple cubic lattice,

H = −J
∑
〈i,j〉

SiSj − H
∑

i

Si, Si = ±1, (1)

where 〈i,j 〉 denotes the sum over all nearest-neighbor pairs,
and H is the magnetic field, which is set to zero throughout
this work. We focus on coexisting phases, described for
temperatures T less than the critical temperature Tc by states
with positive or negative spontaneous magnetization, ±mcoex.
Motivated by the interpretation of the Ising magnet as a lattice
gas model (where Si = −1 means that the lattice site i is empty,
while Si = +1 means that the lattice site i is occupied by a
particle), we denote the (T ,H ) ensemble as “grand canonical”
(gc) and the (T ,m) ensemble as “canonical” (c). Here m is

defined as the magnetization per spin,

m = 1

LzLd−1

∑
i

Si, (2)

where we have already anticipated that we take a lattice
of linear dimension Lz in the z direction, while the linear
dimension in the other direction(s) is taken to be L. Remember
that in the lattice gas version of the model, the density
ρ = (1 + m)/2, and H is related to the chemical potential
difference relative to the chemical potential μcoex where phase
coexistence occurs, H = (μ − μcoex)/2.

Next we discuss the boundary conditions that are used to
stabilize one or two interfaces between coexisting phases in
the system. A very natural choice is the use of free surfaces
with neighboring fixed spins in the z direction: Using the
lattice spacing a as unit of length, all spins in the plane (or
row in d = 2) n = 1 are fixed at Si = +1 and the spins in the
plane n = Lz are fixed at Si = −1 [Fig. 1(a)]. Alternatively,
we may use boundary magnetic fields H1 > 0 in the plane
(row) n = 1 and HLz

= −H1 in the plane n = Lz, and spins
in the planes n = 0, Lz + 1 are missing. In the remaining
direction(s), periodic boundary conditions are used. This
choice of boundary conditions is straightforwardly generalized
to off-lattice systems which lack the special symmetry against
spin reversal of the Ising model. For example, for a Lennard-
Jones fluid (or a polymer solution where the solvent is treated
implicitly only [56]), instead of the free surfaces with fixed
spins, one uses two hard walls, where one wall is purely
repulsive, favoring the vapor (or solvent-rich phase, in the case

FIG. 1. Useful boundary conditions to study interfaces in Ising
models, using a simulation box of linear dimension(s) L parallel to
the interface(s) and Lz in the perpendicular direction. In the parallel
direction(s), periodic boundary conditions (PBC) are used in all cases.
Interfaces are schematically indicated by thick wavy lines, and the
double arrows indicate the sign of the magnetization in the coexisting
domains (m+,m−). Note that 〈m+〉 = mcoex, 〈m−〉 = −mcoex, mcoex

being the spontaneous magnetization of the Ising model in the
thermodynamic limit, while in finite simulation boxes m+, m− may
fluctuate around these average values. Case (a) assumes free surfaces
at the first (n = 1) and last (n = Lz) layer, with a fixed spin boundary
condition for all spins in the adjacent layers, Si = +1 for all spins in
the layer n = 0, Si = −1 in the layer n = Lz + 1. Case (b) indicates
the antiperiodic boundary condition (APBC) and case (c) uses also a
periodic boundary condition in the z direction.
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of the polymer solution) while the other wall has an attractive
potential. Similar choices also apply when one studies systems
containing a single solid-liquid interface [100].

It is clear that the properties of the system near these free
surfaces or walls differ from the bulk properties over some
range, and so Lz has to be chosen large enough so the effect
of an effective potential that the wall exerts on the interface
becomes negligible. The effect of this potential becomes
appreciable under conditions where the system in the ther-
modynamic limit would undergo a wetting transition, while
for Lz finite but L → ∞ interface localization-delocalization
transition can occur [101–103]. One must then make sure
to work under conditions deep inside the phase where the
interface is preferentially in the center of the system, near
z = Lz/2, and never close to the walls.

This problem can be avoided for the Ising model (and other
symmetric systems, e.g., a symmetric binary Lennard-Jones
mixture [65]) by using the antiperiodic boundary condition
(APBC), Fig. 1(b), which is equivalent to the choice that spins
in the planes n = 1 and n = Lz interact antiferromagnetically.
Then the system retains its translational invariance in the z

direction.
However, perhaps the most frequently used choice is to use

periodic boundary conditions in all directions and focus on
states of the system where both coexisting phases are present
in the system, separated by two domain walls [Fig. 1(c)].

Note that we normally use Lz larger than L (sometimes it is
advantageous to use Lz � L) but one has to be careful in not
using a too-large value of Lz: We wish to have a situation where
in the grand-canonical ensemble systems with APBC (or with
fixed spin boundary conditions) are dominated by states with
two domains separated by a single interface (as anticipated in
Fig. 1) rather than by a larger even number of domains and
hence a larger odd number of interfaces. Likewise, in the PBC
case [Fig. 1(c)] the system in the grand-canonical ensemble
will in fact be dominated by the pure phases (m+,m−)
without any interfaces, and the shown state with two interfaces
[Fig. 1(c)] occurs as a rare fluctuation, but states with four,
six, or more interfaces are comparatively negligible. In fact,
for Lz → ∞ at fixed L, the resulting quasi-one-dimensional
system splits into a sequence of infinitely many domains,
the typical distance between domain walls (which is the
correlation length of spin correlations in the z direction) is
given by [87]

ξ‖ ∝ wL exp(γ∞Ld−1), (3)

with

wL ∝
{

γ
−1/2
∞ L(3−d)/2 d < 3

γ
−1/2
∞

√
ln L d = 3

, (4)

where the length wL is the width of an interface with lateral
dimension(s) L and γ∞ is the interfacial tension in the limit
L → ∞. Here and in the following, the interfacial tension
is always normalized by the thermal energy kBT , kB being
Boltzmann’s constant, and is therefore given in units of inverse
(d − 1)-dimensional area. In Eq. (3) the results from capillary
wave broadening of the interface (see, e.g., Ref. [104–106])
have been anticipated. Strictly speaking, the prefactor in
Eq. (4) for lattice systems is not γ

−1/2
∞ but rather �−1/2, where

� is the “interfacial stiffness” [104–106], but this difference
is not of interest here. We shall discuss Eqs. (3) and (4) in
later subsections; here we only emphasize that the simulations
need to be carried out in the regime Lz 
 ξ‖ in order to ensure
that only states with one interface [Figs. 1(a) and 1(b)] or at
most two interfaces [Fig. 1(c)] are sampled. Apart from the
critical region (remember that γ∞ → 0 as T → Tc [15,17]),
the exponential variation of ξ‖ with the interfacial area Ld−1

ensures that for reasonably large L the length ξ‖ is extremely
large, and so the condition Lz 
 ξ‖ is easily fulfilled. When
one approaches the critical region, it is necessary to choose
L � ξb, ξb being the correlation length of order parameter
fluctuations in the bulk. We also observe that sampling the
order parameter distribution PL,Lz

(m) in the grand-canonical
ensemble using PBC [Fig. 1(c)] can also serve as a check
that one works in the proper regime of L and Lz (Fig. 2).
For studies of the interfacial tension, the distribution must
have two sharp peaks at m = ±mcoex and a flat (essentially
horizontal) minimum near m = 0, with PL,Lz

(m ≈ 0) many
orders of magnitude smaller than PL,Lz

(±mcoex); note the
logarithmic scale of the ordinate in Fig. 2: If the minimum
is shallow and rounded, we can conclude that L is not large
enough. If instead of a minimum we observe a broad maximum
near m = 0, we can conclude that for the chosen value of L

the perpendicular linear dimension Lz is too large, and states
with more than two domain walls contribute [107,108]. In
Fig. 2(c), where we have deliberately chosen a small value
of L (L = 6), one can recognize that already for Lz = 48,
there is a flat local maximum at ρ = 0.5, rather than a
minimum, due to the fact that the sampling is “contaminated”
by states with four (rather than only two) interfaces; for
Lz = 96 and 192, this effect is so pronounced that the method
based on the analysis of PL,Lz

(ρ = 0.5) is inapplicable. For
Lz = 384, we have multidomain states. As will be discussed
below, the actual dependence of PL,Lz

(m ≈ 0) on L and Lz

contains the desired information on the interfacial tension
[18,39,46,47,50,52–55,57–60,63,65], but only if states with
more than two domains make negligible contributions.

B. Translational entropy of the whole interface

When we consider an Ising chain at low temperatures, the
correlation length is very large, ξ ≈ exp(2J/kBT )/2 [109],
and the associated free energy per spin is F ≈ −J −
kBT exp(−2J/kBT ). The state of the system can be character-
ized by a sequence of large domains of parallel spins, with an
average size [110] 2ξ , separated by “interfaces” where the spin
orientation changes. Thus, the system can be viewed as a dilute
gas of randomly distributed interfaces. The cost of energy to
create such an interface is 2J , and the gain in (translational)
entropy is kB exp(−2J/kBT ).

As is well known, and can be shown explicitly by
transfer matrix methods [84], this picture carries over to
two-dimensional Ising strips of width L (with PBC in the
direction across the strip), where one finds

ξ‖ ∝ L1/2 exp
(
Lγ (d=2)

∞
)

(5)

with γ
(d=2)
∞ being the exactly known [111] interface tension

of the two-dimensional Ising model, normalized by kBT (and,
hence, having the dimension of inverse length, the unit of
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FIG. 2. (Color online) Density distribution PL,Lz
(ρ) plotted vs

ρ for the two-dimensional Ising (lattice gas) model at temperature
kBT/J = 2.0 for the case (a) L = 20 and varying Lz, Lz =
30,40,50,60,70,80,90 and 100 (from bottom to top at ρ = 0.5), for
the case (b) Lz = 120, and varying L, L = 10,20,30,40,50,60,70,80,
and 90 (from top to bottom at ρ = 0.5), and for the case (c)
L = 6 and increasing Lz, Lz = 24,48,96,192,384 (from bottom
to top at ρ = 0.5), illustrating the change from the double-peak
distribution for rather small Lz (Lz = 24) to a three-peak distri-
bution (e.g., Lz = 96,192) to a distribution with a single central
peak (Lz = 384).

length being the lattice spacing a)

γ (d=2)
∞ = 2J

kBT
− ln

[
1 + exp(−2J/kBT )

1 − exp(−2J/kBT )

]
. (6)

Equation (5) coincides with the field-theoretic result Eq. (3) in
the case of d = 2, as it should be. While the free-energy cost
of an interface in the Ising chain is 2J , in the Ising strip it is

F eff
int = kBT γ (d=2)

∞ L + kBT

2
ln

(
L

const

)
. (7)

The logarithmic correction in this expression was interpreted
by Fisher [112] as a result of an effective repulsive interaction
between interfaces due to their capillary wave excitations.

If we again view the Ising strip at low temperatures as a
dilute gas of domain walls separating large domains of opposite
order parameter, it is natural to ask what the free-energy
difference �F between a system with one domain wall on
a length Lz and a system in a monodomain configuration on
the same length scale is. Taking the entropy gain of putting
the interface anywhere on this scale Lz into account, we
conclude [113,114]

�F = Fint − kBT ln

(
Lz

lint

)
, Fint = kBT γ (d=2)

∞ L, (8)

where we have normalized Lz with some intrinsic length lint of
the system, such that the ratio Lz/lint “counts” the number
of distinct configurations containing one (coarse-grained)
interface on the scale Lz. In the one-dimensional Ising chain,
where no internal degrees of freedom are associated with
the “kink” separating a domain of up-spins from a domain
of down-spins, and the kink can appear between any two
neighboring lattice sites, the length lint simply is the lattice
spacing a(= 1). However, all the configurational degrees of
freedom associated with an interface in higher dimensions
are already included in Fint, and must not be included again
in the translational entropy term in Eq. (8), to avoid double
counting; thus we expect that lint will be much larger than the
lattice spacing, and a plausible assumption is to identify lint

with the interfacial width wL, as written in Eqs. (3) and (4),
see also Fig. 3. From Eq. (8) we conclude that �F = 0 for
Lz = Lz,0, with

Lz,0 = lint exp(Fint/kBT ) = lint exp
(
γ (d=2)

∞ L
)

= exp
(
F eff

int

/
kBT

)
. (9)

Therefore, with the interpretation used in Fig. 3(a) that we can
work with noninteracting interfaces where an interface needs
a space of extent lint = wL in the z direction, Eq. (3) can be in-
terpreted via Eq. (8) as resulting from the translational entropy
of the interface. We also note that Eq. (8) is readily generalized
to arbitrary dimension by stating that the translational entropy
gain of an interface in a Ld−1×Lz geometry causes a correction
term to the interfacial tension γ (γ = �F/Ld−1), namely

�γ = − 1

Ld−1
ln

(
Lz

wL

)
. (10)

Recall that in the classical limit of quantum systems the
length used for counting the states for the translational
entropy is the thermal de Broglie wavelength. Here, we deal
with purely classical statistical mechanics, hence the use
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(a)

(b)

(c)

FIG. 3. (Color online) (a) Coarse-grained view of a single inter-
face on a length scale Lz, to illustrate the counting of configurations
to estimate its translational entropy. The scale Lz is partitioned into
cells of width wL. Coarse-graining in the x direction over a length lx
of order ξ (not shown), to eliminate overhangs, bubbles, etc., present
in the original microscopic configurations [see parts (b), (c)], one
obtains a smooth interface with intrinsic width w0 comparable to lx .
This coarse-grained interface shows undulations on all length scales
from lx to L (capillary waves) and thereby exhibits a width wL > w0.
[(b) and (c)] show two snapshots resulting from a simulation with
L = 60, Lz = 120, kBT/J = 2.0, APBC in the z direction, and using
the grand-canonical ensemble. The interface position “explores” the
entire length Lz of the system. Up-spins are shown as black dots, and
down-spins are not shown.

of another physical length of the system, such as wL, is
more appealing. In d = 2, the exact transfer matrix results
show that in geometries such as Fig. 1(a) and 1(b), for
large Lz and large L the interfacial tension can be written
as γ = γ∞ + �γ = γ∞ − L−1 ln(Lz/wL), which implies that
capillary wave effects are already fully accounted for through
wL in Eq. (10).

C. Capillary wave effects continued

For the sake of completeness, we briefly recall what is
known on the finite-size effects on the interfacial tension due
to capillary waves [85,90–93]. Ignoring the intrinsic interfacial
structure, the interface is described by a function z = h(x) in
d = 2 or z = h(x,y) in d = 3, respectively, that characterizes
the dividing surface between the phases with opposite order
parameter. Since overhangs are forbidden, a coarse-graining as
implied in Fig. 3(a) is anticipated. If one assumes additionally
that |dh(x)/dx| and |∇h(x,y)| are very small, the Hamiltonian
describing the capillary wave fluctuations is as follows
[104–106] (again in units of the thermal energy kBT and
ignoring the distinction between interfacial tension γ∞ and
interfacial stiffness [104–106]):

Hcw = γ∞
2

∫
dx

∣∣∣∣dh

dx

∣∣∣∣2

(d = 2), (11a)

Hcw = γ∞
2

∫
dx

∫
dy|∇h(x,y)|2 (d = 3), (11b)

respectively. Note that here the total interface tension γ∞ (that
results in the thermodynamic limit) is taken [91,92] rather than
some renormalized quantity. Introducing Fourier transforms
hq of these height variables h(x) or h(x,y), one finds

Hcw = γ∞
2

1

(2π )d−1

∫
dd−1q q2|hq |2 (12)

and the resulting contribution to the free energy can be written
in terms of path integrals

�F = −kBT ln
∫

Dhq

∫
Dh∗

q

× exp

(
−γ∞

2

1

(2π )d−1

∫
dd−1q q2|hq |2

)
. (13)

We now take into account that in a finite geometry with PBC
in x (or x and y, respectively) directions reciprocal space is
discrete, and hence Eq. (13) becomes (in d = 2)

�Fcw = −kBT ln
∏
ν

∫ +∞

−∞
dhν

∫ +∞

−∞
dh∗

ν

× exp

(−γ∞
2

q2
ν h

∗
νhν

)
= −kBT ln

∏
ν

(
2π

γ∞q2
ν

)
, (14)

where qν = ±νπa/L, ν = 1, . . . ,N = L/a. Of course, the
term ν = 0 (corresponding to a uniform translation of the
interface) needs to be omitted here. One can show that for
large L the resulting finite-size behavior is (�γcw = �Fcw/L)

�γcw = A + B

L
ln

(
L

a

)
+ C

L
, (15)

where the regular terms in 1/L, namely A and C/L, are dom-
inated by the large q behavior, while the singular logarithmic
term is due to small wave numbers and its prefactor B = 1/2
agrees with transfer matrix results quoted in Eq. (7). Since
the capillary wave description is no longer reliable at large q,
however, no conclusion on the value of the leading term (A)
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and the coefficient C of the regular finite correction (C/L) can
be made. The situation is worse in d = 3, however, where in an
analogous calculation no singular term due to long -wavelength
capillary waves can be identified. Capillary wave corrections
are then expected to have the form, to leading order,

�γcw = const

Ld−1
, (16)

but the constant is not expected to be universal outside of
the region of bulk criticality. We are not concerned here
with the finite-size behavior of the interfacial tension near
the critical point of the bulk, which has been extensively
studied by Caselle et al. [62]. A detailed analysis of capillary
wave predictions near the bulk critical point of the Ising
model is also found in Ref. [51]. Caselle et al. [62] use the
grand-canonical ensemble to study the geometry of Fig. 1(b)
via a combination of the “boundary flip algorithm” [115,116]
and thermodynamic integration to obtain estimates for the
interfacial tension.

Furthermore, we recall that from the equipartition theorem
one can conclude from Eq. (12) that [104–106]

〈|hq |2〉 = (γ∞q2)−1 (17)

and, hence, Eq. (3) readily follows, since (in d = 2) [117]

w2
L = 〈h2(x)〉 − 〈h(x)〉2 ∝ a

γ∞

∫ 2π/a

2π/L

dq

q2
∝ aL

γ∞
, (18)

while in d = 3 one finds

w2
L ∝ a2

γ∞

∫ 2π/a

2π/L

dq

q
∝ a2

γ∞
ln

(
L

a

)
. (19)

D. Domain breathing

We first consider a situation with APBC, so we have a single
interface but with conserved magnetization m = 0. Then, on
average, we have two equally large domains, each with linear
dimensions Lz/2 in z direction, of opposite magnetization.
However, the magnetization densities m+, m− in both domains
still can fluctuate and also the position of the interface is not
fixed but can fluctuate somewhat as well. We denote this shift of
the interface due to a fluctuation by �, and note the constraint
that the total magnetization in the system is strictly fixed at
m = 0, to find

0 = mLd−1Lz

= m+Ld−1

(
Lz

2
− �

)
+ m−Ld−1

(
Lz

2
+ �

)
(20)

and hence

� = Lz

2

(
m+ + m−
m+ − m−

)
≈ δm+ + δm−

2mcoex

Lz

2
, (21)

where we used that the fluctuations δm+ = m+ − mcoex

and δm− = m− + mcoex are very small. From general sta-
tistical thermodynamics we know that these fluctuations
of the magnetization density in the bulk obey Gaussian

distributions [113],

PL,Lz/2(δm) ∝ exp

[
−1

2

(δm)2LzL
d−1

2kBT χcoex

]
, (22)

where χcoex is the susceptibility at the coexistence curve. Equa-
tion (22) is true both for δm+ and δm−, and these fluctuations
in the two subvolumes of the system can occur independently
of each other, so 〈δm+δm−〉 = 0, while 〈δm2

+〉 = 〈δm2
−〉 =

kBT χcoex/(Ld−1Lz/2). Hence we conclude from Eq. (21) that

〈�2〉 = L2
z

16m2
coex

[〈δm2
+〉 + 〈δm2

−〉]

= kBT χcoex

4m2
coex

Lz

Ld−1
. (23)

Thus, the typical length over which the interface position
fluctuates is √

〈�2〉 = L1/2
z L−(d−1)/2

√
kBT χcoex

2mcoex
. (24)

From this motion of the interface over a width
√

〈�2〉,
which we call “domain breathing,” we again get an entropy
contribution, resulting in a correction of the interfacial tension

�γdb = − 1

Ld−1
ln

(√
〈�2〉
wL

)
= −1

2

ln Lz

Ld−1
+ d − 1

2

ln L

Ld−1
+ 3 − d

2

ln L

Ld−1
+ const

Ld−1
.

(25)

To simplify the notation, we assume here (and in the following)
that the lengths L,Lz are measured in some natural units
(e.g., the lattice spacing a, in case of the Ising model) and
hence dimensionless. Note that there is some ambiguity of
interpretation possible. In our previous publication [99], the
length to normalize

√
〈�2〉 was taken as the lattice spacing a,

and then the capillary wave contribution (3 − d) ln L/(2Ld−1)
must be added as an explicit further correction. However,
when we use wL [as computed in Eq. (4) or (18) and (19),
respectively] rather than a to normalize

√
〈�2〉, then the

capillary wave effects are already fully taken care of. Figure 4
illustrates the occurrence of this “domain breathing” effect by
configuration snapshots.

A special situation occurs in the case of the canonical
ensemble for PBC. This is a very common situation, since then
no symmetry between the coexisting phases is required, and the
system exhibits translational invariance, the domains separated
by the two walls can be translated along the z axis as a whole.
For this degree of freedom, a correction − ln Lz/L

d−1 to the
interfacial tension arises. In addition, the distance between the
domain walls can fluctuate, according to the domain breathing
effect, as described above, yielding an additional entropic
term − 1

2 ln Lz/L
d−1. Since there are two interfaces present

in the system, the total correction −(3/2) ln Lz/L
d−1 yields a

correction of −(3/4) ln Lz/L
d−1 per interface.

We also note that it is not necessary to fix the magnetization
exactly at m = 0 [or, in the case of a fluid that possibly lacks
any symmetry between the coexisting liquid (l) and the vapor
(v) phases, at a density ρ = (ρl + ρv)/2]. Rather it suffices
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FIG. 4. (Color online) Four snapshots of two-dimensional Ising
systems at fixed magnetization m = 0 to visualize domain breathing.
Spontaneous fluctuations of the magnetization densities inside the two
on-average equal-sized domains (Lx = Lz/2 = 60) have an effect
on the location of the interface, when the total magnetization is
conserved. In the shown example the typical length

√
〈�〉2 over which

the interface position fluctuates is comparable to the lattice spacing,
and the shift of the interface is barely visible in these snapshots.
However, one can see rather large fluctuations in the bulk phases,
which are the reason for domain breathing. All snapshots are for
kBT/J = 2.0. APBC in the z direction (horizontal) and PBC in the
x direction (vertical) are used.

to choose a state point where in the simulation box we have
a clear slab configuration of phase coexistence. Also, in a
system lacking symmetries between the coexisting phases, the
distributions around m+, m− are characterized by different
“susceptibilities” χ+

coex, χ−
coex, but for the exponents of Lz and

L in Eq. (24) this does not matter.

TABLE I. The universal constants x⊥ and x‖ in Eq. (26) do not
depend on details of the model such as particle interactions, but
rather they depend on the dimensionality d , the boundary conditions
(periodic or antiperiodic), and the ensemble (canonical or grand
canonical).

d BC Ensemble x⊥ x‖

2 Antiperiodic Grand canonical 1 1/2
3 Antiperiodic Grand canonical 1 0
2 Antiperiodic Canonical 1/2 1
3 Antiperiodic Canonical 1/2 1
2 Periodic Canonical 3/4 3/4
3 Periodic Canonical 3/4 1/2

At this point, let us summarize the various logarithmic
corrections found for the different choices of boundary
conditions and ensembles: For the APBC(gc) case, we have a
single interface that can freely translate [Fig. 3, Eq. (10)]. This
yielded

�γL,Lz
= − ln Lz

Ld−1
+ 3 − d

2

ln L

Ld−1
+ const

Ld−1
.

Due to the lack of conservation laws, there is no coupling of
the bulk domain fluctuations and interfacial fluctuations via
the domain breathing effect in this case, unlike the APBC(c)
case, for which Eq. (25) implies

�γL,Lz
= −1

2

ln Lz

Ld−1
+ ln L

Ld−1
+ const

Ld−1
.

In the PBC(c), we have two interfaces, and we have both the
above translational entropy contribution (when we translate
the domains as a whole) and the domain breathing effect
(considering the relative motion of the two domain walls
against each other), and normalized per single interface this
yields

�γL,Lz
= −3

4

ln Lz

Ld−1
+ 5 − d

4

ln L

Ld−1
+ const

Ld−1
.

Note that by normalizing domain wall motions consistently by
wL rather than by a, capillary wave effects are automatically
included.

Taking all logarithmic finite-size corrections (due to trans-
lational entropy, domain breathing, and capillary waves)
together, it makes sense to write the result for the interfacial
tension in the following general form:

γL,Lz
= γ∞ − x⊥

ln Lz

Ld−1
+ x‖

ln L

Ld−1
+ C

Ld−1
(26)

with some constant C and two universal exponents x⊥, x‖
that depend on dimensionality d, type of boundary conditions
(PBC, APBC), and statistical ensemble (grand canonical
versus canonical). We present these constants x⊥, x‖ in Table I.

III. MODELS AND SIMULATION METHODS

As stated already in Sec. II, the main emphasis of this study
is on the Ising model [Eq. (1)], since (i) there is no source
of inaccuracy due to insufficient knowledge of the conditions
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for which phase coexistence in the bulk occurs, symmetry
requires phase coexistence to occur for H = 0 and (ii) in the
case d = 2 the surface tension is known exactly, Eq. (6), and
so the concepts described in Sec. II, in particular Eq. (26), can
be very stringently tested. In d = 2, we have typically used
L = 10,20,30 and 40, varying Lz from Lz = 20 to Lz = 200
in order to test the Lz dependence at fixed L [Eq. (10)]. In
addition, at fixed Lz = 60 and 120 runs were made varying
L from L = 10 to L = Lz to test the L dependence in
Eq. (25). In d = 3, we have used L = 6,8,10,12, and 14
and varying Lz from Lz = 20 to Lz = 100 for the test of
Eq. (10), as well as using Lz = 20,40, and 80 varying L

from L = 10 to L = 40 for the test of Eq. (25). Using the
grand-canonical ensemble, all runs were performed simply
using the standard single-spin flip Metropolis algorithm [82].
Since the simulations are performed far below the critical
point (kBT/J = 1.2,1.6, and 2.0 in d = 2; kBT/J = 3 in
d = 3), the use of cluster algorithms [82] would not provide
any advantage. The canonical ensemble is realized via a
spin-exchange algorithm; choosing two spins at random from
the whole simulation box, rather than choosing a pair of spins
which are nearest neighbors, as in the standard spin-exchange
algorithm [82], we avoid slow relaxation of long-wavelength
magnetization fluctuations.

Special techniques are required when one wishes to sample
the probability distribution PL,Lz

(ρ), Fig. 2, since it varies
over many orders of magnitude. Straightforward use of the
Metropolis algorithm (as originally attempted [39]) would
not give any useful data for our purposes. While previous
work [46,47,50] relied on the multicanonical Monte Carlo
method, we found it here more convenient to use successive
umbrella sampling [118] which is more straightforward to
implement. We recall that from PL,Lz

(ρ) one can extract an
estimate for the interfacial tension γL,Lz

as follows [39];

γL,Lz
= 1

2Ld−1
ln

[
PL,Lz

(ρcoex)

PL,Lz
(ρmin)

]
. (27)

Here we use a notation which applies both to the lattice
gas [where the density ρmin where the minimum of PL,Lz

(ρ)
occurs corresponds to a magnetization m = 0 in the magnetic
interpretation of the Ising model] and to fluids which may
lack particular symmetries [then the minimum occurs for the
density of the “rectilinear diameter,” ρmin = ρd = (ρv + ρl)/2,
ρv and ρl being the densities of the coexisting vapor and liquid
phases]. The physical interpretation of Eq. (27) simply is that
the probability to observe a state at ρmin, in comparison to the
probability to observe one of the pure phases at coexistence
(ρv or ρl , respectively), is down by a factor exp(−2Ld−1γL,Lz

),
due to the fact that we must have two interfaces of area
Ld−1 [Fig. 1(c)]. Note that although PL,Lz

(ρ) is generated by
carrying out a sampling (multicanonical or umbrella sampling)
in the grand-canonical ensemble (at magnetic field H = 0
or chemical potential μ = μcoex, respectively), by taking out
the probability strictly at ρ = ρmin, the extracted interfacial
tension γL,Lz

in Eq. (27) corresponds to observations sampled
in a canonical ensemble.

As a second model, representative for off-lattice fluids, we
study the Lennard-Jones model in d = 3 dimensions, where
point particles interact with a potential ULJ(r), r being the

FIG. 5. Schematic explanation of the “ensemble switch method”
to find the interfacial free energy. A system is constructed as a linear
combination of two Hamiltonians, H(κ) = κH1 + (1 − κ)H0, where
H1 is the desired system of interest (containing two interfaces in the
case shown here) and H0 consists of two separate systems of half
the linear dimension Lz/2 each, and periodic boundary conditions.
The mixing parameter κ is in the interval 0 � κ � 1, and the free-
energy difference between the states with H(κ = 0) and H(κ = 1)
yields twice the interfacial free energy. If the state κ = 1 is a state
with an APBC, one can obtain the free energy associated with a single
interface analogously.

distance between the particles,

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6

+ Y

]
, r < rc, (28)

while ULJ(r > rc) ≡ 0. Here ε is the strength and σ the range
of this potential, and the constant Y is chosen such that ULJ(r)
is continuous at the cutoff rc = 21/62σ . For this model, we
choose units such that ε = 1 and σ = 1. A single temperature
T = 0.78Tc is used, for which γ∞ = 0.375(1) was already
estimated in previous work [119] using Eq. (27).

In order to be able to study also other choices of boundary
conditions, as shown in Figs. 1(a) and 1(b), we have developed
a new variant of the ensemble switch method [94–96]. In this
previous work [94–96], a “mixed” system was created from a
system confined between two parallel walls and a system with
no walls to extract the excess free energy due to the walls. In
the present work, we extend this method by creating a mixed
system from two systems at coexistence without interfaces and
a system formed from these separate systems but now having
interfaces (Fig. 5). The two separate systems each have linear
dimension Lz/2 in z direction and are chosen such that one of
them is in the state corresponding to +mcoex and the other in
the state corresponding to −mcoex. Both systems have periodic
boundary conditions individually, and hence for this state
(denoted as κ = 0) there are no interfaces present. The system
denoted as κ = 1 has exactly the same degrees of freedom as
the system denoted as κ = 0, namely the N = Ld−1Lz Ising
spins which may take values Si = ±1, and we work at the same
thermodynamic conditions (e.g., total magnetization fixed at
m = 0 in the canonical ensemble and the same temperature
T ). The systems denoted as κ = 0 and κ = 1 differ only with
respect to their boundary conditions: In both halves of the
system κ = 0 we have PBC over a distance Lz/2 already,
while in the system κ = 1 the two halves are joined, and a
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single PBC over the distance Lz remains (in the z direction).
So the difference in free energies between both systems is
related to the interface tension,

γL,Lz
= F (κ = 1) − F (κ = 0)

2Ld−1kBT
. (29)

In order to find this free-energy difference, it is useful to define
a mixed system by

H(κ) = κH1 + (1 − κ)H0 0 � κ � 1, (30)

which is a perfectly permissible Hamiltonian for a Monte Carlo
simulation (although clearly such a system can never be created
by an experimentalist in his laboratory).

The free energy F (κ) of the mixed system is defined by the
standard relation from the Hamiltonian,

F (κ) = −kBT ln(Tr{exp[−H(κ)/kBT ]}), (31)

but it is clear that for large L the normalized free-energy
difference [F (κ = 1) − F (κ = 0)]/kBT can be huge, since
we expect γL,Lz

to be of order unity. Such large free-energy
differences can be computed with sufficient accuracy by
thermodynamic integration. In practice, the interval 0 � κ � 1
is divided into nκ subintervals, separated by discrete values
κi . In this work, we use nκ = 1024. Then the free-energy
difference �Fi = F (κi+1) − F (κi) is obtained from a paral-
lelized version of successive umbrella sampling, considering
Monte Carlo moves κi → κi+1 or vice versa, in addition
to the sampling of the spin configuration. On each core,
the system can switch between two adjacent values κi ,
κi+1 only, so one needs to use nκ cores. The desired free-
energy difference �Fi is simply determined by estimating
the probabilities that the states with κi or κi+1 are observed,
�Fi = kBT ln[P (κi)/P (κi+1)].

An important technical aspect is that the set of points {κi}
need not be chosen equidistantly in the interval from zero
to unity, but the location of these points can be chosen in
a way which optimizes the accuracy of the thermodynamic
integration. For the Ising model we have found it useful to
choose κi = sin2 (πi/(2nκ )). Note that this function yields
more points κi near κ = 0 and κ = 1, and this clearly is useful
since the states for intermediate values of κ only are needed
for the thermodynamic integration but have no direct physical
significance.

A typical example of the free-energy function �F (κ)
is given in Fig. 6, comparing for the d = 2 and 3 Ising
model three cases, namely APBC in the canonical and grand-
canonical ensemble, as well as the PBC case (canonical
ensembles). One sees that, in general, the variation with κ

is slightly nonmonotonic. However, since the height of this
maximum of �F (κ) exceeds the final result [�F (κ = 1)] only
by at most a few kBT (which is the unit of the ordinate scale),
we do not think that entropic barriers for intermediate values
of κ provide a problem here. Of course, this aspect needs to
be carefully checked for other models.

We have verified for the Ising model that this method, with
the choice of PBC as indicated in Fig. 5 yields results that are
completely equivalent to the standard method of Eq. (27), as
expected. But the advantage of the ensemble switch method
(Fig. 5) is that it is not restricted to simple Ising systems but
can be applied to cases such as liquid-solid interfaces, for
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FIG. 6. (Color online) Free-energy difference �F (κ) versus κ ,
as obtained from the ensemble switch method for L×Lz Ising
systems. (a) Data for d = 2 and L = 40; (b) data for d = 3 and
L = 14. Different choices of boundary conditions (PBC, APBC) and
ensembles [grand-canonical (gc) and canonical (c)] are compared
for several Lz. The order of the curves at κ = 1 from top to bottom
is as indicated, the bottom three curves being for APBC(gc), the
middle three curves for PBC(c), and the top curves for APBC(c),
with increasing Lz from top to bottom. Note that only a small section
of the whole variation of κ and of �F (κ) is shown to display the
finite-size effects on �F (κ) clearly.

which an approach such as Eq. (27) is difficult to apply: In
fact one cannot easily construct convenient reversible paths
connecting the two pure phases (liquid and crystal in this case)
in a simulation of a single system, where just the volume
fraction of the crystal is continuously increased, unlike the
case of the Ising model, where, starting at m = −mcoex, the
volume fraction of the state with m = +mcoex is gradually
increased and, hence, PL,Lz

(m) is sampled (Fig. 2). At this
point, we mention that also in the Ising model entropic
barriers associated with the droplet evaporation-condensation
transition and the transition from circular droplets (in d = 2)
to slabs, in principle, are also a problem when one aims at
very high accuracy [120], but for the data in the present paper
this problem was not yet important; nevertheless it is useful
to have an alternative method. Moreover, the ensemble switch
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method can also straightforwardly be applied when we use
APBC in the z direction: Then the state with κ = 1 has a single
interface rather than two interfaces. In the APBC case, both
canonical and grand-canonical ensembles can be implemented.
Of course, the limiting behavior for L → ∞ and Lz → ∞
always must yield the same interfacial tensions, but since the
nature of the finite-size corrections differ, it is useful to carry
out simulations in different ensembles and or different choices
of boundary conditions and verify that in practice one indeed
converges to the same result. This will be the strategy that we
will follow in the next section.

For the computations presented in this paper, the total
computing effort was of the order of 40 million single core
hours of the Interlagos Opteron 6272 processor at the high-
performance computer Mogon of the University of Mainz.

We emphasize that additional methods to estimate interfa-
cial tensions from simulations, of course, exist. For example,
for off-lattice fluids a popular approach is based on the
anisotropy of the pressure tensor pαβ(z) (α,β = x,y,z) across
an interface [16,41],

γL,Lz
= 1

2

∫ Lz/2

−Lz/2
dz

[
pzz(z) − pxx(z) + pyy(z)

2

]
, (32)

where we have assumed a system with linear dimension Lz

and PBC in all directions, so two interfaces contribute. Such
simulations normally are done in the canonical ensemble, and
we expect that the finite-size effects are of the same character as
for the method based on Eq. (27). For temperatures close to the
critical temperature, Eq. (32) is computationally inconvenient,
since the integrand is very small, and very accurate sampling is
required. We expect that Eq. (32) has an advantage at rather low
temperatures, where the grand-canonical sampling of PL,Lz

(ρ)
becomes less efficient. Note, however, that for computing the
pressure tensor pαβ(z) from the virial theorem one should
avoid the sharp cutoff of the potential, as done in Eq. (28),
and apply a smoothened cutoff to avoid jumps of the force
at r = rc.

A difficult issue are finite-size effects associated with the
use of Eq. (4) or Eq. (17), respectively: One observes the
dependence either of 〈|hq |2〉 on q2 [Eq. (17)] or of w2

L on ln L

[Eq. (4)] and estimates γ∞ from fitting the prefactor. Finite-size
effects make the set of possible wave numbers q discrete, of
course: In addition, one must note that Eq. (17) is believed
to hold in the long-wavelength limit only, while at shorter
wavelengths (corresponding to large q) systematic deviations
are expected (sometimes a wave-vector-dependent interfacial
tension γ (q) is discussed [26,38]). However, this problem is
out of focus here.

IV. NUMERICAL RESULTS FOR FINITE-SIZE EFFECTS
ON INTERFACIAL TENSIONS

A. Two-dimensional Ising model

As a starting point of the discussion, we use data for L×L

systems with PBC obtained with the help of Eq. (27), including
both the previous results by Berg et al. [46] and results taken by
us including also additional choices for L, and compare them to
the results from the ensemble switch method for the PBC case.
The traditional use of such data is to plot the estimates for γL
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FIG. 7. (Color online) Estimates for the interfacial tension γL,L

of the d = 2 Ising model at kBT/J = 2.0 plotted vs 1/L. Two sets of
data from the probability distribution method are included (one from
Ref. [46], one from the present work), which agree within statistical
errors with each other (the statistical error is smaller than the size of
the symbols throughout). The third set of data is due to the ensemble
switch method and has in this case slightly larger finite-size effects
than the method based on Eq. (27).

linearly versus 1/L and try an extrapolation towards 1/L → 0
(Fig. 7). Indeed, such an extrapolation seems to be compatible
with the exact result (from Eq. (6) [113]), highlighted by a
horizontal straight line, but one can also clearly recognize the
problems of the approach: (i) even for relatively large L, such
as L = 50, the relative deviation is still of the order of 10%.
(ii) Over the whole range of 1/L, there is a distinct curvature
of the data visible, indicating that it is unclear whether the
asymptotic regime of the extrapolation has actually been
reached. In cases of real interest, of course, the exact answer
is not known beforehand, and it is also very difficult (and
may need orders of magnitude more computational resources)
to obtain data of the same statistical quality as shown
in Fig. 7.

In order to identify the sources of the various finite-size
effects in the problem, it is useful to vary Lz at fixed L:
Executing this with the ensemble switch method for the three
different choices, APBC(gc), APBC(c), and PBC(c), we see
from Eq. (26) that we must get a result of the form

γL,Lz
= const −x⊥

ln Lz

L
, (33)

where all the terms depending on L only (and γ∞) have been
combined in the constant on the right-hand side of this equa-
tion, and the prefactor x⊥ of the (1/L) ln Lz term is 1/2, 3/4
or 1, for the three choices APBC(c), PBC(c), and APBC(gc),
respectively (cf. Table I). Figure 8(a) verifies this behavior,
focusing on two examples, namely kBT/J = 1.2, L = 10 and
kBT/J = 1.6, L = 10,20, and 30. The straight lines have
precisely these theoretical values for x⊥ and fit the simulated
data rather perfectly. We recall that in the case APBC(gc)
where we have a single mobile interface, we test the simple
translational entropy of the interface x⊥ = 1, while in the case
APBC(c) we just test the “domain breathing” contribution to
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FIG. 8. (Color online) (a) Interfacial tension γL,Lz
for the d = 2

Ising model plotted at fixed L versus L−1 ln(Lz) for the cases
APBC(c), PBC(c), and APBC(gc). The upper set of data refers to
kBT/J = 1.2, L = 10, the lower set of data refers to kBT/J = 1.6,
L = 10,20, and 30, as indicated. The straight lines shown have the
theoretical slopes x⊥ = 1/2, 3/4, and 1, respectively. (b) Same as
(a), but showing only the PBC(c) case for the three temperatures
kBT/J = 1.2, 1.6, and 2.0, respectively. Always three choices of L

are shown, namely L = 10,20, and 40 (from top to bottom). The
straight lines illustrate the theoretical slope x⊥ = 3/4 throughout.

the interface (x⊥ = 1/2). In the PBC(c) case, two interfaces are
present, and both these mechanisms contribute once, yielding
x⊥ = (1 + 1/2)/2 = 3/4 per interface. Figure 8(b) verifies
that the latter exponent indeed is found at all temperatures
and all L.

Of course, varying Lz at fixed finite L does not yield the
desired information on γ∞; thus both L and Lz need to be
varied and the limit that both L and Lz tend to infinity needs
to be considered. As a first step to also test that the quoted
results for x‖ (Table I) are compatible with the simulation
results as well, we have fitted γL,Lz

to Eq. (26), using the
theoretical values for x‖, x⊥, and γ∞ so a single fit parameter
remains, namely the coefficient C of the C/L term in Eq. (26).
Figure 9(a) shows that indeed an excellent fit of the data results,
giving further credence to our assertion that the finite-size
effects are under control. However, in the general case γ∞ is

not known in beforehand, of course, but rather should be an
output of the computation. Then a very natural strategy is to
subtract the theoretical contributions [x‖ ln(L) − x⊥ ln(Lz)]/L
from γL,Lz

, so Eq. (26) reduces to (in d = 2)

γ̃ ≡ γL,Lz
+ x⊥ ln Lz − x‖ ln L

L
= γ∞ + C

L
(34)

and estimate both constants γ∞ and C from a fit of Eq. (34)
to the data. The results of this procedure are shown in Fig. 9.
It is seen that the theoretical values γ∞(T = 1.2) = 1.284,
γ∞(T = 1.6) = 0.660, and γ∞(T = 2.0) = 0.228 are almost
perfectly reproduced. We also note that the constant C, which
is expected to depend on both temperature and boundary
conditions and the type of ensemble, since not the same
fluctuations are probed, takes in each case roughly the same
value for both choices of Lz: In the asymptotic limit, this
parameter C should no longer depend on Lz at all, and the
fact that this is not strictly true indicates that presumably
there is some residual effect of higher-order corrections that
were neglected in our analysis. When we try to improve the
estimation of this parameter C by imposing the theoretical
value of γ∞ in the analysis, the differences between the
two estimates for C obtained are still slightly affected by
statistical errors. Nevertheless, we judge the quality of the
straight-line fits in Figs. 9, as rather gratifying. In particular,
the coincidence of the estimates for γ∞ for the six cases shown
at every temperature shows that the possibility of the ensemble
switch method to apply it for different boundary conditions
(and/or ensemble) is most valuable for ensuring that the desired
accuracy really has been reached.

From the fits in Figs. 9(b), 9(c), and 9(d), we see that
the constant C is of order unity but temperature dependent,
and it is of interest, of course, to ask where this temperature
dependence comes from. The easiest case to discuss is the case
of APBC(gc), where we have argued that the singular size
effects solely reflect the translational entropy contribution,
Eq. (10). The capillary wave effects are already included if
for the “counting” of states where the interface can be placed
[Fig. 3(a)], the length Lz is measured in units of wL. Of course,
an additional regular contribution c/L with some coefficient
c can also occur; this is already seen from Eqs. (3) and (4),
which in d = 2 can be written as ξ‖ = AwL exp(γ∞L), where
A is another constant, and putting [in the spirit of Eq. (9)]
ξ‖ = Lz,0, where γL,Lz

= γ∞ − 1
L

ln(Lz/wL) + c/L vanishes,
we conclude c = ln A. However, another contribution to
this regular term comes from the prefactor in the relation
wL ∝ L1/2 in Eq. (4). In the d = 2 Ising model it is known
exactly [104–106] that w2

L/L = (2 sinh(γ∞))−1 ≡ l0 (recall
that lengths are measured in units of the lattice spacing a).
Using Eq. (6) to evaluate this term for the three temperatures
kBT/J = 1.2,1.6, and 2.0 considered in Fig. 9, we find that the
remaining constant c, as defined above, is almost temperature
independent (namely 1.94, 1.98, and 1.99, respectively, for
the three mentioned temperatures). So the increase of the
parameter C with temperature in Fig. 9 simply reflects the
increase of the length l0 (which also is measured in units of
the lattice spacing and hence dimensionless) with temperature,
since C = (ln(l0) + c)/2.
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FIG. 9. (Color online) (a) Interfacial tension γL,Lz
plotted vs L for the d = 2 Ising model at kBT/J = 1.2 for two choices of Lz, Lz = 60

and Lz = 120; the horizontal straight line shows the known value of γ∞ [Eq. (6)] [111], while the curves are fits of Eq. (26) to the data (symbols)
for the cases APBC(c), top set of curves; PBC(c), middle set of curves; APBC(gc), bottom set of curves. In each set Lz increases from top
to bottom. The theoretical values x⊥, x‖ from Table I were used in the fit. (b) Reduced interfacial tension γ̃ [Eq. (34)] plotted vs 1/L, for
kBT/J = 1.2, and three choices of boundary conditions and/or ensembles, as indicated [PBC(c), APBC(c), and APBC(gc)]. In each case two
choices of Lz are included, Lz = 60 and Lz = 120. Symbols represent the simulation results, and straight lines show the fits γ̃ = γ∞ + C/L;
the fitted values γ∞, C are quoted in the figure. The horizontal straight line shows the known exact result, γ∞ = 1.284 [from Eq. (6)] [111].
(c) Same as (b) but for kBT/J = 1.6. Here the exact result is γ∞ = 0.660 [111]. (d) Same as (b) but for kBT/J = 2.0. Here the exact result is
γ∞ = 0.228 [111].

B. Three-dimensional Ising model

Since the computational effort in d = 3 is substantially
larger, we restrict attention here to a thorough study of a single
temperature only, kBT/J = 3.0, where the correlation length
in the bulk still is very small (recall that the critical temperature
occurs at about kBTc/J ≈ 4.51 [82]) but this temperature is
sufficiently distant from the roughening transition temperature
kBTR/J ≈ 2.45 [121], and hence the anisotropy effects on
the interfacial free energy of flat interfaces are already rather
small [45,48,97] (Hasenbusch and Pinn [48] found a relative
difference of interfacial tension and interfacial stiffness of
about 20%).

Again, we begin by asserting that the effects demonstrated
to be important in the d = 2 case, such as the translational
entropy of the interface and “domain breathing” fluctuations,
have a significant impact in three dimensions, too. Figure 10(a)

is the counterpart of Fig. 8, demonstrating the presence of a
correction −x⊥(1/L2) ln(Lz), due to the translational entropy
of the interface(s) and domain breathing, when Lz is varied at
fixed L. Figure 10(b) is the counterpart of Fig. 9(a), where we
fit the data to the full Eq. (26) when L is varied for several
choices of Lz, using the known value [49] γ∞ = 0.434 and the
theoretical values of x⊥, x‖ from Table I, so a single parameter
[the prefactor of the 1/L2 term in Eq. (26)] is fitted. As in the
case of d = 2 the quality of the fit is excellent. Thus, in order
to estimate γ∞, we proceed in analogy with Eq. (34), reducing
the data with the known theoretical corrections [using Eq. (26)
and Table I]

γ̃ ≡ γL,Lz
+ x⊥ ln Lz − x‖ ln L

L2
= γ∞ + C1

L
+ C2

L2
. (35)

Here we have made an important phenomenological mod-
ification not suggested by our theoretical considerations of
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FIG. 10. (Color online) (a) Interfacial tension γL,Lz
for the d = 3

Ising model at kBT/J = 3.0 is plotted vs the variable (1/L2) ln(Lz)
using PBC and the canonical ensemble. Several choices of L

are included, as indicated. The straight lines show the theoretical
exponent x⊥ = 3/4 (resulting from the entropy of interface translation
and domain breathing). (b) Interfacial tension γL,Lz

for the d = 3
Ising model at kBT/J = 3.0 plotted vs L for three choices of Lz,
Lz = 20,40 and 80. The horizontal straight line shows the previous
result γ∞ = 0.434 due to Hasenbusch and Pinn [49], while the curves
are fits of Eq. (26) to the data (symbols) for the cases APBC(c), top
set of curves; PBC(c), middle set; APBC(gc), bottom set. In each set,
Lz increases from top to bottom. The theoretical values of x⊥, x‖ from
Table I were used, so each curve contains a single adjusted constant
(the prefactor of the 1/L2 term) only.

Sec. II: There must be the theoretically expected term of
order 1/L2, which is strictly required because the arguments
of the logarithms in Eq. (26) must have the form ln(Lz/l′),
ln(L/l′′) with some lengths l′, l′′, to make the arguments
dimensionless, and so the unspecified constant in the last
term on the right-hand side of Eq. (26) must contain a factor
x⊥ ln l′ − x‖ ln l′′. We have written this theoretically expected
term then in the form C2/L

2, where C2 is some effective
parameter. However, in addition we have allowed for a term
C1/L, where C1 is another (hypothetical) effective parameter.
Figure 11(a) shows the result of such an analysis: we see that
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FIG. 11. (Color online) Reduced interfacial tension γ̃ [Eq. (35)]
plotted vs 1/L2 for the d = 3 Ising model, using three chocies of
Lz and three choices of boundary conditions and/or ensembles, as
indicated. Case (a) includes the parameter C1, in the fit, while case
(b) requires C1 = 0. The resulting estimates for the parameters γ∞
and C2 are quoted in the figure.

the parameter C1, if it exists, is very small (of order 10−2

lattice spacings), while the parameter C2 is of order unity
(and almost independent of Lz: The weak variation of this
parameter with Lz is surely due to residual statistical errors
and possible higher-order corrections which were disregarded
from the start). The value of γ∞ estimated from such a fit is in
excellent agreement with the value known from a completely
different method [48]. Thus, it is tempting to require that the
parameter C1, which was introduced phenomenologically in
Eq. (35), actually must be zero. Figure 11(b) shows that the
data are fully compatible with this assumption, the random
spread in the estimates for γ∞ and C2 is now distinctly smaller
than before, and no evidence for some systematic error is
detected. We also emphasize that for L = 10 the deviation
of γ̃ still is about 3%, for L = 20 it is almost 1%, and so it
is clear that finite-size extrapolations are needed for a very
precise estimate.

In fact, the nonexistence of a term C1/L in Eq. (35) is
desirable in view of a completely different argument. Consider
the situation that in the directions parallel to the interface we
do not use a PBC but rather free boundaries. Then we expect
that the interfacial tension must contain a correction of order
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2γline/L where γline is the line tension [16,122,123] of the
contact line of the interface at such a boundary. This geometry
in fact has been suggested (and used) to obtain estimates for
the line tension [124,125]. Such an approach would not make
sense if it would be spoiled by “intrinsic” finite-size effects
that are of the same order (see also Ref. [126]).

In view of this conclusion that the parameter C1 for the
d = 3 Ising model does not exist, the reader may wonder
why we present this discussion in such detail. However, as
we shall see in the next section, the situation may be more
subtle: Previous work on LJ fluids and LJ mixtures [119] in
fact assumed that the leading corrections are of order 1/L.

C. The Lennard-Jones fluid

We now study the interfacial tension of a generic off-lattice
system, namely the (truncated and shifted) Lennard-Jones fluid
of point particles with a pairwise interaction potential U (r)
as defined in Eq. (28). It is known that this model has a
vapor-liquid phase separation for temperature T below the
critical temperature of kBTc/ε = 0.999 [58]. Here we shall
only analyze data at temperature kBT/ε = 0.78. For this
temperature Eq. (27) was already used previously [119] to
estimate γ∞ = 0.375(1) (choosing units ε = 1 and σ = 1, as
mentioned in Sec. III.

For the off-lattice LJ fluid, an analog of the APBC is not
known. Therefore, we restrict attention to the PBC(c) case. We
apply here only the ensemble switch method, using standard
local displacements as the elementary Monte Carlo move for
the particles [81,82].

We proceed as in the last subsection, testing first the varia-
tion of γL,Lz

with Lz, for several choices of cross-sectional area
A = L2 (Fig. 12). Indeed, the predicted logarithmic variation
(again due to the translational entropy of the interface and the
domain breathing effect) is verified. But we have to make a
caveat: Due to the use of a local algorithm for moving particles
(unlike the Ising model, where in the conserved case spins
at arbitrary distances from each other were interchanged) the
relaxation of the particle configurations is very slow. Basically,
in order to actually observe the logarithmic contributions
quantitatively correct, the simulation runs must be long enough
that the interface in Fig. 3(a) can explore the available volume.
If the runs are too short, and the liquid domain diffuses only
over a length Ldiff 
 Lz, we expect that the contribution
to the entropy that is “measured” by such a simulation is
only −L−2 ln(Ldiff) rather than −L−2 ln(Lz). Since diffusive
displacements only increase with the square root of time, we
expect that a simulation time τsim ≈ L2

z/D would be needed
to observe the correct entropic effect on the interfacial tension
where D is the effective domain diffusion constant. Since the
diffusion constant D with which the liquid domain can move
in the simulation box is expected to be very small, for our local
Monte Carlo algorithm, for large Lz the simulation time will
not suffice to sample the full equilibrium result, and we rather
observe a result which is independent of Lz but depends on
the simulation time τsim via the equation τsim ≈ L2

diff/D. So
we see the correct logarithmic variation only for Lz < Ldiff in
Fig. 12, while for Lz > Ldiff there is no longer a systematic
decrease of γL,Lz

with Lz (data from too short runs are shown
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FIG. 12. (Color online) Interfacial tension of the LJ fluid at
kBT/ε = 0.78 plotted vs the scaling variable L−2 ln(Lz), for three
choices of the cross-sectional area A = L2, as indicated. The slope of
the straight lines is again the theoretical value, x⊥ = 3/4. The circles
show preliminary data for rather large Lz with insufficient statistics
(see text).

by circles), rather the data fluctuate randomly around a value
that was dictated by the choice of τsim.

In view of this problem, it is in fact desirable also to use
grand-canonical particle insertion and deletion moves for the
Lennard-Jones fluid as well, as we did in the Ising model.
A simulation in the canonical ensemble then is realized by
trial moves where one attempts both to randomly delete a
particle somewhere in the box and also insert a particle at a
randomly selected position simultaneously. The trial move is
accepted and executed only if both parts of the move together
are accepted in the Metropolis test. It is clear that such nonlocal
displacements of particles will fulfill detailed balance and have
a reasonably high acceptance probability at the temperatures
where grand-canonical ensemble simulations of the considered
model are still feasible. For the LJ fluid studied here, this is
the case for kBT/ε = 0.78.

 0.367

 0.368

 0.369

 0.37

 0.371

 0.372

 0.373

 0.374

 0.375

 0.376

 0.377

 0.378

 0  0.002  0.004  0.006  0.008  0.01  0.012

in
te

rf
ac

ia
l t

en
si

on
 γ

L,
 L

z

inverse interfacial area L-2

loc. moves: Lz=26.94, γ∞=0.3675, C2=-1.34, C1=0.211
loc. moves: Lz=17.96, γ∞=0.3688, C2=-1.00, C1=0.185

nonloc. moves: Lz=26.94, γ∞=0.3735, C2=-0.62, C1=0.065
nonloc. moves: Lz=17.96, γ∞=0.3726, C2=-0.50, C1=0.091

FIG. 13. (Color online) Interfacial tension of the LJ fluid at
kBT/ε = 0.78 plotted vs L−2, using either local or nonlocal moves,
for fixed Lz, as indicated. The logarithmic corrections have not been
subtracted. The lines are fits of the form as in Eq. (35).
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Figure 13 plots data for γL,Lz
at two fixed choices for

Lz versus L−2, comparing results obtained using only local
moves (which we believe are insufficiently equilibrated) with
the results based on the nonlocal moves. One can see two
features as follows:

(i) The data based on the local moves are systematically
off, but they are not visibly irregular, and so without the
availability of the better data based on the nonlocal algorithm,
it would not be obvious that the data based on local moves are
unreliable.

(ii) Fitting either set of data in the traditional way, i.e.,
assuming a variation γL,Lz

= γ∞ + C ′
1/L + C ′

2/L
2, both fit

parameters C ′
1 and C ′

2 clearly are nonzero, as is visually
obvious from the curvature of this plot. The constant C ′

1
is larger for the unreliable data. Omitting data for smaller
values of L, one can get off with the simpler variation γL,Lz

=
γ∞ + C ′

1/L as done in the literature [119], but we now know
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FIG. 14. (Color online) Reduced interfacial tension γ̃ [Eq. (35)]
of the Lennard-Jones fluid at kBT/ε = 0.78 plotted vs L−2. In case
(a) the parameter C1 was forced to be zero, while in case (b) both
parameters C1, C2 were fitted. The results of the fits are quoted
in the figure. Note that both data dare included where only local
moves of the particle were permitted, as well as data where randomly
chosen particles were removed from their position and reinserted at
a randomly chosen position anywhere in the box.

that such a fit is meaningless, a parameter C ′
1 should not occur,

and hence the resulting estimate for γ∞ would be inaccurate.
Of course, a naive data analysis as shown in Fig. 13 ignores

all the knowledge on the logarithmic corrections derived in the
present paper. In fact, if we use this knowledge, subtracting the
logarithmic correction via Eq. (35), and fit only the reduced
surface tension γ̃ , as we did in the d = 3 Ising model, the
picture becomes much clearer (Fig. 14). The reliable nonlocal
data yield very small values for C1 again, hence giving
evidence that C1 = 0, and if we require C1 = 0 from the outset,
a very good fit with γ∞ ≈ 0.3745 ± 0.0005 is in fact obtained
[Fig. 14(a)]. The less reliable data based on the local algorithm
are in fact compatible with this conclusion if we omit the
data for Lz = 26.94 for the two largest choices of L, which
fall systematically below the straight lines in Fig. 14(a). In
Fig. 14(b), where C1 was not forced to be zero, a systematically
too small value for γ∞ would result from the unreliable data
with the local algorithm, but it is clear that this is an artifact due
to the combined effect of unreliable data and an inappropriate
fitting formula (allowing for a nonzero C1).

We have given this detailed discussion to show that in
cases of practical interest, the knowledge of the logarithmic
corrections indeed is very valuable to extract reliable estimates
for γ∞; but high-quality well-equilibrated “raw data” for γL,Lz

are an indispensable input in the analysis.
As a final example, we present a reanalysis of the data for the

symmetrical binary (AB) Lennard-Jones mixture at kBT/ε =
1.0 presented in Ref. [119]. The original data (resulting from
semi-grand-canonical exchange moves between the particles)
were extrapolated against 1/L, yielding γ∞ ≈ 0.722. Using
again Eq. (35), we see that the data are compatible with
the absence of a term C1/L as well (Fig. 15), and the final
estimate for γ∞ (≈ 0.717) is only slightly off from the original
estimate.
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FIG. 15. (Color online) Interfacial tension of the symmetric LJ
fluid at kBT/ε = 1.0 plotted vs L−2. Cubic boxes of volume L3

have been used. The lines are fits of the form as in Eq. (35). The
original data are from Ref. [119], in which a fit of the form A + B/L

(corresponding to fit with C2 = 0 and C1 = −0.13) suggests
γ∞ ≈ 0.722. After subtracting the logarithmic contributions, the result
is γ∞ ≈ 0.717. Note that the statistical errors of these data are hard
to estimate precisely but could be of the order of a few percentages.
Hence the scatter of the data points is well within the statistical
errors.
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V. SUMMARY AND OUTLOOK

In this paper we have discussed the estimation of interfacial
free energies associated with planar interfaces between coex-
isting phases in thermal equilibrium, emphasizing the need
to carefully address the finite-size effects when one employs
a computer simulation approach. We have focused on the
use of a simulation geometry where the linear dimension
(L) of the simulation box in the direction(s) parallel to the
interface differs from the linear dimension perpendicular to
the interface (Lz). Using periodic boundary conditions in all
(two or three) space directions, the situation that is normally
considered [Fig. 1(c)] is a “slab geometry,” where (for a fluid
system) a domain of the liquid phase is separated by two planar
interfaces [that are connected in themselves via the periodic
boundary conditions (PBC) in the direction(s) parallel to the
interface] from the vapor phase (the two vapor regions on
the left and on the right of the liquid slab are connected by the
periodic boundary condition in the z direction). This choice of
geometry also applies to other systems (fluid binary mixture,
Ising magnets, etc). For systems exhibiting a strict symmetry
between both coexisting phases (Ising model, symmetrical
binary Lennard-Jones mixture, etc.) a simpler choice with a
single interface is also useful, where the boundary condition
in the z direction is antiperodic (APBC) rather than periodic.
While for the situation with the PBC in the z direction we
consider here only the canonical ensemble (conserved density
of the fluid, conserved relative concentration of the binary
mixture, or conserved magnetization in the Ising magnet,
respectively), for the systems with APBC it is instructive
to study both the case of the canonical (c) ensemble and
the case of the grand-canonical (gc) ensemble (where the
respective order parameter, i.e., density, concentration, or
magnetization, respectively, is not conserved, and the variable
that is thermodynamically conjugate to this order parameter
is fixed at the value that is appropriate for bulk two-phase
coexistence). While in this APBC(c) case the position of
the interface on average is fixed (by the chosen value of the
order parameter), for the APBC(gc) case it is not, and the
statistical fluctuation associated with this degree of freedom
needs to be carefully considered. As discussed in Sec. II A,
this translational degree of freedom of the interface gives rise
to an entropic correction to the interfacial tension. Likewise,
in the PBC case the liquid slab can be translated in the system
as a whole, and this also shows up as a logarithmic correction.

But additional corrections arise as a consequence of the
coupling between fluctuations of the bulk order parameter in
the coexisting domains and the interface location (created by
the constraint that there cannot be a net fluctuation of the
total order parameter in the canonical ensemble, and so the
individual fluctuations of the order parameter densities in both
domains must be compensated by a suitable interface dis-
placement). This so-called “domain breathing” effect causes
an entropic correction for both the PBC and APBC(c) cases.
We have given detailed evidence for these effects both in the
case of the two-dimensional (d = 2) and three-dimensional
(d = 3) Ising model. Note that for the d = 2 Ising model
capillary-wave-type fluctuations of the interface affect these
interfacial entropy corrections strongly as well, since the
root-mean-squared interfacial width

√
〈w2

L〉 scales like L1/2

[Eq. (4)], and via the normalization of the translational entropy
this gives rise to an additional ln(L)/(2L) correction to the
interfacial tension.

All the methods that we discuss here rely on the con-
sideration of the free-energy difference between one of the
systems discussed above and a system with the same linear
dimensions but PBC throughout, so no interfaces occur. Hence,
it is necessary neither to locate where the interface is in the
system, nor to characterize its microscopic structure. This
free-energy difference can be found either from sampling
the order parameter distribution function (Fig. 2) across the
two-phase coexistence region (which is a standard approach
used since more than three decades) or from a new variant
of the “ensemble switch” method (Fig. 5), described here. In
this method, two bulk systems of size Ld−1×Lz/2, with PBC
containing the two coexisting phases, are connected in phase
space via a continuous path to a system of size Ld−1×Lz,
where now the two phases coexist in one box, being separated
by two interfaces.

We stress that these techniques by no means are the only
methods from which interfacial tensions can be found: It is also
possible to study the Ld−1×Lz system in the grand-canonical
ensemble and analyze the correlation function along the z

direction very precisely. Most of the time the system will reside
in one of the pure phases, but the rare fluctuation where the
system explores slab configurations gives rise to a nontrivial
behavior of the correlation function, from which the interfacial
tension can be extracted [51,126]. This method is out of our
scope here, as well as the possibility to extract the interfacial
stiffness from an analysis of the capillary wave spectrum
or from the size dependence of the interfacial broadening.
In both these methods the error estimation is a very subtle
problem. Alternative algorithms from Mon [42,43] and Caselle
et al. [51,61,62], which are particularly valuable to study the
interfacial tension near the bulk critical point, have also been
out of our consideration.

However, also for the methods described here the assess-
ment of errors is rather difficult. Referring to Fig. 3, it is
clear that the translational entropy of the interface is only
sampled correctly if the simulation has lasted long enough
that the slowly diffusing interface has in fact sampled the full
extension Lz of the sample. We have seen in the last section
that in particular for off-lattice models of fluids (such as the
Lennard-Jones system) this is difficult to achieve. In analytical
theories [91,92], this problem is avoided by putting the system
into a potential that localizes the interface. The price to be
paid is that a correlation length ξz is created that characterizes
the extent of interfacial motions around its average position
in the z direction [91,92]. While the theory from the outset is
based on the concept of an effective interfacial Hamiltonian,
it is desirable to avoid this concept in a simulation context.
Of course, using the PBC(c) method where a liquid slab
occurs, we can “localize” the whole slab, e.g., by using a
weak harmonic potential, centered around the center-of-mass
position of the liquid slab. But one needs to carefully check
that this potential does not affect other properties, apart from
eliminating the translational motion of the slab as a whole.

Such ideas probably are indispensable when one considers
the extension of the method to liquid-solid interfaces, where
it is simply too time-consuming to sample the translational
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motion of the crystalline slab. As a caveat we note, however,
that we do not see an obvious recipe to suppress the “domain
breathing” mechanism. Of course, if one uses a model
based on the effective interface Hamiltonian concept, this
mechanism has been disregarded from the outset, but the step
linking explicitly atomistic Hamiltonians to effective interface
Hamiltonians is problematic as well.

An extension that would also be very interesting to
consider already for the Ising systems is the consideration
of interfaces that are inclined relative to the simple (100) or
(001) lattice planes: this extension would allow us to study the
anisotropy of the interface tension, which is well understood
in d = 2 [127] but not explicitly known in d = 3, apart from
special cases [45,64]. Such inclined interfaces naturally arise

in the context of heterogeneous nucleation at walls [124,125],
for instance. Another aspect of interest are finite-size effects
on the interface tension of spherical droplets. We plan to report
on such extensions in the future.
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