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Passive states of quantum systems are states from which no system energy can be extracted by any cyclic
(unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to
allow any general quantum operation, but the operation is required to be local, being applied only to a specific
subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground
state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at
or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the
presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum
phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for
some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles
nor limited to the near vicinity of the ground state.
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I. INTRODUCTION

The maximum energy that can be extracted from a physical
system—the work that it can do—by an applied process
is a fundamental thermodynamic problem of continuing
interest [1,2]. This problem is typically posed [3–5] for
a quantum system with Hamiltonian H in terms of cyclic
(unitary) processes in which the system, initially isolated,
is coupled at time t = 0 to external sources of work with
combined potential V(t) and later decoupled from them at
time t = τ , creating for t ∈ [0,τ ] a time-dependent system
Hamiltonian H(t) = H + V(t), with associated free energy
F (t) = −kT ln Tr{exp[−H(t)/kT ]}. System states for which
no cyclic process can extract a positive amount of energy from
the system are called passive [3,5]. More specifically, since
in this context the change in free energy is zero, a system
in a passive state can do no positive work. An important
result for finite quantum systems is that Gibbs states are
passive. Indeed, this is the no perpetuum mobile version of the
second law of thermodynamics for equilibrium as formulated
by Thomson [6,7].

We introduce in this paper a variant of passivity we call
strong local (SL) passivity, which identifies a new collective
quantum phenomenon exhibited by multipartite systems.
We find for finite quantum systems with a nondegenerate,
entangled ground state that states in a neighborhood of the
ground state are SL passive. In particular, though all Gibbs
states (of any temperature) are passive, only Gibbs states
at or below a critical, system-dependent temperature are SL
passive. This means for many-body systems that, for any state
close to the ground state, the ground state entanglement and
nondegeneracy sufficiently constrain the system’s subsystems
to collectively inhibit energy release from any subsystem.
Ground state entanglement is a recognized root cause of other
collective quantum phenomena, including quantum phase
transitions [8], superconductivity [9], and the quantum Hall
effect [10].

A system state is defined to be SL passive if no general
(Kraus, operator-sum) quantum operation G applied locally to

a subsystem can extract positive energy from the system. We
are restricted, in other words, to operations of the form G ⊗ I
where I is the identity operation for the rest of the system. The
system dynamics driven by H can have, generally, a nonlocal
component. So that the effect of G applied locally is not con-
founded with the time evolution accompanying any nonlocal
component of H, we include in SL passivity’s definition the
idealization that G proceeds much faster than the system’s
natural unitary evolution exp(−iHτ/�) due to H. In fact,
fast local operations are of main interest in applications; in,
for example, circuit-based quantum information processing,
gates must operate faster than the background evolution of the
physical substrate. For sufficiently fast G and the system in a
state ρ, the energy extracted by G is effectively

�E(ρ) = Tr[Hρ] − Tr [H(G ⊗ I)(ρ)] . (1)

The local energy �◦ of a subsystem is defined to be the
maximum of �E(ρ) for any G [11]. Note that �◦ � 0 and that
ρ is SL passive if and only if �◦ = 0. Local energy for SL
passive states is analogous to ergotropy introduced for state
passivity [12].

Our definition of SL passivity reflects two modifications of
the usual notion of state passivity. First, any general quantum
operation G expressible in terms of Kraus operators [13] is
allowed, relaxing the restriction to unitary operations. Second,
only a subsystem is accessible, making G local to only that
subsystem. It is easy to check that neither modification alone
yields interesting physics. Suppose we define SL passivity to
allow any general quantum operation G but do not narrow
the operation’s scope to a subsystem. For any finite quantum
system with a ground state |E0〉 and eigenstates |Ek〉 of
higher energy, a G can be constructed from Kraus operators
Kk = |E0〉〈Ek| so that G(ρ) = |E0〉〈E0| for any system state
ρ. By this definition, only a ground state can be SL passive. Or,
suppose we narrow the scope of the operation to a subsystem
but still require a unitary operation; that is, we allow only
operations of the form U ⊗ I where U is a local unitary
operation on the subsystem. Here again nothing results; U ⊗ I
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is unitary, so for systems with identifiable subsystems all
passive states, including Gibbs states, would be SL passive.
Only together do the two modifications have an unexpected
and interesting result.

Conditions for SL passivity are presented as a theorem in
the following section. Then in Sec. III the presence of SL
passivity is detailed in some simple quantum spin systems.
Section IV addresses the possible extent of SL passivity in a
system in terms of type of state, number of system particles,
and size of the ground state’s SL passivity neighborhood. We
close in the last section with some summary remarks.

II. MAIN RESULT

The setting of our main result for SL passivity is a finite
quantum system S [described by a complex Hilbert space H
with d = dim(H) < ∞] with a subsystem (or component) C
whereby H = Hc ⊗ Hc̄, where Hc and Hr are the Hilbert
spaces associated with C and the rest of S, respectively. The
Hamiltonian of S is

H =
d−1∑
k=0

Ek|Ek〉〈Ek|, (2)

with eigenstates |Ek〉 and associated eigenenergies E0 � E1 �
. . . � Ed−1. The Schmidt decomposition of the ground state
|E0〉 is [13]

|E0〉 =
∑

s

√
qs |cs〉|rs〉, (3)

where
∑

s qs = 1 and |cs〉 and |rs〉 are, respectively, orthonor-
mal states of Hc and Hr . The ground state |E0〉 is fully
entangled if all the qs in (3) are positive [13,14].

We will be concerned mostly with system states ρ of S that
commute with H, in other words, eigenmixtures

ρ =
d−1∑
k=0

pk|Ek〉〈Ek| (4)

that are statistical mixtures of the eigenstates |Ek〉 with popula-
tion probabilities pk such that

∑
k pk = 1. Eigenmixtures (4)

disallow coherences among the system eigenstates but still
include the important case of Gibbs states for which

pk = 1

Z exp

(
− Ek

kT

)
, (5)

where k is Boltzmann’s constant, T is Gibbs temperature,
and Z = Tr[exp(−H/kT )] is the partition function. Eigen-
mixtures play a distinctive role in connection with system
passivity; for example [4], a state of a finite quantum system
is passive if and only if it is an eigenmixture with pk � pk′

for Ek < Ek′ . We will see that with respect to SL passivity
eigenmixtures play a similarly prominent role. We now state
our main result.

Theorem. Let S be a finite quantum system with Hamil-
tonian (2) and a specified subsystem C such that C is fully
entangled with the rest of S in the ground state |E0〉. Suppose
further that |E0〉 is nondegenerate; that is, E0 < E1. Then
a threshold ground state population probability p∗ < 1 exists
such that any eigenmixture ρ in (4) with p0 � p∗ is SL passive.

Proof. Let G be a general quantum operation [13] on
subsystem C. For states σ on Hc,

G(σ ) =
∑

μ

Kμ σ K†
μ, (6)

with Kraus operators Kμ on Hc such that∑
μ

K†
μKμ = I. (7)

With S initially in the eigenstate |Ek〉, the system energy loss
due to G is

�Ek = Ek − Tr [H(G ⊗ I)(|Ek〉〈Ek|)] .

A calculation involving Eqs. (2) and (7) and the completeness
identity

∑
k |Ek〉〈Ek| = I then yields

�Ek =
∑
k′ �=k

(Ek − Ek′)
∑

μ

|〈Ek′ |Kμ|Ek〉|2. (8)

Because |E0〉 is nondegenerate, �E0 � 0 in (8), and

�E0 = 0 ⇔ 〈Em|Kμ|E0〉 = 0 ∀m �= 0 (9)

⇔ Kμ|E0〉 = λμ|E0〉
⇔

∑
s

√
qs(Kμ|s〉c − λμ|s〉c)|s〉r = 0 (10)

⇔ Kμ = λμIc, (11)

where (9) holds because |E0〉 is nondegenerate, (10) follows
from (3), and (11) is due to qs �= 0 for all s. Now consider
Kμ in a neighborhood of the trivial operator λμIc. The Kraus
operators Kμ are trace class (hence compact) acting on the
finite-dimensional Hilbert space Hc, so

Kμ = λμI +
∑

γ

θγ Jμγ + 1

2

∑
γ,γ ′

θγ θγ ′Jμγγ ′ (12)

for small θγ > 0 to order O(θγ θγ ′θγ ′′ ). Put (12) into (8), with
χμγ = 〈Ek′ |Jμγ |Ek〉. Then, using 〈Ek′ |λμI|Ek〉 = 0 for k′ �=
k, we have

�Ek =
∑
γ,γ ′

θγ θγ ′
∑
k′ �=k

(Ek − Ek′)
∑

μ

χ †
μγ χμγ ′ (13)

to order O(θγ θγ ′θγ ′′ ) for each k � 1. The remarkable feature
of (13), and the key to the proof, is that no term linear in θγ

appears for k � 1. (Linear terms do appear when we attempt
to adjust the proof for states that are not eigenmixtures.) The
absence of linear terms in (13) means that �Ek/�E0 does not
diverge for θγ → 0. So, for any k � 1 and any nontrivial G,
there exists p∗ < 1 such that

1 − p0

p0

∣∣∣∣�Ek

�E0

∣∣∣∣ � 1

for all p0 � p∗. Since �E0 < 0 for all nontrivial G,

pk

1 − p0
p0�E0 + pk|�Ek| � 0,
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from which, by summing, follows

p0�E0 +
d−1∑
k=1

pk|�Ek| � 0 (14)

for all p0 � p∗. If the state ρ of S is an eigenmixture as in (4),
the system energy �E(ρ) in (1) extracted by the local operation
G is �E(ρ) = ∑d−1

k=0 pk�Ek , and we conclude from (14) that,
for any eigenmixture ρ, �E(ρ) � 0 for all p0 � p∗. �

Corollary. The Gibbs states of a finite quantum system with
a nondegenerate, fully entangled ground state are SL passive
with respect to a subsystem for all temperatures T � T∗ for
some critical temperature T∗ > 0.

Our theorem is stated for a system with one identified
subsystem. For a many-particle system governed by, say, a
particle-symmetric Hamiltonian, SL passivity with respect to
one particle implies SL passivity for all, and the theorem
then says that the system’s particles in an eigenmixture
sufficiently near |E0〉 are constrained by |E0〉’s entanglement
and nondegeneracy to collectively disallow energy release
from any particle.

III. TWO-PARTICLE SYSTEMS

Our theorem and its corollary can be seen at work in a
variety of multiparticle quantum systems. We detail this in
this section in examples of two-particle systems.

Let S2 be a pair of coupled spin- 1
2 particles with Hamilto-

nian

H = κσ x
1σ

x
2 + σ z

1 + σ z
2, (15)

where the Pauli operator terms σ z
1 and σ z

2 reflect the presence
of an external magnetic field transverse to the coupling and
κ > 0 is the coupling’s relative strength. The pair S2 has a
fully entangled ground state and eigenenergies

E0 = −m, E1 = −κ, E2 = κ, E3 = m, (16)

where m = √
κ2 + 4.

Consider a general quantum operation G of the form of (6)
applied to a particle of S2. For a spin- 1

2 particle, G requires at
most four Kraus operators [13]:

Kμ =
(

sμ tμ
uμ vμ

)
, (17)

with complex-valued elements sμ,tμ,uμ,vμ. In terms of these
elements, condition (7) for the Kμ becomes

s†s + u†u = 1,

t†t + v†v = 1, (18)

s†t + u†v = 0,

where s = (s1 s2 s3 s4)�, etc.
The local energy �◦ in (21) depends solely on η and ξ

in (20), which depend in turn on the eigenmixture ρ through
only the two probability differences δ0 and δ1. Because of
this limited dependence on ρ, an eigenmixture can be SL
passive without being passive. For κ = 2 in S2, for example,
the eigenmixture (p0,p1,p2,p3) = (.96,0,.04,0) is SL passive
(�◦ = 0) but not passive (p2 > p1). In general, passivity is
neither necessary nor sufficient for SL passivity.

For the pair S2 in an eigenmixture state ρ, the energy
extracted by applying G locally to a particle in S2 is, after
elementary calculation,

�E(ρ) = (1 − η)u†u − (1 + η)t†t

+ ξ
s†v + v†s + u†t + t†u

2
− ξ, (19)

where

η = 2

m
δ0, ξ = κ2

m
δ0 + κδ1, (20)

with δ0 = p0 − p3 and δ1 = p1 − p2. The maximum of (19)
subject to (18) is the local energy �◦ of a particle in S2. We
twice apply the dominance argument in [11], once for ξ � 0
and then again for ξ < 0. We find that the local energy in a
particle of S2 is �◦ = �◦(η,ξ ) where

�◦(η,ξ ) =
{√

1−η2+ξ 2

1−η2 − ξ − η, |ηξ | < 1 − η2

|ξ | + |η| − ξ − η, otherwise
. (21)

Shown in the top display of Fig. 1 is a contour plot of
�◦ for κ = 2. The plot’s diamond-shaped domain given by
|δ0| + |δ1| � 1 is all possible combinations of δ0 and δ1. Of
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FIG. 1. (Color online) Local energy �◦ for κ = 2 in S with
system state ρ parametrized by the probability differences δ0, δ1.
Darker shading indicates greater local energy. �◦ = 0 for any
eigenmixture ρ in a neighborhood of the ground state |E0〉. Gibbs
states are SL passive below the critical temperature T∗.
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special interest in the δ0,δ1 parameter space is the three-sided
region at right that includes δ0 = 1. This region consists of
the ground state |E0〉 and all eigenmixtures ρ that are small
departures from it. These states are all SL passive; they all have
η,ξ � 0 with zero local energy, �o = |ξ | + |η| − ξ − η = 0.
The extent of the SL passive neighborhood around |E0〉 can
be quantified by considering the three-sided �◦ = 0 region in
Fig. 1’s top display. A sufficient condition for �◦ = 0 is that
the system eigenmixture have δ0 � δ∗ where

δ∗ = κ +
√

(3m2 + 2κm − 8)

2(m2 + κm − 2)

is the δ0 coordinate of the bottom corner of the �o = 0 region
(see the top display in Fig. 1). A sufficient condition for δ0 � δ∗
is, in turn,

p0 � p∗ = 1 + δ∗
2

. (22)

Any eigenmixture ρ of the form of (4) with ground state
probability p0 � p∗ has zero local energy. The threshold
probability p∗ in (22) is a decreasing function of κ with,
for example, p∗ = .9383 for κ = 2. We conclude that the
neighborhood of |E0〉 of zero local energy and SL passivity can
be substantial. We pursue this further in the following section.

The Gibbs states (4) with population probabilities (5) of the
particle pair S2 have partition function

Z =
3∑

j=0

exp

(
−Ej

kT

)
= 2

(
cosh

κ

kT
+ cosh

m

kT

)

and, in particular,

δ0 = 2

Z sinh
m

kT
, δ1 = 2

Z sinh
κ

kT
. (23)

The bottom display in Fig. 1 uses (23) to show local energy
varying by temperature for κ = 2 through the Gibbs states
(the red path in the top display), from the T = 0 ground state
at (δ0,δ1) = (1,0) to the T = ∞ completely mixed state at
(δ0,δ1) = (0,0). The Gibbs states exit the �o = 0 region at
a nonzero temperature T∗ for any κ > 0, where the critical
temperature T∗ is determined by the condition |ηξ | < 1 − η2

in (21) with (23) used in (20).
The particle pair S2 with Hamiltonian (15) is a special case

of the class of two-particle systems S2,γ with Hamiltonian

H = κ

(
1 + γ

2
σ x

1σ
x
2 + 1 − γ

2
σ

y

1σ
y

2

)
+ σ z

1 + σ z
2, (24)

where γ ∈ [0,1] is the coupling anisotropy. The coupling
is isotropic when γ = 0 and fully anisotropic when γ = 1
as in (15). (Re)define m =

√
γ 2κ2 + 4 for (24). Then the

eigenenergies of (24) are those in (16). The class S2,γ of
anisotropic systems is interesting because it allows us to
see firsthand the roles of ground state nondegeneracy and
entanglement in our theorem: for γ = 0 and κ < 2 the ground
state |E0〉 is nondegenerate but separable, and for γ ∈ (0,1) it
is degenerate if and only if

κ = 2√
1 − γ 2

. (25)

To determine the local energy in a particle of S2,γ , we
again consider a general local quantum operation G applied
to a particle of S2,γ , where G has Kraus operators (17)
with constraints (18). The energy extracted from S2,γ in an
eigenmixture state ρ by the local operation G is, after some
calculation,

�E(ρ) = (1 − η)u†u − (1 + η)t†t

+ ξ
s†v + v†s

2
+ μ

u†t + t†u
2

− ξ, (26)

where

η = 2δ0

m
, ξ = γ 2κ2δ0

m
+ κδ1, μ = γ κ2δ0

m
+ γ κδ1, (27)

with δ0 = p0 − p3 and δ1 = p1 − p2. To maximize (26)
subject to (18), we again take essentially the approach in [11]
and find that the maximum of �E(ρ) in (26) subject to
constraints (18) is the unconstrained maximum of

ω(α,β) = (1 − η) sin2 α − (1 + η) sin2 β

+ |ξ | cos α cos β + |μ| sin α sin β − ξ. (28)

The maximum of ω(α,β) is the local energy of an S2,γ

particle. Using (23) for δ0 and δ1 in (27), we numerically
maximize ω(α,β) to find (see Fig. 2) the Gibbs states critical
temperatures T∗ as a function of the coupling strength κ for
selected anisotropies γ . The points in Fig. 2’s inset show the
values of κ where, for different γ ∈ (0,1), T∗ falls to zero. The
superposed curve in the inset is condition (25) for degeneracy.
For γ ∈ (0,1) we see that, consistent with our theorem, T∗ = 0
wherever the system coupling parameters combine in (25) to
make |E0〉 degenerate. For γ = 0, |E0〉 is nondegenerate and
separable for κ < 2, degenerate for κ = 2, and nondegenerate
and entangled for κ > 2, while Fig. 2 shows that T∗ > 0 (the
extant ground state neighborhood of SL passivity) only for
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FIG. 2. (Color online) Critical temperatures T∗ below which
�◦ = 0 for selected coupling anisotropies γ . The points in the inset
are coupling strengths κ where T∗ = 0. The superposed curve in the
inset is condition (25) for ground state degeneracy.
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κ > 2. These various cases illustrate the point of our theorem:
a nondegenerate, entangled ground state is sufficient to create
a ground state neighborhood of SL passivity.

IV. SL PASSIVITY’S EXTENT

We explore in three directions the extent of SL passivity’s
presence in finite quantum systems. We first ask whether the
threshold ground state probability p∗ identified in our theorem
applies also for system states that are not eigenmixtures. We
show by an example that p∗ does not necessarily apply to
system states with some coherence among eigenstates; that is,
given some coherence, a state with ground state population
probability p0 > p∗ can fail to be SL passive. This shows that
eigenmixtures, which play a distinctive role in state passivity,
are also special for SL passivity. We then go on to ask whether
SL passivity is limited to only systems of small dimension.
We show by the example of a Heisenberg chain of N spin- 1

2
particles that SL passivity can be a nonvanishing feature of a
many-particle system. Finally, we ask whether SL passivity
is always confined only to eigenmixtures near the ground
state. We saw in the previous section that for the two-particle
system S2 any eigenmixture with large enough ground state
population probability (p0 > .9383 for κ = 2) is SL passive.
In this section we offer an example of a two-particle system in
which the ground state’s SL passivity neighborhood extends all
the way to the completely mixed state (p0 = .25) and in which,
in particular, Gibbs states of any temperature are SL passive.
Our point with this section’s examples is that eigenmixtures
are central to SL passivity and that, among eigenmixtures, SL
passivity is neither limited to only quantum systems of a few
particles nor necessarily confined to only the near vicinity of
the ground state.

Suppose the state ρ of the particle pair S2 of the previous
section is an eigenmixture. The local energy of a particle is then
�◦ = �◦(η,ξ ) in (21), and a threshold ground state population
probability p∗ < 1 exists such that ρ with p0 � p∗ is SL
passive. Now introduce some coherence to the eigenmixture ρ

and consider the system state

ρ ′ = ρ + r(|E2〉〈E0| + |E0〉〈E2|), (29)

with real coherence r where |r| � √
p0p2. We find after some

calculation that, for S2 in the state ρ ′, the energy extracted by
a general quantum operation G applied locally to a particle is

�E(ρ ′) = �◦(η,ξ ) + r√
m(m + 2)

[κ(t†s + s†t)

+ κ2(u†s + s†u) + (m + 2)(u†v + v†u)

− κ(m + 2)(t†v + v†t)]. (30)

Suppose G has a single Kraus operator K = exp(−iφσ y). The
energy (30) extracted by this (unitary) G is

�E(ρ ′) = 2 sin2 φ

mκ
[rA cot φ − η − 2ξ ] , (31)

where

A = 2

κ

√
m − 2

m
[2 + (m + κ)(κ + 1)].

For S2 with any degree of coupling κ and any ρ ′ in (29)
with nonzero coherence r , we can pick the angle φ associated
with G so that �E(ρ ′) is positive. This is an example in
which the smallest amount of coherence added to a SL
passive eigenmixture ρ renders the resulting state ρ ′ not SL
passive, allowing energy to be extracted from the system.
Eigenmixtures play a distinctive role in state passivity; this
shows that they do also in SL passivity.

The particle pair S2 is a case of an N -particle closed
Heisenberg spin chain SN with Hamiltonian

H = κ

N∏
i=1

σ x
i σ

x
i+1 +

N∑
i=1

σ z
i , (32)

where σ x
N+1 ≡ σ x

1 . For each N � 2 the ground state |E0〉 is
nondegenerate and fully entangled. Suppose SN is in state (4)
with d = 2N and we apply a general quantum operation G to
a particle. As in the two-particle case, G involves at most four
Kraus operators (17) with the constraints (18). We seek the
system energy �E(ρ) in (1) extracted by G from SN and find,
remarkably, that the extracted energy �E(ρ) has the same
form as (19) for all N � 2, where η and ξ vary according to
N . Therefore, for N � 2 the local energy in a particle is as
in (21) with η and ξ depending on N . We suppose ρ is a Gibbs
state for each N and then solve |ξη| = 1 − η2 in (21) to obtain
the critical temperature T∗ for zero local energy. Figure 3
shows the results of these calculations for spin chains SN of
up to six particles. (For N � 6 the curves for T∗ are visually
indistinguishable.) We see that T∗ increases with N but that
this increase quickly becomes vanishingly small. This could
be expected for a closed chain’s ring topology. A particle is
most strongly affected by its two immediate neighbors, while
any added particle joins the chain as a most distant particle.
Increasing N only adds distant neighbors with vanishingly less
effect, and Fig. 3 reflects this. Most importantly, Fig. 3 shows
that SL passivity and zero local energy are not limited to only
a few particles; theoretically, a neighborhood of SL passivity
can exist with no diminution in systems of arbitrarily many
particles.
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bottom to top
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FIG. 3. (Color online) Gibbs states’ critical temperatures T∗ for
SL passivity and zero local energy in N -particle spin chains. Curves
for N = 6 and beyond are visually indistinguishable.
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Thus far the spin systems in our examples have all
exhibited a SL passivity neighborhood of bounded extent with,
specifically, a finite critical Gibbs temperature T∗ < ∞. Now
consider the system SX of two Heisenberg XXX-coupled spin
particles with Hamiltonian

HX = σ x
1σ

x
2 + σ

y

1σ
y

2 + σ z
1σ

z
2, (33)

eigenenergies E0 = −3, E1 = E2 = E3 = 1, and correspond-
ing eigenstates

|E0〉 = |10〉 − |01〉√
2

, |E2〉 = |00〉,

|E1〉 = |10〉 + |01〉√
2

, |E3〉 = |11〉.

The ground state |E0〉 ofSX is nondegenerate and entangled
so we conclude that |E0〉 has a neighborhood of SL passivity.
To determine this neighborhood’s extent, we derive for SX the
energy (1) extracted by a general quantum operation (6) on
one of SX’s two particles, finding that

�E(ρ) = −(p0 + p1 − 2p2)u†u − (p0 + p1 − 2p3)t†t

− (p0 − p1)(2 − s†v − v†s) (34)

for any eigenmixture ρ with population probabilities
p0,p1,p2,p3. For Gibbs states p0 � p1 � p2 � p3. Also,
u†u � 0, t†t � 0, and s†v + v†s � s†s + v†v � 2. We readily
conclude then that �E(ρ) � 0 in (34) and that the local
energy in a particle of SX is �◦ = 0 for any Gibbs state
ρ; that is, T∗ = ∞. Thus SX is a quantum system whose
Gibbs states of all temperatures are both passive and SL
passive.

V. SUMMARY AND FINAL REMARKS

We summarize the work presented in this paper by empha-
sizing that SL passivity provides a framework for determining
the energy that is locally accessible in multipartite quantum
systems. This newly identified property of states in finite
quantum systems is a variant of the standard notion of state
passivity, where the nature of the operation on the multipartite
system is both (1) relaxed to allow any general quantum oper-
ation and (2) restricted in its application to a subsystem. These
countervailing modifications yield unexpected and interesting
results. Passive states are known to be eigenmixtures that
have no population probability inversion, and, in particular,
all Gibbs states are passive. While eigenmixtures are similarly
important to SL passivity, the conditions for and the extent of
SL passivity within these states are more subtle. If the ground
state is nondegenerate and entangled, then the system exhibits
a neighborhood of SL passivity around the ground state. Using
Gibbs state temperature to gauge this neighborhood’s extent,
we saw by example that the Gibbs state critical temperature for
SL passivity can be T∗ = 0 (when the ground state is separable

or degenerate), positive and finite, or even T∗ = ∞ (in which
case all the Gibbs states are SL passive). The existence of
systems with T∗ = ∞ decisively establishes that SL passivity
is not limited to only the near vicinity of the ground state;
its extent can be considerable. Remarkably, SL passivity can
extend, also, without diminution to high-dimensional systems
of arbitrarily many particles. The Gibbs critical temperature of
an N -particle Heisenberg ring, for example, quickly converges
for increasing N to a positive limit value T∗ > 0. For such a
system in a state of SL passivity, the system particles act
collectively to block energy release from any one particle.

Our theorem concerns energy extracted by a local operation
when the system state is near the ground state. A comple-
mentary result can be stated for adding energy when the
system state is near the maximum energy eigenstate |Ed−1〉.
Let S be a finite quantum system with Hamiltonian (2) and a
specified subsystem C. Suppose that |Ed−1〉 is nondegenerate
and that, in |Ed−1〉, C is fully entangled with the rest of S.
Then a threshold maximum energy state population probability
q∗ < 1 exists such that no energy can be added to the system
by any local quantum operation on C when the system state is
an eigenmixture as in (4) with pd−1 � q∗. The two threshold
probabilities p∗ and q∗ associated with a subsystem C are
not generally equal. The proof of this complementary result
parallels that of our theorem.

Strong local passivity is only newly discovered, and it is
premature to anticipate applications. We note, though, that
in the anisotropically coupled particle pair S2,γ the critical
Gibbs temperature T∗ is highly sensitive to the strength of
the external magnetic field (reflected in the parameter κ)
when condition (25) is close to satisfied. In fact, under
conditions close to (25), Fig. 2 shows T∗ varying over orders of
magnitude in response to only a small change in κ . The critical
temperature T∗ is a proxy for the extent of the SL passivity
neighborhood, and with a suitable initial system state varying
T∗ can switch on and off the SL passivity of a subsystem,
locking up or allowing the release of energy. This suggests
that a system such as S2,γ might be a sensitive detector of
small changes in the external magnetic field, or by actively
modulating the external field S2,γ might be used as a switch
for energy release. These comments, while only speculative,
suggest potential possibilities.

The notion of SL passivity raises a host of theoretical
questions. In particular, SL passivity makes a new connec-
tion between the local versus global paradigm in quantum
information science and the standard notion of passivity
in thermodynamics, potentially advancing, for example, the
theory of quantum Maxwell demons for subsystems.
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