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Quantum systems equilibrate rapidly for most observables
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Considering any Hamiltonian, any initial state, and measurements with a small number of possible outcomes
compared to the dimension, we show that most measurements are already equilibrated. To investigate nontrivial
equilibration, we therefore consider a restricted set of measurements. When the initial state is spread over many
energy levels, and we consider the set of observables for which this state is an eigenstate, most observables are
initially out of equilibrium yet equilibrate rapidly. Moreover, all two-outcome measurements, where one of the
projectors is of low rank, equilibrate rapidly.
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The topic of equilibration time scales has been of much
interest lately [1–9]. Given that it has been shown that quantum
systems equilibrate under rather general conditions [10–12],
it is important to understand the time scale for the process.
However, attempts to derive an upper bound on equilibration
time have resulted in very large time scales. Short and Farrelly
[1], for instance, obtain a very general bound, of which we
give an improved derivation in Appendix A, which scales with
the dimension of the system, typically exponentially in the
number of particles.

A quantum system is said to undergo equilibration when its
quantum state spends most of its time almost indistinguishable
from a fixed (time-invariant) steady state. This is not the same
as thermalization, in which the steady state is a Gibbs state.
Thus, thermalization is a special case of equilibration, and un-
derstanding equilibration times is a key step in understanding
thermalization times.

When one discusses quantum equilibration, it is common to
refer to either subsystem equilibration [10,13], in which a small
system equilibrates due to contact with a bath, or observable
equilibration, in which a fully closed system appears to
equilibrate due to the limited information offered by outcomes
of a particular set of observables. The latter was initially shown
by Reimann [11,14], as a statement that the expectation values
of quantum observables stay predominantly close to a static
value, and was later built on by Short [15], who showed that
these results apply even if one considers all the information
that can be gathered from the observable, instead of just the
expectation value.

In this paper, we consider any finite-dimensional system and
any Hamiltonian, and show that most N -outcome observables
are initially in equilibrium (for N small compared to the
dimension). To investigate time scales we therefore turn to
a natural class of observables which are initially typically
out of equilibrium, those with a definite initial value (i.e.,
observables for which the initial state is an eigenstate). We
show that, for pure initial states spread over many energy
levels, most of these observables equilibrate in very short
times, in fact, most equilibrate essentially as fast as possible.
Moreover, in the case of two-outcome observables where one
of the projectors is of low rank, we show that all observables
equilibrate fast (for any initial state spread over many energy
levels).

As will be clear in Theorems 2 and 3, when referring
to “typical” or “most” observables, we mean that in the
context of the Haar measure. While this does include all
observables of physical significance, they constitute a small
fraction of all possible observables. Still, these results give
us new insight into the problem of equilibration time scales,
which was not available through the use of strict upper
bounds. This also raises the question of what is special about
physical measurements that makes them much slower than
most measurements.

To obtain these results, we address the issue of equilibration
time scales with respect to measurements composed of N

outcomes. As a figure of merit for equilibration we will
use the distinguishability DM(σ,ρ) between two states σ

and ρ according to an observable M = {P1, . . . ,PN }, where
the projectors Pj represent the different outcomes of the
measurement. We define it so that after performing the
measurement, given full information about the two states being
compared, the distinguishability quantifies the probability of
successfully “guessing” which state the system was in [15],
according to

psuccess = 1

2
+ 1

2
DM(σ,ρ), (1)

where

DM(σ,ρ) = 1

2

∑
j

|Tr[σPj ] − Tr[ρPj ]|. (2)

When DM(σ,ρ) = 0, the measurement does not provide
information that helps to distinguish σ from ρ (one might
as well toss an unbiased coin to decide). On the other hand,
when DM(σ,ρ) = 1, the states are perfectly discriminated by
this measurement.

In the special case in which the measurement has two
outcomes (i.e., M = {P,1 − P }), the distinguishability is
given by DM(σ,ρ) = |Tr[σP ] − Tr[ρP ]|, and we will denote
it by DP (σ,ρ).

Given an initial state ρ evolving under a Hamiltonian H , we
say equilibration has taken place at time Teq when, for some
small constant ε > 0,

〈DM(ρt ,ω)〉T � ε, ∀ T > Teq, (3)
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where 〈f (t)〉T = 1
T

∫ T

0 f (t)dt , ω = limT →∞ 〈ρt 〉T is the time-
averaged state, and ρt = e−iH tρeiHt is the evolved state. When
equilibration does take place, ω is also called the equilibrium
state.1

In words, equilibration with respect to a measurement
has taken place when the time-averaged distinguishability
for this measurement falls below a small value. Since the
distinguishability is a positive quantity, this means that,
for any T > Teq, the instantaneous state ρt is essentially
indistinguishable from ω for almost all times in the interval
[0,T ].

It is worth stating that we are not claiming thermalization,
in which the equilibrium state is a thermal state. This definition
of equilibration, while necessary for thermalization [10], is a
separate issue and guarantees only the approach to a steady
state.

Two parameters of the initial state that will be of importance
to us are the effective dimension deff and the energy standard
deviation σE , defined by

deff =
⎡
⎣ d̃∑

n=1

p2
n

⎤
⎦

−1

, σ 2
E =

d̃∑
n=1

pn(En − Ē)2
. (4)

Here, d̃ is the number of distinct energy levels En with
probabilities pn = Tr[Qnρ], where Qn is the projector onto
the eigenspace with energy En, and Ē = ∑d̃

n=1 pnEn. The
effective dimension gives an estimate of how many energy
levels ρ occupies with significant probability,2 and deff � 1 is
the key requirement for equilibration to take place, as we will
see. The energy standard deviation, in turn, will take a primary
role in the time scale of equilibration. Note that we use � = 1
throughout.

Given any d-dimensional Hamiltonian and any initial state
with support on many energy levels (high effective dimension),
we present the following results regarding the time scale of
equilibration:

(1) We show that all two-outcome measurements, for
which one of the projectors P has small rank, have very short
time scales (Teq ∼ rank P/σE).

(2) For N -outcome measurements, we prove that most
measurements are already equilibrated, and that most mea-
surements with a definite initial value (i.e., for which the initial
state is a pure eigenstate) equilibrate with extremely short time
scales (Teq ∼ 1/σE). These results hold as long as N 	 d, but
regardless of the rank of the projectors.

The first statement shows how restricting the measurements
can lead to a whole family of observables that equilibrate
fast, while the second one refers to the time scales of typical
measurements (under the Haar measure), which are indeed
also fast.

To understand why 1/σE is a fast time scale, one can
consider the uncertainty relation between H and an observable

1Note that this limit is well defined, and is obtained by decohering
ρ in the energy eigenbasis, i.e., ω = ∑

n QnρQn where Qn is the
projector onto the nth energy eigenspace.

2In particular, if the state is spread evenly over N energies then
deff = N .

O, which states [16] 2σEσO � |〈[H,O]〉| = |〈Ȯ〉|. Thus, the
minimum necessary time for the expectation value of any
observable to vary significantly is σO/|〈Ȯ〉| � 1/(2σE).

Previous related results on equilibration time scales have
been obtained by Goldstein, Hara, and Tasaki [8]. In that
paper, the authors considered particular constructions of two-
outcome measurements that take a very long or very short
time to equilibrate. Interestingly, they find an example of
a projector with high rank which equilibrates fast, albeit
with very particular properties. Our first result proves fast
equilibration of all small rank projectors, for any system
with high deff . Moreover, we find that most observables also
equilibrate fast (when N 	 d and initial state is pure with high
deff). On the issue of slow time scales, we give an alternative
example to that in [8] of a measurement which equilibrates
slowly (Teq � deff/σE), given a pure initial state with high deff .

We end with a short discussion. Our results can also be
stated almost identically in terms of expectation value of
observables (distinguishability is used here as it provides a
stronger statement of equilibration).

I. FAST EQUILIBRATION

We now show that all systems with high effective dimension
equilibrate fast with respect to the two-outcome measurement
M = {P,1 − P }, whenever either of the projectors is of
sufficiently low rank. Given K = min{rank P, rank(1 − P )},
we will show that the average distinguishability 〈DP (ρt ,ω)〉T
becomes small in a time of the order of K/σE . We start by
defining the function ηε :

Definition 1. Given any Hamiltonian with spectrum
{Ej | j = 1, . . . ,d̃}, a d-dimensional Hilbert space H and any
state ρ : H → H with probabilities pj associated to each
energy level. For any ε > 0,

ηε = max
E∈R

∑
j :

Ej ∈[E,E+ε]

pj (5)

is the maximum probability that can be found inside any energy
interval of size ε.

This function is useful because it captures both the state’s
energy distribution and the Hamiltonian’s energy spectrum.
The theorem is then simply an upper bound on the finite-
time average of the distinguishability DP (ρt ,ω) for any
projector P .

Theorem 1 (Fast equilibration). For any initial state ρ :
H → H, any Hamiltonian, and any projector P where K =
min{rank P, rank(1 − P )},

〈DP (ρt ,ω)〉T � c
√

η 1
T
K, (6)

where c = 5π
4

√
2

1−e−2 + 1 ≈ 6.97.
Proof. Defining the Lorentzian average 〈f (t)〉LT

=∫ ∞
−∞

f (t)T
T 2+(t−T/2)2

dt
π

, any positive function f satisfies 〈f 〉T �
5π
4 〈f 〉LT

.3 Then, by use of the Cauchy-Schwarz inequality

3Define 	T (t) = 1
T

for t ∈ [0,T ], and 0 otherwise. Then, 〈f 〉T =∫ ∞
−∞ 	T (t)f (t)dt , and 	T (t) � 5

4
T

T 2+(t−T/2)2 .

012121-2



QUANTUM SYSTEMS EQUILIBRATE RAPIDLY FOR MOST . . . PHYSICAL REVIEW E 90, 012121 (2014)

and the fact that Tr[ω2] � 1/deff
4

〈DP (ρt ,ω)〉T = 〈|Tr[P (ρt − ω)]|〉T
� 〈Tr[Pρt ]〉T + Tr[Pω]

� 5π

4
Tr[PωLT

] +
√

Tr[ω2] Tr[P 2]

� 5π

4

√
Tr

[
ω2

LT

]
Tr[P 2] +

√
Tr[ω2] Tr[P 2]

� 5π

4

√
K Tr

[
ω2

LT

] +
√

K

deff
, (7)

where ωLT
= 〈ρt 〉LT

and K = rank P . Appendix B shows that

Tr
[
ω2

LT

]
�

2η 1
T

1 − e−2
. (8)

Using the fact that d−1
eff � pmax � ηε,∀ ε > 0, where pmax

is the maximum occupation probability of any en-
ergy level, results in Eq. (6). The reason we may
take K = min{rank P, rank(1 − P )} is that DP (ρt ,ω) =
D1−P (ρt ,ω) ∀ t ∈ R. �

The requirement of “large deff” mentioned in the introduc-
tory section is a consequence of d−1

eff � ηε since η 1
T

cannot
converge to a small value if deff is small.

Note that the quantity Tr[ω2
LT

], corresponding to the purity
of the time-averaged state, is at the core of the equilibration
process, dictating, for any given system, an upper bound on the
time scale of equilibration (the reciprocal of this quantity acts
like a time-dependent effective dimension, growing from 1 to
deff as T increases). The right-hand side of Eq. (8) displays a
bound on the purity which is easier to calculate than the purity
itself (in fact, it is trivial if one knows the spectrum and the
state) and whose tightness is discussed in the following.

This theorem proves that the measurement of a rank-1
projector equilibrates as soon as the energy interval 1/T is
too small to contain a significant portion of the probabilities,
which happens roughly when it is small compared to σE (which
is a very short time scale). Conversely, a rank-K projector
requires that the probabilities be K times smaller. For instance,
if η 1

T
∼ 1

σET
, as we argue in the following, the time scale of

equilibration is at most ∼ K
σE

.

A. Estimating η

We focus now our attention on Eq. (8), in order to compare
how well η 1

T
upper bounds the purity, and to illustrate how easy

it is to estimate η. Given a dense enough energy spectrum, we
can approximate the probability distribution of the initial state
by a continuous function p(E) for which the maximum value
is roughly

max
E

p(E) ∼ a

σE

, (9)

4The equality is easy to check for nondegenerate Hamiltonians or
pure initial states, while the inequality is necessary for degenerate
Hamiltonians with a mixed initial state.

where a is some constant which depends on the shape of
the distribution. Since ηε can always be upper bounded by
ε maxE p(E), we have

η 1
T

� a

σET
, (10)

as long as T is not large enough that the 1
T

window only
contains a few energy levels. In Appendix B we show that
the above estimation is correct for the case of a Gaussian
distribution for the energy probabilities, with a ≈ 0.40 in this
case.

II. TYPICAL MEASUREMENTS

Here, we prove two statements regarding typical two-
outcome measurements composed of a projector of any rank,
applied to any initial state and any Hamiltonian.

Theorem 2 (Typical two-outcome measurements are already
equilibrated for any initial state). Take the rank-K projector
PU defined as the unitary transformation from an energy basis
projector

PU = UPU † =
K∑

n=1

U |n〉〈n|U †, (11)

with U : H → H unitary and |n〉 being energy eigenstates.
The distinguishability between ρt and ω according to PU (and
its complement) averaged over all unitaries is

〈DPU
(ρt ,ω)〉U �

√
K

d2

d − K

d + 1
� 1

2
√

d + 1
. (12)

Proof. The only necessary inequality is the first step, Jensen’s
inequality [17]

〈DPU
(ρt ,ω)〉U �

√
〈DPU

(ρt ,ω)2〉U . (13)

In Appendix C 1 we show that the average of the squared
distinguishability can be exactly calculated to be

〈DPU
(ρt ,ω)2〉U = K

d

d − K

d2 − 1
Tr

[
ρ2

t − ω2]. (14)

Then, the fact that Tr[ω2] � 1/d5 implies that Tr[ρ2
t − ω2] �

(d − 1)/d and leads to the first inequality of Eq. (12). The
second inequality is obtained by setting K = d/2, which
maximizes the expression. �

This average result is relevant because DPU
(ρt ,ω) is a

positive definite quantity. Thus, stating that its average is small
necessarily implies that DPU

(ρt ,ω) is small for most PU (in
other words, it is strongly concentrated close to zero).

This result, however, does not make any statements about
time scales, or the dynamics of equilibration. It is more relevant
to study measurements which start out of equilibrium, and
ask how fast they approach it. For this reason, Theorem 3
visits again the average distinguishability, but constrains the
projector to contain ρ(0) = ρ0 = |
〉〈
| as one of its terms

5It is easy to see the trace is minimized when ω = 1/d .
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(note that for this theorem, we restrict the initial state to be
pure). For that, we divide the Hilbert space between the span
of the initial state and everything else H = H′ ⊕ ρ0, where
dimH = d and dimH′ = d − 1.

Theorem 3 (Typical two-outcome measurements with a
definite initial value equilibrate fast for any pure initial state
with highdeff). Consider the projector given by

�U = ρ0 + PU, PU = UPU †, (15)

where ρ0 is the initial (pure) state, U is a partial unitary
with UU † = U †U = 1H′ , P is any rank-(K − 1) projector
with support on H′. The distinguishability between ρt and
ω according to �U (and its complement) averaged over all
unitaries on H′ is

〈D�U
(ρt ,ω)〉U � Dρ0 (ρt ,ω) + 1

2
√

d − 1
, (16)

where we have (from Theorem 1) that

〈〈D�U
(ρt ,ω)〉U 〉

T
� c

√
η 1

T
+ 1

2
√

d − 1
(17)

decays very fast, with c ≈ 6.
The details of the proof can be found in Appendix C 2. This

result is enough to state that most two-outcome measurements
(of any rank) containing the initial state equilibrate essentially
as fast as the measurement of the rank-1 projector consisting
of only the initial state.

To show that this class of observables is typically out of
equilibrium initially (and thus equilibrates in a nontrivial
way), we show in Appendix C 3 that the average initial
distinguishability is given by

〈D�U
(ρ0,ω)〉U �

(
1 − K − 1

d − 1

)(
1 − 1

deff

)
, (18)

and is therefore significantly above zero so long as the projector
does not cover almost the entire space.

We now extend these results to multioutcome measure-
ments.

Corollary 1 (N -outcome generalization of Theorem 2).
Given N 	 d, the typical N -outcome measurement is already
equilibrated. Describing the measurement by the positive
operator valued measures (POVM)MU = {U †PiU}i=1,N , and
using the result from Theorem 2, it is easy to see that

〈DMU
(ρt ,ω)〉U = 1

2

N∑
j=1

〈DU †Pj U (ρt ,ω)〉
U

� 1

2

N∑
j=1

√
Kj

d2

d − Kj

d + 1

� 1

2

√
N

d + 1
, (19)

where Kj = rank Pj , and the second line is maximal for Kj =
d/N .

Corollary 2 (N -outcome generalization of Theorem 3).
Given N 	 d, typical out-of-equilibrium N -outcome measur-
ements equilibrate fast for any pure initial state with high

deff . Define the POVM Mρ0
U = {ρ0 + U †P1U,U †P2U,

. . . , U †PNU}, with ρ0 + ∑
U †PnU = 1. In Appendix C 4,

we show that

〈
DMρ0

U
(ρt ,ω)

〉
U

� Dρ0 (ρt ,ω) + 1

2

√
N

d − 1
. (20)

This means most measurements are already equilibrated
even for a large number of outcomes as long as N 	 d, a
physically reasonable assumption for systems composed of
many particles given that the dimension d grows exponentially
with the number particles. Furthermore, for any N 	 d, most
measurements with a definite initial value (which are typically
out of equilibrium initially) still equilibrate essentially as fast
as a rank-1 projector.

III. SLOW EQUILIBRATION

This result complements the previous sections by showing
that fast equilibration is not always the case. We find that for
any pure system with high effective dimension it is always
possible to define a measurement for which the equilibration
time is tremendously long.

We do that by considering the projector PHK
onto the

subspace HK defined by

HK = span{|ψ(jτ )〉 | j = 0, . . . ,K − 1}, (21)

with τ = 2ε/σE . We prove in Appendix D that, for any ε,

DPHK
(ρt ,ω) � 1 − ε2 −

√
K

deff
, ∀ t ∈

[
0,Kτ − ε

σE

]
(22)

and

〈
DPHK

(ρt ,ω)
〉
T →∞ � 2

√
K

deff
	 1, (23)

showing that the distinguishability is above some constant
for a time that can be very long, but still equilibrates
eventually.

The construction simply takes the subspace comprised of K

sequential “snapshots” of the wave function, and makes sure
that the time step between these snapshots is small enough
such that the wave function does not move out during the
intermediate times. The “time is long” statement holds because
the necessity to take small steps is nothing compared to the
very large number of steps we are allowed to include (K 	
deff). In Appendix D, we provide an example where this time
is ∼ deff

1000σE
, which can easily be longer than the age of the

universe.

IV. DISCUSSION

In this work, we have proved several properties regarding
observable equilibration, all of which apply to any system
capable of equilibration. First, we find an upper bound on the
time scale of equilibration of any two-outcome measurement
based on the rank of the projector that defines it, which turns
out to be very fast for small ranks. We also find that typical mea-
surements of any rank and any reasonable number of outcomes
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FIG. 1. (Color online) Dρ0 (ρt ,ω) and its finite-time average for
a full period of the harmonic oscillator with level spacing ν and the
initial condition is a pure state spread equally over the first 50 energy
levels (irrespective of phases). Notice that, despite the revival (blue
solid line), the projector still equilibrates (red dotted line).

are already equilibrated. To investigate time scales we then turn
to a natural class of measurements which are typically initially
out of equilibrium (those for which the initial state gives a
definite value) and show that most of these measurements
equilibrate fast, approximately as fast as a rank-1 projector.
On the other hand, we construct a measurement which is
extremely slow to equilibrate. This shows that, indeed, in order
to obtain physically realistic time scales, one must restrict to
further constraints on the measurements and/or on the system
considered.

One characteristic that distinguishes this work from some
previous results [1,10,11,13,15] is that there was no need
to assume nondegenerate energy gaps in order to prove
equilibration. To emphasize this, Fig. 1 plots an example of
the distinguishability Dρ0 (ρt ,ω) of a harmonic oscillator (with
highly degenerate gaps) against its time average. The function
in the figure decays fast for large d, with Teq ∼ 1

dν
, which

implies that typical projectors equilibrate fast, as given by
Eq. (16). Nevertheless, the function returns to its original value
at multiple times of Trev = 2π

ν
, times at which a full revival

manifests. This does not conflict with equilibration because
these revivals are so short that they cannot affect the average
significantly.

The results described here aim to be general, by making
statements as a function of the rank, and which apply to
any system. However, there are specific cases which deserve
special attention. When the measurement is restricted to a small
subsystem of a complex many-body system, it is expected to
equilibrate fast; however, Theorem 1 by itself does not lead to
that conclusion since the outcomes of these measurements
are of high rank. Moreover, typical measurements (in the
Haar measure sense) need not necessarily represent physically
relevant measurements. It would be interesting to study
whether these results can be extended to typical measurements
with certain constraints, for instance, measurements acting on
a small subsystem.

Note added: Recently, we became aware of very recent
independent work [18] which also addresses the issue of the
rapid equilibration of quantum systems.

ACKNOWLEDGMENTS

We would like to thank A. Winter for helpful discus-
sions. A.J.S. acknowledges support from the Royal Society.
A.S.L.M. acknowledges support from the CNPq. Part of
this work was done while the authors were at the Newton
Institute programme on Mathematical Challenges in Quantum
Information.

APPENDIX A: GENERAL BOUND ON TIME
SCALES OF EQUILIBRATION

Following Short and Farrelly [1], we focus on the average
distance between the expected value of some observable A and
its infinite time average. As proved in a footnote in the main
text,6 the usual average can be bounded by the Lorentzian
average, therefore,

〈|Tr[A(ρt − ω)]|2〉T � 5π

4
〈|Tr[A(ρt − ω)]|2〉LT

, (A1)

where ρt is the instantaneous state and ω = limT →∞ 〈ρt 〉T is
the infinite time-averaged state.

Denoting by Ej and |j 〉 the eigenvalues and eigenvectors
of the Hamiltonian, and assuming an initially pure state for
simplicity, the evolved state is

ρt =
d̃∑

j,k=1

cj c
∗
ke

−i(Ej −Ek)t |j 〉〈k|. (A2)

Defining the matrix elements 〈j |A|k〉 = Ajk one has

〈|Tr[A(ρt − ω)]|2〉LT
=

〈∣∣∣∣∑
j �=k

(c∗
kAkj cj )e−i(Ej −Ek)t

∣∣∣∣
2〉

LT

=
∑

j �=k,n�=l

(c∗
kAjkcj )(c∗

l Alncn)∗

× 〈e−i[(Ej −Ek )−(En−El )]t 〉LT
. (A3)

Each energy gap can be labeled by G(j,k) = Ej − Ek with
indexes α = (n,l) and β = (j,k). In this way, we define a
vector v and a Hermitian matrix M:

vα = vn,l = c∗
l Alncn, Mαβ = 〈ei(Gα−Gβ )t 〉LT

. (A4)

With the above definitions, we can see

〈|Tr[A(ρt − ω)]|2〉LT

=
∑
αβ

v∗
αMαβvβ � ‖M‖

∑
α

|vα|2

� ‖M‖
∑
i,j

|ci |2|cj |2|Aji |2 = ‖M‖Tr(AωA†ω)

� ‖M‖
√

Tr(A†Aω2)Tr(AA†ω2)

� ‖M‖‖A‖2Tr(ω2) = ‖M‖‖A‖2

deff
. (A5)

6Define 	T (t) = 1
T

for t ∈ [0,T ], and 0 otherwise. Then, 〈f 〉T =∫ ∞
−∞ 	T (t)f (t)dt , and 	T (t) � 5

4
T

T 2+(t−T/2)2 .
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On the first step, from the definition of the spectral norm
‖M‖‖v‖ � ‖Mv‖ so ‖v‖‖M‖‖v‖ � ‖v‖‖Mv‖ � |v†Mv|.
The other steps come from using the Frobenius inner product
and Cauchy-Schwarz inequality, and from the fact that for pure
states Tr[ω2] = 1/deff , with deff = (

∑
j |cj |2)−1.

By use of the identity 〈eiνt 〉LT
= e−|ν|T eiνT /2, we have

|Mαβ | = |〈ei(Gα−Gβ )t 〉LT
| = e−|Gα−Gβ |T and, since M is a

Hermitian matrix, standard results give

‖M‖ � max
β

∑
α

|Mαβ | = max
β

∑
α

e−|Gα−Gβ |T . (A6)

We can now break the sum into intervals of width ε, centered
around a given gap Gβ . An interval ε can fit at most N (ε) gaps
which satisfy (k + 1/2)ε > Gα − Gβ > (k − 1/2)ε, which in
turn implies |Gα − Gβ | � (|k| − 1/2)ε. Therefore,

|Mαβ | � e−(|k|−1/2)εT . (A7)

For the case k = 0, we just use the fact that |Mαβ | � 1.
The sum is maximized by taking as many small values of

|k| as possible, and since there are d̃(d̃ − 1) terms in total we
have that

max
β

∑
α

|Mαβ | � N (ε)

(
1 + 2

d̃(d̃−1)∑
k=1

e−(k−1/2)εT

)

= N (ε)

(
1 + 2eεT/2 e−εT (e−εT d̃(d̃−1) − 1)

e−εT − 1

)

� N (ε)

(
1 + 2

e−εT /2

1 − e−εT

)
. (A8)

Finally, by using 1
1−e−x � 1 + 1

x
, we get

〈|Tr[A(ρt − ω)]|2〉T � 5π

2

‖A‖2

deff
N (ε)

(
1

2
+e−εT /2 + e−εT /2

εT

)

� 5π

2

‖A‖2

deff
N (ε)

(
3

2
+ 1

εT

)
. (A9)

Comparing this expression to the result in [1], there is an
improvement in the bound of order ∼ log2(d̃).

The result is taken in the original paper by Short and
Farrelly as a stepping stone to obtain bounds on the time
scale of equilibration with respect to the distinguishability.
By the same procedure they take, we obtain that the average
distinguishability for a set of measurements M satisfies

〈DM(ρt ,ω)〉T � S(M)

4

√
5πN (ε)

2deff

(
3

2
+ 1

εT

)
, (A10)

whereS(M) is the total number of outcomes of all the possible
measurements.

A simple estimate illustrates how long these bounds on the
time scales still are. If one assumes the energy levels are more
or less equally distributed, the minimum distance between
energy gaps scales as εmin � �U

d̃2 , with �U being the total
energy range. This gives an equilibration time that scales very
roughly as Teq ∼ 1

deffε
> d̃

�U
, which is terribly long for systems

composed of more than a few particles.

APPENDIX B: THEOREM 1

For a general initial state given by ρ = ∑
jk ρjk|j 〉〈k|, the

purity of ωLT
can be written as

Tr
[
ω2

LT

] = Tr[ωLT
ω
†
LT

] = Tr

[∑
n,m

ρnm〈e−i(En−Em)t 〉LT
|n〉〈m|

×
∑
j,k

ρ∗
jk〈ei(Ej −Ek )t 〉LT

|k〉〈j |
⎤
⎦

=
∑
j,k

|ρjk|2|〈e−i(Ej −Ek )t 〉LT
|2

�
∑
j,k

ρjjρkk|〈e−i(Ej −Ek )t 〉LT
|2

=
∑
j,k

pjpk|〈e−i(Ej −Ek)t 〉LT
|2, (B1)

where the previous to the last line is an equality for an initially
pure state, and the inequality follows in general from positivity
of the density operator.7

By use of the identity 〈eiνt 〉LT
= e−|ν|T eiνT /2 we can in turn

see

Tr
[
ω2

LT

]
�

∑
jk

pjpke
−2|Ej −Ek|T , (B2)

the above being an equality for pure states.
To see the connection to η 1

T
, we define the function

g(x) =
{

1, if x ∈ [0,1)

0, otherwise.
(B3)

This definition is important because it allows us to upper bound
the exponential as

e−|x| �
∞∑

n=0

e−nδg

( |x|
δ

− n

)
, ∀ δ > 0. (B4)

So, we have

Tr
[
ω2

LT

]
�

∞∑
n=0

e−nδ
∑

j

pj

∑
k

pk

× g

(
2|Ej − Ek|T

δ
− n

)

=
∞∑

n=0

e−nδ
∑

j

pj

∑
k :

(2|Ej −Ek | T
δ

−n)∈[0,1)

pk

�
∞∑

n=0

e−nδ
∑

j

pj

⎡
⎢⎣ ∑

k :
Ek∈I−

pk +
∑

k :
Ek∈I+

pk

⎤
⎥⎦

7〈v|ρ|v〉 � 0 for all |v〉, which applies in particular to |v〉 = a|j〉 +
b|k〉, so (ρjj ρjk

ρkj ρkk
) is positive too, and, since the determinant must be

greater than or equal to zero, |ρjk|2 � ρjjρkk .
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FIG. 2. (Color online) Graphic illustration of ηε . The vertical
lines display the probability distribution in energy space of a three-
dimensional harmonic oscillator with energy levels En = (n + 1/2)ν,
under the Boltzmann distribution (accounting for degeneracies) with
temperature = 10ν. The blue shaded region represents η8ν (the
maximum probability that can be found inside an energy interval
of size 8ν).

�
∞∑

n=0

e−nδ
∑

j

pj (2η δ
2T

)

=
2η δ

2T

1 − e−δ
, (B5)

where I+ = [E+,E+ + δ
2T

), I− = (E− − δ
2T

,E−], E± =
Ej ± nδ

2T
, and the inequality in the penultimate line applies

for any combination of n and j .
The important fact is that δ is ours to define, and determines

the balance between the quotient and η. We can, for instance,
set it to 2:

Tr
[
ω2

LT

]
�

2η 1
T

1 − e−2
< 2.32η 1

T
(B6)

and we know the system has equilibrated when the total
probability inside any energy interval of size 1/T is small.
We can also manually fix the energy interval with δ = 2T �E,
so

Tr
[
ω2

LT

]
� 2η�E

1 − e−2T �E
, (B7)

which still leaves us with a free variable, but clearly singles
out the time dependence.

In any case, we have that

〈Tr[ρtP ]〉T � 5π
4

√
K

2η 1
T

1−e−2 < 6
√

η 1
T
K. (B8)

For clarity, Fig. 2 displays a graphic illustration of ηε .

1. Gaussian distribution example

Taking a pure initial state whose probability distribution
can be approximated by the following continuous function of
energy

p(E) = 1√
2πσE

e
− E2

2σ2
E , (B9)

we show that the purity of ωLT
can be approximated by

Tr
[
ω2

LT

] ≈ 1

2
√

πσET
, (B10)

for σET � 1. Meanwhile, we also show that η satisfies

2η 1
T

1 − e−2
<

3.28

2
√

πσET
, (B11)

and therefore

η 1
T

<
0.4

σET
. (B12)

It is interesting to see that, despite the approximations taken,
the function η gives good estimates for the purity of the
average, with much simpler calculations.

a. Calculations

The Fourier transform of the energy distribution defined in
Eq. (B9) is

μ(t) =
∫ ∞

−∞
p(E)e−iEtdE = e− σ2

E
t2

2 . (B13)

Thus, using the continuous version of Eq. (B2) and assuming
a pure state,

Tr
[
ω2

LT

] =
∫∫ ∞

−∞
dE dE′ p(E)p(E′)e−2|E−E′|T

=
∫∫

dE dE′ p(E)p(E′)
∫ ∞

−∞

dt

π

ei(E−E′)2t T

T 2 + t2

=
∫ ∞

−∞

dt

π

T

T 2 + t2
|μ(2t)|2

= T

π

∫ ∞

−∞

e−4σ 2
Et2

T 2 + t2
dt

= 1

π

∫ ∞

−∞

e−4σ 2
ET 2x2

1 + x2
dx

= e4σ 2
ET 2

[1 − erf(2σET )], (B14)

where the second line uses the inverse Fourier transform of
e−2|E−E′|T .

We can use the expansion of the error function

erf(x) = 1 − e−x2

√
πx

+ e−x2O(x−3), (B15)

which, for σET large enough, results in Eq. (B10).

b. Comparison to η

As we have established previously,

Tr
[
ω2

LT

]
< 2.32η 1

T
. (B16)

Since the density p(E) is a Gaussian, ηε is obviously at its
center. Thus,

η 1
T

=
∫ 1

2T

− 1
2T

1√
2πσ

e
− E2

2σ2 dE � 1√
2πσT

,

(B17)

Tr
[
ω2

LT

]
<

3.28

2
√

πσT
,

012121-7



ARTUR S. L. MALABARBA et al. PHYSICAL REVIEW E 90, 012121 (2014)

where the integral was trivially approximated by∫ ε

0 p(E)dE < εp(0).

c. Infinite time limit

The upper bounds we calculated in the example for Tr[ω2
LT

]
tend to zero as T tends to infinity, which seems to contradict
the fact that for the infinite time average state ω, Tr[ω2] is not
zero. The reason this occurs is that we need to be careful when
averaging expressions such as

∑
pjpk exp[−2i(Ej − Ek)t]

over energy levels. The terms with Ej = Ek in the integrals
arising from averages over p(E) do not contribute (they are
of measure zero), whereas in the finite sum they did, giving∑

j=k pjpk = 1/deff . Another way of looking at this is that
taking the continuous limit implies taking deff = ∞.

APPENDIX C: TYPICAL PROJECTORS

Here, we prove Theorems 2 and 3.

1. Proof of Theorem 2

Here, we use the fact (well known from representation
theory) that, for any operator M ,

〈U⊗2M(U⊗2)†〉U = α�S + β�A, (C1)

where �S = (1⊗2 + S)/2 and �A = (1⊗2 − S)/2 are the
projectors onto the symmetric and antisymmetric subspaces
of dimensions d(d+1)

2 and d(d−1)
2 , respectively, and S is

the swap operator on H ⊗ H: S|a〉|b〉 = |b〉|a〉. Given that
Tr[SA ⊗ B] = Tr[AB], it is straightforward to see that, for
M = P ⊗2,

α = Tr[�SP
⊗2]

Tr[�S]
= 1

d(d + 1)
[Tr[P ⊗ P ] + Tr[P 2]]

= K(K + 1)

d(d + 1)
; (C2)

and similarly β = Tr
[
�AP ⊗2

U

]
Tr[�A] = K(K−1)

d(d−1) .
Finally, going back to the distinguishability and using the

fact that Tr[ρtω] = Tr[ω2],

〈DPU
(ρt ,ω)2〉U

= 〈{Tr[PU (ρt − ω)]}2〉U
= Tr[〈PU ⊗ PU 〉U (ρt − ω)⊗2]

= Tr[(α�S + β�A)(ρt − ω) ⊗ (ρt − ω)]

= α + β

2
(Tr[ρt − ω])2 + α − β

2
Tr[(ρt − ω)2]

= K

2d

(
K + 1

d + 1
− K − 1

d − 1

)(
Tr

[
ρ2

t

] + Tr[ω2] − 2 Tr[ρtω]
)

= K

d

d − K

d2 − 1
Tr

[
ρ2

t − ω2
]
. (C3)

2. Proof of Theorem 3

To simplify notation in the proof, we will assume d > 2 and
set d ′ = dimH′ = d − 1 and K ′ = rank PU = K − 1. Again,

the quantity we are interested in will be

〈D�U
(ρt ,ω)〉U = 〈|Tr[�U (ρt − ω)]|〉U

�
√

〈(Tr[�U (ρt − ω)])2〉U
=

√
Tr[〈�U ⊗ �U 〉U (ρt − ω)⊗2]. (C4)

Using the results from Sec. C 1, it is easy to see that

〈�U ⊗ �U 〉U
= 〈ρ0 ⊗ ρ0 + ρ0 ⊗ PU + PU ⊗ ρ0 + PU ⊗ PU 〉U
= ρ0 ⊗ ρ0 + ρ0 ⊗ 〈PU 〉U

+ 〈PU 〉U ⊗ ρ0 + 〈PU ⊗ PU 〉U
= ρ0 ⊗ ρ0 + K ′

d ′ ρ0 ⊗ 1′ + K ′

d ′ 1
′ ⊗ ρ0

+ K ′(K ′ + 1)

d ′(d ′ + 1)
�′

S + K ′(K ′ − 1)

d ′(d ′ − 1)
�′

A, (C5)

where 1′ = 1 − ρ0, �′
S = 1′⊗2�S1′⊗2, and �′

A =
1′⊗2�A1′⊗2. So,

〈Tr[�U (ρt − ω)]2〉U
= Tr[〈�U ⊗ �U 〉U (ρt − ω)⊗2]

= f (t)2 − 2f (t)2 K ′

d ′ + K ′(K ′ + 1)

d ′(d ′ + 1)
Tr[�SA(t)]

+K ′(K ′ − 1)

d ′(d ′ − 1)
Tr[�AA(t)], (C6)

where A(t) = [(1 − ρ0)(ρt − ω)(1 − ρ0)]⊗2, and f (t) =
Tr[ρ0(ρt − ω)]. Since

Tr[�SA(t)] = Tr

[
1⊗2 + S

2
[(1 − ρ0)(ρt − ω)(1 − ρ0)]⊗2

]

= 1

2
Tr[(1 − ρ0)(ρt − ω)(1 − ρ0)(ρt − ω)]

+ 1

2
(Tr[ρt − ω − ρ0(ρt − ω)])2

� 1

2

(
1 − 1

deff

)
+ 1

2
[f (t)]2, (C7)

where the last line is due to Tr[�X�X] � Tr[X2]
for a projector � (in this case, 1 − ρ0), which fol-
lows from the Cauchy-Schwarz inequality Tr[�X�X] �√

Tr[X2] Tr[�X�X]. Thus, since

Tr[�AA(t)] = Tr

[
1⊗2 − S

2
[(1 − ρ0)(ρt − ω)]⊗2

]

� 1

2

(
f (t)2 − 1 + 1

deff

)
, (C8)

we have

〈Tr[�U (ρt − ω)]2〉U
� f (t)2

(
1 + 1

2

K ′(K ′ + 1)

d ′(d ′ + 1)
+ 1

2

K ′(K ′ − 1)

d ′(d ′ − 1)
− 2

K ′

d ′

)
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+ 1

2

(
1 − 1

deff

)[
K ′(K ′ + 1)

d ′(d ′ + 1)
− K ′(K ′ − 1)

d ′(d ′ − 1)

]

= f (t)2

(
1 − 2

K ′

d ′ + K ′

d ′
K ′d ′ − 1

d ′2 − 1

)

+
(

1 − 1

deff

)
K ′

d ′
d ′ − K ′

d ′2 − 1

� f (t)2 + 1

4d ′ . (C9)

The last line can be derived from the fact that the first
parentheses in the penultimate equation is maximized by
K ′ = 0, and the second term is maximized by K ′ = d ′/2,
along with deff � d and d ′2

(d ′−1)(d ′+1)2 � 1
d ′ .

3. Proof of typical initial distinguishability

To show that observables with a definite initial value are
typically out of equilibrium (and thus undergo a nontrivial
equilibration process) we consider the initial distinguishability
between ρ0 and ω for a measurement of �U , averaged over
U . As before, we will set d ′ = dimH′ = d − 1 and K ′ =
rank PU = K − 1:

〈D�U
(ρ0,ω)〉U = 〈|Tr[�U (ρ0 − ω)]|〉U

= 〈(1 − Tr[�Uω])〉U
= 1 − Tr

[[
ρ0 + K ′

d ′ (1 − ρ0)

]
ω

]

=
(

1 − K ′

d ′

)
(1 − Tr[ρ0ω])

�
(

1 − K − 1

d − 1

)(
1 − 1

deff

)
, (C10)

where the last line is an equality if ρ0 is pure.
Note that because refining a measurement (by splitting one

outcome into many) can only increase the distinguishability, it
follows that〈

DMρ0
U

(ρt ,ω)
〉
U

�
(

1 − K − 1

d − 1

)(
1 − 1

deff

)
, (C11)

where here K is the rank of the measurement projector
containing ρ0.

4. Proof of Corollary 2

Denoting by Kj the rank Pj , we have that∑
j

Kj = d ′ (C12)

and〈
DMρ0

U
(ρt ,ω)

〉
U

= 1

2
〈Dρ0+P1U

(ρt ,ω)〉
U

+ 1

2

N∑
j=2

〈DPjU
(ρt ,ω)〉

U

� 1

2

√
〈Dρ0+P1U

(ρt ,ω)2〉
U

+ 1

2

N∑
j=2

√
〈DPjU

(ρt ,ω)2〉
U
.

(C13)

Following the proof in Appendix C 2 above, and using the
fact that 1 − 1

deff
� 1 − 1

d
= d ′

d ′+1 , leads to

〈
DPjU

(ρt ,ω)2
〉
U

� f (t)2 Kj

d ′
Kjd

′ − 1

d ′2 − 1
+ Kj

d ′ + 1

d ′ − Kj

d ′2 − 1
(C14)

and

〈Dρ0+P1U
(ρt ,ω)2〉

U

� f (t)2

(
1 − 2

K1

d ′ + K1

d ′
K1d

′ − 1

d ′2 − 1

)
+ K1

d ′ + 1

d ′ − K1

d ′2 − 1

� f (t)2

(
1 + K1

d ′
K1d

′ − 1

d ′2 − 1

)
+ K1

d ′ + 1

d ′ − K1

d ′2 − 1

= f (t)2 + 〈
DP1U

(ρt ,ω)2
〉
U
. (C15)

By using the fact that
√

a + b � √
a + √

b for a,b � 0,
this leads to

〈
DMρ0

U
(ρt ,ω)

〉
U

� 1

2
|f (t)| + 1

2

N∑
j=1

√〈
DPjU

(ρt ,ω)2
〉
U
.

(C16)

Through the method of Lagrange multiplier, it is easy to
see that the sum in Eq. (C16), expressed in terms of the
Kj ’s through Eq. (C14) and constrained by Eq. (C12), is
maximized by taking all Pj to be of equal rank. This rank
must then be Kj = d ′/N . Substituting that into Eq. (C14),
and using the inequalities d ′2−N

d ′2−1 < 1, 1 − 1/N < 1, and d ′3 �
(d ′ + 1)2(d ′ − 1),

〈
DMρ0

U
(ρt ,ω)

〉
U

� 1

2
|f (t)| + 1

2
N

√
f (t)2

N2

d ′2 − N

d ′2 − 1
+ d ′/N

d ′ + 1

d ′(1 − 1
N

)
d ′2 − 1

� 1

2
|f (t)| + 1

2

√
f (t)2 + Nd ′2

(d ′ + 1)2(d ′ − 1)

� |f (t)| + 1

2

√
N

d ′ . (C17)

APPENDIX D: SLOW EQUILIBRATION

The slow equilibration result can be rigorously stated as the
following theorem.

Theorem 4 (Slow equilibration). Given any Hamiltonian,
any pure state |ψ(t)〉 ∈ H with effective dimension deff , any
positive integer K 	 deff , and any ε > 0; take σE to be the
standard deviation in energy of |ψ〉, and PHK

to be the projector
onto the subspace

HK = span{|ψ(jτ )〉 | j = 0, . . . ,K − 1}, (D1)
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with τ = 2ε/σE ; then the distinguishability satisfies the
following two equations:8

DPHK
(ρt ,ω) � 1 − ε2 −

√
K

deff
, ∀ t ∈

[
0,

(2K − 1)ε

σE

]

(D2)

and

〈
DPHK

(ρt ,ω)
〉
T →∞ � 2

√
K

deff
	 1 (D3)

(it is above some constant for long times, but still equilibrates
eventually).

Proof. Since τ is a very small time step, the overlap between
|ψ(0)〉 and |ψ(τ )〉 is nearly 1. To prove this, we write |ψ(t)〉
in the energy basis

|ψ(t)〉 =
d̃∑
n

cne
−iEnt |n〉 (D4)

and calculate its internal product with its initial state

|〈ψ(t)|ψ(0)〉|2 =
∣∣∣∣∣∣

d̃∑
n

|cn|2e−iEnt

∣∣∣∣∣∣
2

=
d̃∑

nm

|cn|2|cm|2 cos[(En − Em)t]

� 1 − t2

2

d̃∑
nm

|cn|2|cm|2(E2
n+E2

m−2EnEm

)

= 1 − (2E2 − 2E
2
)
t2

2

= 1 − σ 2
Et2, (D5)

where σE is the standard deviation in energy. So, we have that

|〈ψ(t)|ψ(0)〉|2 � 1 − ε2 (D6)

∀ t such that |t | � τ/2 = ε/σE . This trivially implies

|〈ψ(t)|ψ(t ′)〉|2 � 1 − ε2 (D7)

∀ t,t ′ such that |t − t ′| � τ/2.
Meanwhile, HK contains, by definition, all projectors

|ψ(jτ )〉〈ψ(jτ )| for j up to K − 1. Therefore, for any time
t up to (K − 1/2)τ , the state |ψ(t)〉 is very close to one of
these projectors.

In other words, there is always a value of 0 � j � K − 1
such that |t − jτ | � τ/2 and

Tr[ρtPHK
] = 〈ψ(t)|[Pjτ + P ⊥

jτ ]|ψ(t)〉
� |〈ψ(jτ )|ψ(t)〉|2 � 1 − ε2, (D8)

8The time range in Eq. (D2) can be increased to 2Kε/σE by a
slightly more complicated construction of HK .

where Pt = |ψ(t)〉〈ψ(t)| and P ⊥
t = PHK

− Pt . This directly
leads to Eq. (D2):

DPHK
(ρt ,ω) = ∣∣Tr

[
PHK

(ρt − ω)
]∣∣

� Tr
[
PHK

ρt

] − Tr
[
PHK

ω
]

� 1 − ε2 −
√

K

deff
. (D9)

Equation (D3) is easily obtained from the Cauchy-Schwarz
inequality〈

DPHK
(ρt ,ω)

〉
T →∞ = 〈| Tr[PHK

(ρt − ω)]|〉T →∞

�
〈
Tr

[
PHK

ρt

] + Tr
[
PHK

ω
]〉

T →∞

= 2 Tr
[
PHK

ω
]

� 2
√

Tr
[
PHK

2
]

Tr[ω2]

� 2

√
K

deff
	 1. (D10)

�
The role played by Eqs. (D2) and (D3) is simple. (i) The

system obviously has not equilibrated, and is still distinguish-
able from its equilibrium state, as long as DPHK

(ρt ,ω) is
significantly above zero. (ii) On the other hand, the rank of
PHK

is small enough that any system spread over many energy
levels will equilibrate with respect to it.

For instance, if we take K = deff/1000 (which is extremely
large) and ε = 1

2 , we have

DPHK
(ρt ,ω) � 1

2
, ∀ t ∈

[
0,

deff

1000σE

]
. (D11)

For systems composed of many particles, we would typically
expect σE ∼ ln(deff) leading to the system taking a time of
order deff

ln(deff )
to equilibrate with respect to this measurement.

To illustrate how large this time scale can be, we describe
now a simple example, the time scale depends only on σE

and deff , and is largely independent on the details. Consider
a system of L weakly interacting qubits with level spacing
δE = 10−18 J, the order of the excitation energy in atoms.
Defining each qubit to have equal population on each level,
simple calculations give σE ≈ √

LδE and deff ≈ 2L, and we
get T slow

eq > �deff
1000σE

≈ 2LL− 1
2 10−19 s.9 Then, taking as little as

125 qubits already gives T slow
eq � 4.1017 s, nearly the age of the

universe and increasing exponentially with L. In contrast, for
the same number of particles, the average distinguishability
of a typical measurement falls below 10−3 in a time scale of
T

typ
eq � 60002

�

σE
≈ 3 × 10−10 s. This typical time scale decreases

with L− 1
2 , becoming even smaller for macroscopic systems,

and is obtained from Theorem 3 by assuming η 1
T

� 1/σET as
discussed in the main text.

Of course, the construction in Theorem 4 is not the only
possibility and indeed an alternative construction is given in
[8]. For instance, one can easily define measurements with

9Throughout the paper, we choose units such that � = 1. Only in
this example we adopt S. I. units for illustration purposes.
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a larger number of outcomes, which also obey Eq. (D2) for
at least as long as DPHK

(see Appendix E). It is also worth
mentioning that this theorem trivially extends to the existence
of an observable and whose expectation value takes a long
time to equilibrate since PHK

is, of course, an observable.
The distinguishability simply presents a stronger definition of
equilibration.

APPENDIX E: EXTENSION TO N OUTCOMES

Theorem 1 can be generalized to N -outcome measure-
ments M = {P1, . . . ,PN } with the bound 〈DM(ρt ,ω)〉T �
c
2
√

η 1
T

∑N
i=1

√
ki where ki = min {rank Pi,d − rank Pi}.

There are several ways one could extend Theorem 4. One
is to simply divide HK into N − 1 smaller subspaces. Then,

one has M = {PHK 1
, . . . ,PHK N−1

,1 − PHK
}, and the resulting

distinguishability

DM(ρt ,ω) = 1

2

N−1∑
n=1

∣∣Tr
[
PHK n

(ρt − ω)
]∣∣

+ 1

2

∣∣Tr
[
(1 − PHK

)(ρt − ω)
]∣∣

� 1

2

∣∣∣∣∣Tr

[
N−1∑
n=1

PHK n
(ρt − ω)

]∣∣∣∣∣
+ 1

2

∣∣Tr
[
(1 − PHK

)(ρt − ω)
]∣∣

= DPHK
(ρt ,ω) (E1)

takes at least as long to equilibrate as DPHK
.
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