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Optimal efficiency of a noisy quantum heat engine
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In this article we use optimal control to maximize the efficiency of a quantum heat engine executing the Otto
cycle in the presence of external noise. We optimize the engine performance for both amplitude and phase noise.
In the case of phase damping we additionally show that the ideal performance of a noiseless engine can be
retrieved in the adiabatic (long time) limit. The results obtained here are useful in the quest for absolute zero, the
design of quantum refrigerators that can cool a physical system to the lowest possible temperature. They can also
be applied to the optimal control of a collection of classical harmonic oscillators sharing the same time-dependent
frequency and subjected to similar noise mechanisms. Finally, our methodology can be used for the optimization
of other interesting thermodynamic processes.
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I. INTRODUCTION

A quantum heat engine executing the Otto cycle is the
prototypic quantum system which has been extensively used
in the quest for absolute zero, the attempt to cool a physical
system towards lower and lower temperatures [1–4]. The
overall performance of the engine is considerably affected
by the necessary time to perform the adiabatic expansion
and compression phases of the cycle. Although in general
an infinite amount of time is needed to complete an adiabatic
operation with perfect fidelity, it has been shown that for the
heat engine at hand the same fidelity as with the adiabatic
process can be obtained in finite time [3]. Even shorter times
can be achieved using the recently proposed ideas of a short-
cut to adiabaticity [5–8] and transitionless quantum driving
[9–11], as suggested in Refs. [12–16]. Note that the perfect,
effectively adiabatic evolution is actually an idealization, since
in practice there is always present some kind of external noise.
In all the above-mentioned works, the effect of noise has been
considered only indirectly by minimizing the evolution time
and thus the duration of undesirable exposure to the noise
sources. Recently, the effect of noise on the fast adiabatic-like
dynamics has attracted some attention and has been studied for
open two-level [17,18] and multilevel [19] quantum systems,
cooling [20], and the aforementioned heat engine performing
the noisy quantum Otto cycle [21].

In the present article we use optimal control to maximize
numerically the performance of the noisy quantum heat
engine presented in Ref. [21]. Note that optimal control
has been successfully employed to improve various tasks
in the dynamics of open quantum systems, for example, to
maximize the efficiency of polarization-coherence transfer
between coupled spins in nuclear magnetic resonance (NMR)
[22–25], to control the relaxation of a qubit [26–28] as
well as in multilevel quantum systems [29–32], to maximize
the fidelity of quantum gates [33], and even to manipulate
quantum coherence phenomena in light harvesting dynamics
[34]. In parallel with these theoretical works related to the
control of noisy quantum systems, there is also consider-
able experimental progress. As an example, we mention
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the emerging area of quantum optomechanics [35], where
micro- or nanomechanical oscillators are coupled to optical
cavities [36,37]. Full control of the mechanical oscillator
quantum state can be achieved using the cavity field if the
coherent coupling rate exceeds the decoherence rate of each
subsystem [37]. For this kind of noisy quantum systems, the
optimal efficiency during adiabatic cooling is an experimental
problem of much current interest. Another motivation for the
present study is provided by the renewed interest in optimal
thermodynamic processes [3,13,38–44]. Optimal control is the
ideal mathematical tool to tackle this kind of problems. Note
that the relation between optimal control and thermodynamics
is deeper and can be traced back to Carathéodory. The famous
mathematician, with seminal contributions in the calculus of
variations which paved the way to optimal control theory [45],
pioneered the axiomatic formulation of thermodynamics along
a purely geometric approach [46].

In the next section we quickly recall the model of a noisy
quantum heat engine proposed in Ref. [21]. In Sec. III we
formulate the problem of maximizing the engine efficiency in
terms of optimal control and present an appropriate numerical
optimization method. This method is used in Sec. IV to obtain
the optimal inputs and the corresponding efficiency of the
engine. The section also contains a discussion of the results.
Section V concludes the paper.

II. QUANTUM OTTO CYCLE WITH EXTERNAL NOISE

In this article we consider the model of a noisy quantum
heat engine proposed in Ref. [21]. The working medium of the
engine is an ensemble of noninteracting particles confined by
a harmonic potential with a bounded time varying frequency
ωc � ω(t) � ωh, which serves as the external control of the
system. During the execution of a quantum Otto cycle (where
changes in the stiffness of the potential correspond to changes
in volume [1]), the working medium extracts heat from a
cold bath at temperature Tc and delivers it to a hot bath at
temperature Th. The cycle is composed by four phases: two
isochores, where the medium is in contact with the hot or
cold bath while ω(t) = ωh or ω(t) = ωc, respectively, and
the expansion and compression phases, where the medium
is isolated from these baths and ω(t) is changed from ωh to ωc

or vice versa.
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During the operation of the engine, the time evolution of a
quantum observable Â in the Heisenberg picture is given by

dÂ

dt
= i

�
[Ĥ ,Â] + L(Â) + ∂Â

∂t
, (1)

where

Ĥ = p̂2

2m
+ mω2(t)q̂2

2
(2)

is the Hamiltonian for the working medium with particles of
mass m and L is the Liouville superoperator expressing the
effect of noise, which differs for various phases of the cycle
[21]. At the isochores, this term results to a trivial exponential
decay towards thermal equilibrium [21]. For this reason we
will not pursue further this case but rather concentrate on the
more interesting dynamics at the expansion and compression
phases. We emphasize that for these phases the engine is
isolated from the heat baths of constant temperature but it
is subject to fluctuations in the external control which induce
noise [21]. The corresponding Liouville superoperator is [21]

L(Â) = −γp

�2
[Ĥ ,[Ĥ ,Â]] − γaω

2[B̂,[B̂,Â]], (3)

where B̂ = mωq̂2/2� and γp,γa are constants expressing noise
strength. As explained in Ref. [21] and in Appendix A, the
first term in (3) corresponds to phase damping [47,48], while
the second term to random fluctuations in the stiffness of the
harmonic potential. The derivation of the master equation (1)
with decoherence given by (3) relies on the assumption that
the two noise mechanisms are independent and represent zero-
mean Gaussian white noises, see, for example, Ref. [49].

The Hamiltonian (2), the Lagrangian

L̂ = p̂2

2m
− mω2(t)q̂2

2
, (4)

and the position-momentum correlation

Ĉ = ω(q̂p̂ + p̂q̂)

2
(5)

form a closed set under the time evolution generated by Ĥ and
L [21]. It is sufficient to follow the expectation values E =
〈Ĥ 〉, L = 〈L̂〉, and C = 〈Ĉ〉 of the above operators, which
evolve according to

Ė =
(

ω̇

ω
+ γaω

2

)
(E − L), (6)

L̇ =
(

− ω̇

ω
+ γaω

2

)
E +

[
ω̇

ω
− (4γp + γa)ω2

]
L

− 2ωC, (7)

Ċ = 2ωL +
(

ω̇

ω
− 4γpω2

)
C. (8)

Note that the above equations are equivalent to Eq. (16) in
Ref. [21]. In Appendix A we show how they can be obtained
using stochastic calculus, as an alternative to the open quantum
systems formalism used here.

In this paper we concentrate on the evolution along the
expansion phase of the cycle, where the frequency of the

confining harmonic potential decreases from ω(0) = ωh to
ω(T ) = ωc at the final time t = T , so the working medium
is actually expanded. The initial conditions are

E(0) = Eh, L(0) = C(0) = 0, (9)

where Eh is the initial energy while L(0) = 0 corresponds
to equipartition and C(0) = 0 to the absence of correlations
(ensemble in thermal equilibrium). Our goal is to find the
frequency profile ω(t) which minimizes the final energy
E(T ) = Ec, maximizing thus the performance of the engine
[3]. The von Neumann entropy of the system is a monotoni-
cally increasing function of the following quantity, called the
Casimir companion [50]:

X = E2 − L2 − C2

�2ω2
. (10)

From (6), (7), and (8) we find

Ẋ = 2

�2
[γa(E − L)2 + 4γp(L2 + C2)]. (11)

Observe that in the absence of noise (γa = γp = 0), X is a
constant of the motion (Casimir invariant). In this case, the
minimum final energy is obtained for L(T ) = C(T ) = 0 and
ω(T ) = ωc and is given by [3]

Ec = ωc

ωh

Eh. (12)

In the presence of noise, it is Ẋ � 0, so Ec � ωcEh/ωh. We
would like to find ω(t) such that E(T ) = Ec is minimized and
the final conditions

L(T ) = C(T ) = 0 (13)

are satisfied. We can quantify the performance of the engine
relative to the noiseless case using the following measure [21]:

δ = ωhEc

ωcEh

− 1 � 0. (14)

Note that δ quantifies the decrease in the heat extraction
efficiency of the engine due to noise [21]. In the ideal, noiseless
case it is δ = 0; in general, the smaller δ is the better the
efficiency of the engine.

In the recent work [21] the authors consider the frequency
profile

ωn(t) = ωh

1 − μnωht
, μn =

−2 ln
(

ωh

ωc

)
√

4n2π2 + ln2
(

ωh

ωc

) , (15)

n = 1,2, . . .. With this choice, the final condition (13) is
satisfied in the ideal case for t = Tn, where

Tn =
(

ωh

ωc
− 1

)√
4n2π2 + ln2

(
ωh

ωc

)
2ωh ln

(
ωh

ωc

) . (16)

In the presence of noise, the application of the above control
input results in some remaining final energy in the L and C

modes. The dissipation of this parasitic energy into the cold
bath can stop the operation of the engine [21]. In the present
paper we will use optimal control to find the frequency profile
that minimizes the final energy and thus δ, while satisfying as
closely as possible the final conditions (13).
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III. MINIMIZING THE EFFECT OF NOISE USING
OPTIMAL CONTROL

In order to bring the previously defined problem in a more
appropriate form for the application of optimization methods,
we use the state variables introduced in Refs. [51,52], with an
additional normalization

x1 = ω2
h

ω2

E − L

Eh

, x2 = E + L

Eh

, x3 = ωh

ω

C

Eh

. (17)

Equations (6), (7), and (8) become

ẋ1 = −2γpux1 + 2γpx2 + 2x3, (18)

ẋ2 = 2(γa + γp)u2x1 − 2γpux2 − 2ux3, (19)

ẋ3 = −ux1 + x2 − 4γpux3, (20)

where time and noise strengths are normalized as

tnew = ωht, γa,new = ωhγa, γp,new = ωhγp, (21)

while the new control variable

u(t) = ω2(t)

ω2
h

(22)

satisfies

u(0) = 1, u(T ) = ω2
c

ω2
h

,
ω2

c

ω2
h

� u(t) � 1. (23)

The initial conditions (9) become

x1(0) = x2(0) = 1, x3(0) = 0. (24)

The old variables can be expressed as

E

Eh

= x2 + ux1

2
,

L

Eh

= x2 − ux1

2
,

C

Eh

= √
ux3. (25)

It is not hard to see that the objective to find the control u(t)
minimizing E(T ) under the final conditions (13) is equivalent
to minimize x2(T ) under the final conditions

x2(T ) − u(T )x1(T ) = 0, x3(T ) = 0. (26)

The main advantage of using the new variables (17) is
that ω̇ does not appear in the new state equations, so the
control u(t) in (22) can contain even jump discontinuities
[51,52]. Indeed, it can be shown that in the absence of
noise the optimal control achieving the minimum value of
the final energy (12) in minimum time has the bang-bang
form, jumping between and waiting at the extreme values of
u [3,51,52]. When noise is present (γa > 0 or γp > 0), the
control appears quadratically in (19). In this case, optimal
control theory [53] implies that the optimal control may
contain, additionally to the bang segments, time intervals
where u(t) is continuous. Now, an important observation is
that no matter what variables we use, we face a two-point
boundary value problem, as can be seen from conditions (23),
(24), and (26), in a three-dimensional nonlinear control system.
For such problems it is in general difficult to find an analytical
solution, and we have to rely on numerical optimization.
We choose the Legendre pseudospectral method for optimal
control [54]. This method, extensively used for trajectory
optimization in aerospace applications [55], has been proven
successful for pulse design in open quantum systems in the

context of nuclear magnetic resonance spectroscopy [56]. The
idea behind the method is to convert a continuous-time optimal
control problem to a discrete nonlinear programming problem,
which can be solved by many well-developed computational
algorithms.

In order to apply the proposed method, it is first necessary
to transform the problem from the time interval t ∈ [0,T ] to
τ ∈ [−1,1], using the transformation τ = (2t − T )/T . In a
redundant use of notation, we make this transition and reuse
the same time variable t . The next step is to approximate the
states xr (t),r = 1,2,3 and the control u(t) by the N th-order
interpolating polynomials INxr (t),INu(t) in the Lagrange
polynomial basis �i(t),

xr (t) � INxr (t) =
N∑

i=0

xri�i(t), (27)

u(t) � INu(t) =
N∑

i=0

ui�i(t). (28)

By using the N + 1 Legendre-Gauus-Lobatto (LGL) interpo-
lation nodes, the error in the above approximations is close to
minimum [57]. The LGL grid is composed of the end points
t0 = −1 and tN = 1 and the N − 1 roots of the derivative
of the N th-order Legendre polynomial. From the property
�i(tj ) = δij of the Lagrange polynomials we have INxr (tj ) =
xrj = xr (tj ), INu(tj ) = uj = u(tj ) for j = 0 . . . N .

The Legendre pseudospectral method is a collocation
method where the dynamics is enforced at the LGL nodes.
The derivative of INxr (t) at the LGL node tk is given by [56]

d

dt
INxr (tk) =

N∑
i=0

xri �̇i(tk) =
N∑

i=0

Dkixri , (29)

where Dki are elements of the constant (N + 1) × (N + 1)
differentiation matrix D defined by [57]

Dki =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN (tk )
LN (ti )

1
tk−ti

k �= i

−N(N+1)
4 k = i = 0

N(N+1)
4 k = i = N

0 otherwise.

(30)

Equations (18), (19), and (20) take the discrete form

2

T

N∑
i=0

Dkix1i = −2γpukx1k + 2γpx2k + 2x3k, (31)

2

T

N∑
i=0

Dkix2i = 2(γa + γp)u2
kx1k − 2γpukx2k − 2ukx3k,

(32)

2

T

N∑
i=0

Dkix3i = −ukx1k + x2k − 4γpukx3k, (33)

where k = 0 . . . N and the factor 2/T on the left-hand sides
comes from the initial change in the time variable. The initial
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conditions (24) become

x10 = x20 = 1, x30 = 0, (34)

and, analogously, the final conditions (26)

x2N − uNx1N = 0, x3N = 0. (35)

The control constraints (23) take the form

u0 = 1 , uN = ω2
c

ω2
h

,
ω2

c

ω2
h

� uk � 1. (36)

The objective is to find xrk and uk , where r = 1,2,3 and k =
0 . . . N , such that x2N is minimized and the above conditions
are satisfied.

Observe that the original continuous-time optimal control
problem has been transformed to a discrete nonlinear pro-
gramming problem, which can be solved by existent software
packages. In this article we use a mathematical programming
language (AMPL) [58] with the MINOS 5.5 solver. After
calculating the optimal uk , we interpolate them to obtain a
continuous control u(t). We subsequently apply this control to
system equations (18)–(20) using MATLAB function ode45 and
record the resultant efficiency. Note that all the results of the
next section are obtained using N = 69.

IV. RESULTS AND DISCUSSION

Using the optimization method described in the previous
section, we can find the controls maximizing the efficiency of
the engine for various values of the parameters. In Fig. 1(a) we
plot the numerically obtained optimal quantity δ (14) versus
the normalized duration ωhT , in the case of pure dephasing
γa = 0, ωhγp = 0.01 and for the ratio ωc/ωh = 1/3 (blue solid
line). For comparison, we also display the same quantity for
the frequency profile (15) used in Ref. [21] and for durations
Tn,n = 1,2,3,4,5 from (16) (red circles). Obviously, a smaller
value of δ (and thus a better engine performance) corresponds
to the optimized case. Also observe that there is a minimum
time such that the optimization problem defined in Sec. III
has a feasible solution. For the specific parameter values, this
minimum time is ωhT = 1.85. This time is larger than the
minimum necessary time to obtain the ideal performance δ = 0
in the absence of noise, which can be found in Ref. [3] and
is ωhT = 1.79 for our example. In Fig. 1(b) we plot for both
cases the quantity

√
L2

f + C2
f =

√
L2(T ) + C2(T ), which is

a measure of the undesirable remaining energy in the L,C

modes. We observe that this parasitic energy is lower in the
optimized case (blue solid line). Although one may expect this
quantity to be zero for the optimized case, there is a remaining
value due to the discretization and the interpolation that we use
to obtain the continuous u(t), as explained in the last paragraph
of the previous section.

Note that in the case of pure dephasing γa = 0,γp > 0
the Casimir companion X is conserved for evolution along
the direction (E,0,0), as can be easily seen from (11).
For large-enough T , the system can evolve closely to this
direction following an almost noise-free path, as explained
in Appendix B. In the limiting case T → ∞, the maximum
efficiency of the ideal case δ = 0 can be obtained despite the
presence of dephasing, as we show in Appendix B and depict
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FIG. 1. (Color online) (a) For γa = 0, ωhγp = 0.01 (phase damp-

ing), and ωc/ωh = 1/3 we plot the optimal parameter δ (blue solid
line), as well as the same quantity for the frequency profile (15)
used in Ref. [21] and for durations Tn,n = 1,2,3,4,5 from (16) (red
circles). Observe that the optimized δ is lower, corresponding to a
higher efficiency. Note that there is a minimum necessary time for
a feasible solution of the optimization problem, ωhT = 1.85. For
large T parameter δ approaches zero, the ideal value corresponding
to the noiseless case. The reason is that for phase damping and
long-enough durations, the evolution of the system can take place
close to a noise-free path. (b) For both cases we display a measure
of the undesirable remaining energy in the L,C modes. Observe that
this parasitic energy is lower in the optimized case (blue solid line).

in Fig. 1(a). The situation is reminiscent of stimulated Raman
adiabatic passage (STIRAP) in a 	-type atom, where perfect
population transfer is achieved between two ground states
coupled through a lossy excited state, which is actually never
populated in the adiabatic (long time) limit. The attainment
of ideal performance in the presence of dephasing can be
attributed to the existence of a path along the noise-free
subspace (E,0,0) connecting the initial and final states [31].
Note that this result seems to be in contrast with the finite
limiting value for δ obtained in Ref. [21], see Eq. (32) there.

In Fig. 2 we plot the optimal input u(t) = ω2(t)/ω2
h for

various values of the duration T and for the same parameters
as before. Observe that for short T the optimal control contains
bang segments, where it takes values on the boundaries,
while for larger T it is smoother. This control shape can
be understood considering that for short durations the major
efficiency bottleneck is not the noise but the limited available
time. It is also consistent with the optimal control form
expected from the application of Pontryagin’s maximum
principle [53] to our system, where the bounded control u
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FIG. 2. (Color online) For γa = 0, ωhγp = 0.01, and ωc/ωh =
1/3 we plot the numerically obtained optimal frequency profile
for various values of the normalized time. Observe that for shorter
available times the optimal frequency takes values on the boundary
of the allowed region (23), while for larger times it is smoother.

enters quadratically the state equation (19) when noise is
present.

In Fig. 3(a) we plot the optimal δ versus the normalized
time ωhT for ωhγa = 0.02, γp = 0 and for the same ratio
ωc/ωh = 1/3 as before (blue solid line). Again, there is a
minimum necessary time such that the optimization problem
has a feasible solution, which is ωhT = 1.89. For short T

close to the minimum, δ is large. As T increases, δ decreases
and attains a minimum value. After that, δ increases with
increasing T . This dependence of δ on T can be understood in
the following way. For short T , the small available time limits
the performance, while for large T the efficiency is degraded
by the noise. Note that for γa > 0,γp = 0, a noise-free path
would require E = L, as we can observe from (11). But this
is not the case for the transfer that we examine, since E > 0
and L = 0 at the initial and final times. As a consequence,
for this type of noise the performance is reduced for larger
times. In the same figure, we also plot δ for the input (15) used
in Ref. [21] and for durations Tn,n = 1,2,3,4,5 from (16)
(red circles). Again, these values of δ are larger than those
corresponding to the optimized case. In Fig. 3(b) we display
the quantity

√
L2

f + C2
f for the same inputs, and we observe

that the remaining parasitic energy is lower for the optimized
case.

In Fig. 4 we plot the optimal input u(t) = ω2(t)/ω2
h for

various values of the duration T and for the same parameters
used in Fig. 3. Observe that for short T , where the main
efficiency limitation is the small available time, the shape of
the optimal control is similar to the previous case of pure
dephasing; compare Figs. 2(a) and 2(b) with Figs. 4(a) and
4(b). For longer times, where the noise plays the major role,
the optimal shape differs for the different noise mechanisms;
compare Figs. 2(c) and 2(d) with Figs. 4(c) and 4(d).
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FIG. 3. (Color online) (a) For ωhγa = 0.02, γp = 0 (amplitude
noise), and ωc/ωh = 1/3 we plot the optimal parameter δ (blue solid
line), as well as the same quantity for the frequency profile (15) used in
Ref. [21] and for durations Tn,n = 1,2,3,4,5 from (16) (red circles).
Again, the optimized δ is lower, corresponding to a higher efficiency,
and there is a minimum necessary time for a feasible solution of
the optimization problem, ωhT = 1.89. For small T the quantity δ

increases due to the limited available time, while for large T increases
since for amplitude noise the evolution does not take place along a
noise-free path. As a result, there is an intermediate time T where δ

is minimized. (b) The parasitic energy is again lower in the optimized
case (blue solid line).

When both phase and amplitude noise are present, the
dependence of δ on T is similar to that shown in Fig. 3(a),
i.e., there is an optimal T where δ is minimized, as explained
in [21]. The location of the minimum depends on the ratio
γp/γa . In general, for larger values of this ratio the minimum
is shifted towards higher T , while for lower values it is shifted
towards smaller T .

V. CONCLUSION AND FUTURE WORK

In this paper, we applied optimal control to maximize the
performance of a quantum heat engine executing the Otto cycle
in the presence of external noise. We have shown numerically
that there is an improvement in the engine efficiency compared
to that obtained with the input used in Ref. [21] for both
amplitude and phase noise. In the case of phase damping
we have additionally proved that the ideal performance of
a noiseless engine can be retrieved in the adiabatic limit
T → ∞. These results can find application in the quest for
absolute zero, i.e., the design of quantum refrigerators that
can cool a quantum system to the lowest possible temperature.
They are also directly applicable to the optimal control of a
collection of classical harmonic oscillators sharing the same
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FIG. 4. (Color online) For ωhγa = 0.02, γp = 0, and ωc/ωh =
1/3 we plot the numerically obtained optimal frequency profile
for various values of the normalized time. Observe that for shorter
available times the optimal shape is similar to the corresponding cases
of Fig. 2, while for larger times where relaxation dominates it differs.

time-dependent frequency [42] and subjected to similar noise
mechanisms.

An interesting extension of the present work is to examine
how the results are modified if we allow the control input
u(t) = ω2(t)/ω2

h to take negative values, corresponding to a
repulsive parabolic potential for some finite time interval.
Since the control set is augmented, a better efficiency is
expected. Another important question is trying to prove
rigorously the existence of a feasible solution for the optimal
control problem defined in Sec. III. Finally, note that the
methodology employed in this work can be used for the
optimization of other interesting thermodynamic processes.

APPENDIX A: DERIVATION OF THE SYSTEM
EQUATIONS USING STOCHASTIC CALCULUS

In this Appendix we use stochastic calculus to derive
Eqs. (6)–(8), which are derived in the main text using a
master equation formalism. Consider the following stochastic
Hamiltonian Ĥs , where na(t),np(t) are independent, zero-
mean Gaussian white noises:

Ĥs = p̂2

2m
+ mω2(t)

2
[1 + na(t)]q̂2 + np(t)Ĥ

= Ĥ + mω2(t)

2
q̂2na(t) + Ĥnp(t). (A1)

Obviously na(t) represents fluctuations in the stiffness of the
oscillator, while np(t) corresponds to phase damping. The evo-
lution of an operator Â before averaging is given by the
following stochastic differential equation in the Stratonovich
sense:

dÂ

dt
= i

�
[Ĥs ,Â] + ∂Â

∂t
. (A2)

Observe that the operators Ĥ ,L̂,Ĉ are functions of the triplet
(p̂,q̂,t). The stochastic equation for p̂ is (in the following
we use the Stratonovich differential d- and the Wiener pro-
cesses wa,wp corresponding to the noises na = d-wa/dt,np =
d-wp/dt)

d-p̂ = i

�
[Ĥdt + mω2q̂2

2
d-wa + Ĥd-wp,p̂]

= −mω2q̂(dt + d-wa + d-wp), (A3)

while for q̂ we find

d-q̂ = p̂

m
(dt + d-wp). (A4)

For the Stratonovich calculus, widely used in physics, the
usual product rule d-(ab) = d-ab + ad-b holds (but not for the
Itō calculus used in finance). For the Hamiltonian Ĥ , given in
(2) as a function of (p̂,q̂,t), we find

d-Ĥ= 1

2m
(p̂d-p̂ + d-p̂p̂) + mω2

2
(q̂d-q̂ + d-q̂q̂) + mωω̇q̂2dt.

(A5)

Using (A3) and (A4) we end up with

d-Ĥ = ω̇

ω
(Ĥ − L̂)dt − ω2

2
(p̂q̂ + q̂p̂)d-wa. (A6)

Note that Stratonovich calculus is partially anticipatory and
the term multiplying the noise in (A6) is correlated with the
noise. In order to find the average over the noise, it is easier
to use the nonanticipatory Itō calculus. First, we have to find
the Itō differential dĤ corresponding to (A6). Following the
rules described in Ref. [59], we find

dĤ =
[
ω̇

ω
(Ĥ − L̂) + γaω

2(Ĥ − L̂)

]
dt − ωĈdwa. (A7)

Observe the extra term multiplying dt and note that dwadwa =
2γadt (Wiener process of appropriate strength), while the
independence of wa,wp has also been used in the derivation
of the above equation. Now we can take the average over the
noise, keeping the same symbols for the operators, and find
the deterministic equation

dĤ

dt
= ω̇

ω
(Ĥ − L̂) + γaω

2(Ĥ − L̂). (A8)

This is an equation for quantum mechanical operators and if we
take the expectations we obtain Eq. (6). Working analogously,
we can find the Stratonovich differentials for L̂,Ĉ

d-L̂ =
[
−2ωĈ − ω̇

ω
(Ĥ − L̂)

]
dt − ω2

2
(p̂q̂ + q̂p̂)d-wa

−ω2(p̂q̂ + q̂p̂)d-wp, (A9)

d-Ĉ =
(

2ωL̂ + ω̇

ω
Ĉ

)
dt − mω3q̂2d-wa

+ω

(
p̂2

m
− mω2q̂2

)
d-wp, (A10)
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and the corresponding Itō differentials

dL̂ =
[
−2ωĈ − ω̇

ω
(Ĥ − L̂) + γaω

2(Ĥ − L̂)

]
dt

− 4γpω2L̂dt − ωĈdwa − 2ωĈdwp, (A11)

dĈ =
(

2ωL̂ + ω̇

ω
Ĉ − 4γpω2Ĉ

)
dt

−ω(Ĥ − L̂)dwa + 2ωL̂dwp, (A12)

where we note that dwpdwp = 2γpdt . If we take, in the last
two equations, the average over the noise, and in the resultant
deterministic equations the expectation values of the operators,
we recover Eqs. (7) and (8).

APPENDIX B: EFFICIENCY BOUND IN THE PRESENCE
OF PURE DEPHASING

We present first the case without noise, which will guide us
in the case where only dephasing is present. In the absence of
any noise mechanism, Eqs. (18), (19) and (20) become

ẋ1 = 2x3, (B1)

ẋ2 = −2ux3, (B2)

ẋ3 = −ux1 + x2. (B3)

Under the above evolution and for the initial conditions (24) it
is x1x2 − x2

3 = 1 (Casimir invariant). At the final point, where
(26) also holds, we find

x1(T ) = ωh

ωc

, x2(T ) = ωc

ωh

. (B4)

This is the minimum achievable value of x2, corresponding
to minimum Ec (12) and δ = 0. One way to obtain this value
is in the adiabatic (long time) limit. Since the variables x1,x2

interact through x3 in (B1), (B2), we first build a small positive
value x3 = ε > 0 by applying u = ω2

c/ω
2
h for a sufficiently

small time interval dt ≈ ε/(1 − ω2
c/ω

2
h). It is not hard to see

that x1(dt) > 1 and x2(dt) < 1. Subsequently, we maintain
x3 = ε by applying the feedback control u = x2/x1, which
gives ẋ3 = 0 in (B3). Note that u(dt) < 1, thus (23) is initially
satisfied. During the application of this feedback control, the
state equations become

ẋ1 = 2ε, (B5)

ẋ2 = −2uε, (B6)

ẋ3 = 0. (B7)

Observe that x1 increases while x2 decreases, thus u also
decreases from the value u(dt) which is slightly less than
unity. We apply the feedback law until u reaches the lowest
allowed bound u = x2/x1 = ω2

c/ω
2
h. Note that throughout

this evolution it is x1x2 = 1 + ε2. So at the final point we
find x1(T ) = ωh

√
1 + ε2/ωc,x2(T ) = ωc

√
1 + ε2/ωh. In the

adiabatic limit ε → 0, it is x1(T ) → ωh/ωc,x2(T ) → ωc/ωh

and x3(T ) → 0.
We now move to the pure dephasing case, where

γa = 0 and γp > 0. Equations (18), (19), and (20) take the
form

ẋ1 = −2γpux1 + 2γpx2 + 2x3, (B8)

ẋ2 = 2γpu2x1 − 2γpux2 − 2ux3, (B9)

ẋ3 = −ux1 + x2 − 4γpux3. (B10)

Again, we apply u = ω2
c/ω

2
h for dt ≈ ε/(1 − ω2

c/ω
2
h) to create

x3 = ε > 0. Then, we apply the feedback law u = x2/(x1 +
4γpx3) and the above equations become

ẋ1 = (
8γ 2

pu + 2
)
ε, (B11)

ẋ2 = −u(8γ 2
pu + 2)ε, (B12)

ẋ3 = 0. (B13)

Observe again that x1 increases while x2 decreases, thus u

also decreases, and we apply this control until u = x2/(x1 +
4γpx3) = ω2

c/ω
2
h. Note that during the application of the

feedback law it is x1x2 + 4γpεx2 = c(ε), a constant with
limiting value c(ε) → 1 for ε → 0. At the final point we
find x1(T ) = ωh

√
c(ε)/ωc − 4γpε,x2(T ) = ωc

√
c(ε)/ωh. In

the adiabatic limit ε → 0, it is x1(T ) → ωh/ωc,x2(T ) →
ωc/ωh and x3(T ) → 0, thus the maximum efficiency is
obtained. Note that this control strategy, to make a transfer
between two variables through an intermediate variable which
is kept small, has been used for the spin-order transfer along
an Ising spin chain [25]. The situation is reminiscent of
STIRAP in a 	-type atom, where perfect population transfer
is achieved between two ground states coupled through a
lossy excited state, which is actually never populated in the
adiabatic (long time) limit [31,32]. From (25) we find that
during the application of the feedback law it is C/Eh = √

uε <

ε, while for ε → 0 it is additionally L/Eh ≈ 2γpεx2/x1 <

2γpε. Thus, both L and C are of the order of ε or less,
and the trajectory stays close to the noise-free subspace
(E,0,0).
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