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We investigate the onset of the discontinuous percolation transition in small-world hyperbolic networks by
studying the systems-size scaling of the typical largest cluster approaching the transition, p ↗ pc. To this end,
we determine the average size of the largest cluster 〈smax〉 ∼ N�(p) in the thermodynamic limit using real-space
renormalization of cluster-generating functions for bond and site percolation in several models of hyperbolic
networks that provide exact results. We determine that all our models conform to the recently predicted behavior
regarding the growth of the largest cluster, which found diverging, albeit subextensive, clusters spanning the
system with finite probability well below pc and at most quadratic corrections to unity in �(p) for p ↗ pc.
Our study suggests a large universality in the cluster formation on small-world hyperbolic networks and the
potential for an alternative mechanism in the cluster formation dynamics at the onset of discontinuous percolation
transitions.
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I. INTRODUCTION

Small-world hierarchical networks have generated much
interest as models for the prevalent hierarchical organization
in complex networks because they yield exact results for statis-
tical models [1–5]. These recursive structures provide deeper
insights into the nonlinear behavior caused by small-world
connections, compared to some presumed network ensemble
that often requires approximate or numerical methods. Work
on percolation [6–10], the Ising model [2,11–13], and the Potts
model [14,15] have shown that critical behavior once thought
to be exotic and model-specific [5] can be universally described
near the transition point [16,17] for a large class of hierar-
chical networks with hyperbolic properties. In a hyperbolic
structure, sites are typically randomly connected but possess
a hierarchical organization of sites that allows to identify a
few sites harboring many small-world bonds as central while
an extensive portion of sites with less access resides on the
periphery [18,19]. Such structures are common in disordered
materials [20,21], human organizations [1], information and
communication networks [19,22], or neural networks [23,24].
However, in scale-free hyperbolic networks [25] there appears
to be no threshold against the onset of percolation.

Here, we extend the discussion of universality on such
networks by studying the emergence of the discontinuous
transition recently found in ordinary percolation [8]. Due to
the discovery of percolation transitions that first appeared to
be “explosive” [26–28], the dynamics of cluster formation at
the onset of such a transition has been the focus of much
research [29–33]. While details of the cluster size distribution
ρ(s) remain accessible only to simulations, we can use the
renormalization group (RG) to determine the exact large-N
scaling of the average size of the largest cluster,

〈smax〉 ∼ N�(p), (1)

near the onset of the transition. Analyzing a number of
different networks for site and bond percolation, we find that
the behavior observed in Ref. [8] appears to be generic for
hyperbolic networks. By “hyperbolic” we mean a hierarchical
network with small-world properties. The hierarchy ensures
the distinction between an extensive set of peripheral nodes

of low centrality and ever sparser bulk nodes of increasing
centrality, while small-world bonds reduce average distances
to scale logarithmically with system size. In all cases, here
or in related work [18,34], it is found that within hyperbolic
networks the cluster size exponent �(p) defined in Eq. (1)
depends on the percolation parameter p in a nontrivial manner
and has only quadratic or higher-order corrections in its
approach to an extensive cluster, � → 1, at the transition, p →
pc. This would suggest the emergence of a dominant, albeit
subextensive, cluster long before the transition is reached.

Such a nonlinear approach towards the transition contrasts
with the behavior of the equivalent exponent, defined via the
susceptibility, on the same networks near the critical temper-
ature for the Ising model [cite future work], and also with the
predictions of the universal theory for these transitions [16],
which would obtain a linear correction generically. In a
companion paper, we will illuminate the connection between
Ising and percolation critical behavior on these networks
using the q-state Potts model in its analytic continuation for
noninteger values of q. There, we find that the quadratic
corrections persist for all q < 2, including percolation (q → 1)
merely as a special case. Only when q � 2, including the Ising
model (q = 2) as the marginal case, do linear corrections
dominate. In the future, we will extend our Potts-model
analysis to entire families of complex networks.

This paper is organized as follows: In Sec. II, we introduce
the networks used in our current study. In Sec. III, we first
review the RG methods used to analyze the bond percolation
transition for the case previously considered in Ref. [8] and
then apply the same techniques in Sec. IV to the Hanoi net-
works; we extract the exact quadratic corrections for bond per-
colation in the cluster size exponent � for these networks while
deferring many of the technical details of the calculation to the
Appendix. In Sec. V, we show that such nonlinear corrections
also characterize the site percolation transition. In Sec. VI, we
finish with our conclusions and suggestions for future work.

II. SMALL-WORLD HYPERBOLIC NETWORKS

The models we are studying here are familiar hierarchical
networks that have become popular because they provide
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FIG. 1. (Color online) Depiction of hierarchical networks: (a)
MK1, (b) HN5, and (c) HNNP. For all networks the recursive pattern
that scales to the thermodynamic limit is evident. Each network
features regular geometric structures, such as a one-dimensional
backbone, and a distinct set of small-world links. While MK1 and
HN5 are planar, HNNP is nonplanar.

exact results for complex processes by way of the real-space
renormalization group. MK1, depicted in Fig. 1(a), is the
one-dimensional version of the small-world Migdal-Kadanoff
hierarchical diamond lattice [2], which has been used previ-
ously to prove the existence of the discontinuous transition in
ordinary percolation [8]. MK1 is recursively generated starting
with two sites connected by a single edge at generation n = 0.
Each new generation recursively combines two subnetworks
of the previous generation and adds single edge connecting
the end sites. As a result, the nth generation contains
2n + 1 vertices, 2n backbone bonds, and 2n − 1 small-world
bonds.

To show that this discontinuity persists for more compli-
cated but hierarchical structures, we consider here also the
Hanoi networks HN5 and HNNP, also shown in Figs. 1(b)
and 1(c). A similar recursive procedure as described above for
MK1 is also applied to obtain each new generation; however,
due to their more complicated structure their basic building
block at n = 0 consists of a triangle of three sites. For these
Hanoi networks, the existence of a nontrivial bond-percolation
transition has been demonstrated previously [7]. HN5 is similar
to MK1 but requires a coupled system of RG recursions. It also
can be easily adapted to complement previous investigations
of site percolation [35] in a nontrivial fashion. HNNP is special
in that it is a nonplanar graph, an aspect that is missing from
other hierarchical networks.

III. REVIEW OF CLUSTER RENORMALIZATION
IN BOND PERCOLATION

Before we apply it to calculate exact expressions for
the scaling of the average cluster size for HN5 and HNNP
in the next section, we first review briefly the formal-
ism needed to analyze the average cluster size near the
bond-percolation transition, as used for MK1 in Ref. [8].
While a full understanding the dynamics of cluster forma-
tion near the discontinuous percolation transition requires
knowledge of the entire cluster-size distribution, already
the average size of the largest cluster 〈smax〉n at generation
n provides profound insights. In particular, we will be
focused on the system-size scaling of 〈smax〉n for p → pc.
In the following, we derive 〈smax〉n using cluster-generating
functions.

A. Cluster-generating function for MK1

We review briefly the procedure described in Ref. [8]
for MK1. There, the generating functions were obtained by

FIG. 2. Diagrammatic definition of generating functions Tn(x)
and Sn(x,y) in Eqs. (5) for MK1 in Fig. 1. End sites are represented
by open circles and clusters by shaded areas. Tn(x) consists of one
spanning cluster, labeled x, which connects both end sites, and
Sn(x,y) consists of two nonspanning clusters, x and y, each connected
to one end site. Isolated clusters not containing either of the end sites
are ignored.

introducing merely two quantities: the probability t
(n)
i (p) that

both end sites are connected to the same cluster of size i, and
the probability s

(n)
i,j (p) that the left end site is connected to a

cluster of size i and the right end site to a different cluster
of size j . The generating functions, as depicted in Fig. 2, are
defined as

Tn(x) =
∞∑
i=0

t
(n)
i (p) xi, (2)

Sn(x,y) =
∞∑
i=0

∞∑
j=0

s
(n)
i,j (p) xi yj . (3)

The recursion relations for these generating functions can be
obtained by considering all possible configurations on three
sites, as shown in Fig. 3, taking into account the cluster sizes as
described in Ref. [8]. The graphlets on three sites are assigned
to the correct two-site graphlet in the next generation, and the
weights of all the graphlets that contribute to the same higher-
generation graphlet are added together to get the recursion

FIG. 3. (Color online) Diagrammatic evaluation of generating
functions for MK1. All graphlets contributing to Tn+1(x) and
Sn+1(x + y) in the nth generation. Graphlets (a–e) have end-to-
end connections and contribute to Tn+1(x) while (f–h) contribute
to Sn+1(x,y). The contribution of each graphlet is (a) xpT 2

n (x),
(b) xpTn(x)Sn(x,x), (c) xpTn(x)Sn(x,x), (d) pSn(x,1)Sn(1,x), (e)
x(1 − p)T 2

n (x), (f) x(1 − p)Tn(x)Sn(x,y), (g) y(1 − p)Tn(y)Sn(x,y),
(h) (1 − p)Sn(x,1)Sn(1,y). The recursion can be obtained by adding
weights (a–e) for Tn+1(x) and (f–h) for Sn+1(x,y), resulting in Eq. (5).
See the Appendix for an algorithm to automate the evaluation.
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relations,

Tn+1(x) = xT 2
n (x)

+p[2xTn(x)Sn(x,x) + Sn(x,1)Sn(1,x)], (4)

Sn+1(x,y) = (1 − p)[xTn(x)Sn(x,y) + yTn(y)Sn(x,y)

+ Sn(x,1)Sn(1,y)], (5)

as indicated in Fig. 3 and discussed in more detail in the
Appendix, Sec. A.

B. Fixed-point analysis for average cluster size

The recursion equations in Eq. (5) can be simplified by com-
bining them into a vector �Vn(x) = [Tn(x),Sn(x,x),Sn(x,1)] of
distinct observables, where we focus on the largest cluster x

only. The RG can now be written as

�Vn+1(x) = �F [ �Vn(x),x] (6)

for the nonlinear vector function �F that derives from Eqs. (5).
As Eq. (2) suggests, the average size of a spanning cluster
(which dominate in the cluster-size distribution) is generated
by 〈s〉 ∼ T ′

n(x = 1); any form of Sn does not affect to the
spanning cluster and its contributions prove subdominant.
We obtain T ′

n(x = 1) in terms of Tn = Tn(x = 1) and p by
linearizing the recursion relation in Eq. (6),

∂ �Vn+1

∂x
= ∂ �F

∂ �V ( �Vn) · ∂ �Vn

∂x
+ ∂ �F

∂x
( �Vn), (7)

near x = 1. Equation (6) itself at x = 1 (where Sn = 1 − Tn)
reduces for MK1 in each component of �V to

Tn+1 = p + (1 − p)T 2
n (T0 = p), (8)

with fixed point T∞ = limn→∞ Tn,

T∞(p) =
{ p

(1−p) 0 � p < 1
2

1 1
2 � p � 1,

(9)

providing the critical point pc = 1
2 , where any spanning cluster

also becomes extensive; see Fig. 4(a).

Ignoring the subdominant inhomogeneity in Eq. (7), the
remaining homogeneous linear system gives the dominant
contribution for V ′

∞, i.e., T ′
∞,S ′

∞. The largest eigenvalue λ

of the coefficient matrix ∂ �F
∂ �V ( �V∞) at the fixed point T∞(p)

becomes for MK1

λ =
{

1+3p−4p2

2(1−p) +
√

1−p(1−4p)2

4(1−p) 0 � p < 1
2

2 1
2 � p � 1.

(10)

Finally, we obtain the order parameter P∞ as

P∞ = 〈smax〉
N

∼ T ′
∞
N

∼ N�(p)−1, (11)

with the fractal exponent Eq. (12),

�(p) = log2 λ. (12)

Note that this implies that the largest cluster below the
transition is already diverging with a nonzero power of the
system size, although in a subextensive manner, � < 1 for
p < pc, such that P∞ → 0 for N → ∞. These spanning,
subextensive clusters exist, albeit with finite probability given
by T∞(p) in Eq. (9), for all 0 < p < pc. This behavior for
hyperbolic systems contrasts with that of regular lattices,
where such subextensive clusters with fractal scaling only exist
for p = pc and �(p) ≡ 0 for p < pc, such that all clusters
remain finite or at most diverge logarithmically in N .

In Fig. 5(a), we show a plot of P∞(p) for MK1 evaluated
after n = 10k iterations using Eq. (7) displayed for k = 1,...,5
corresponding to system sizes up to N � 2n ∼ 103010 sites.
P∞ converges slowly to zero for p < pc = 1

2 . At and above
pc, it can be shown using Eq. (7) that T ′

n is monotonically
increasing with n while being bounded above by 1, thus the
order parameter is positive definite for 1

2 � p < 1. The order
parameter P∞ changes discontinuously from 0 to 0.609793...

at p = pc and converges to 1 for p → 1. A more detailed
discussion, including a proof of the discontinuity, is provided
in Ref. [8].
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FIG. 4. (Color online) Phase diagram for the probability of a spanning cluster (a) T∞ for MK1 in Eq. (9), (b) R∞ for HN5 in Eq. (A11),
and (c) R∞ for HNNP in Eq. (A10) (for x = 1), all as a function of bond probability p. Black lines mark stable fixed points, and red-shaded
lines are unstable fixed point solutions. The critical transition, at which the probability of any site to belong to the largest cluster becomes
finite and that cluster becomes extensive, occurs exactly when the probability of a spanning cluster becomes unity, at pc = 1

2 for MK1 and
pc = 2 − φ = 0.38197 . . . for both, HN5 and HNNP [7]. However, in all cases there is a nonzero probability for a spanning cluster, albeit
subextensive, even below pc, due to the hyperbolic nature of these hierarchical networks. For MK1 and HN5, such a cluster can exist for all
0 < p < pc, while for HNNP it disappears below the branch-point singularity at pl = 0.31945 . . . . Note that in each case the transition occurs
at the intersection of two lines of stable fixed points.
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FIG. 5. (Color online) Discontinuity in the percolation order parameter P∞(p) for (a) MK1, (b) HN5, and (c) HNNP, each for n = 10k

iterations for some integer k. In each case, P∞ converges slowly to zero just below pc, and at pc, P∞ changes discontinuously. The discontinuity
decreases left to right and is barely visible for HNNP; see inset.

C. Scaling behavior near the transition

From Eqs. (10)–(12) it is now easy to determine the scaling
behavior for the average cluster size near the transition. By
expanding the eigenvalue λ in Eq. (10) for p → pc from
below, we find that the leading behavior only has quadratic
corrections, and inserting into Eq. (12) results in

�(p) ∼ 1 − 8

ln 2
(p − pc)2, p ↗ pc = 1

2
, (13)

which rapidly approaches unity. This implies that the largest
(spanning) cluster that dominates the distribution is nearly
extensive already much before the discontinuous transition
is reached. RG can only determine the probability T∞ and
average size 〈smax〉 ∼ T ′

∞ of the spanning cluster. Their
subextensive nature for p < pc would allow in principle for
a diverging number of such clusters. Our simulations show
that already for small systems the largest cluster is almost
certainly connected to at least one end-site near pc. (In fact, for
MK1 we could have just as well defined 〈smax〉 ∼ T ′

∞ + S ′
∞

to account not just for spanning but all end-site-connected
clusters, without affecting the scaling.) However, as we will see
for HNNP, the nonextensive clusters further below pc may well
be purely internal, with zero probability of spanning between
any end sites.

In light of the discussion regarding universal behavior in
hyperbolic networks [16,34], it is interesting to also explore
the scaling behavior of the order parameter on its approach to
the discontinuity from above the transition. Numerically, with
the RG, we find that a fit to

P∞(p) ∼ P∞(pc) + A(p − pc)β (p ↘ pc) (14)

is quite consistent with a simple, linear approach, i.e., β = 1;
see Fig. 6(a).

IV. CLUSTER-SIZE SCALING FOR HANOI NETWORKS

In the following, we will apply the formalism from Sec. III
to the Hanoi networks HN5 and HNNP in Figs. 1(b) and 1(c).
Their phase diagram, as shown in Figs. 4(b) and 4(c), has
already been discussed in Ref. [7]. To obtain their average
cluster size requires the automated algorithm developed in
the Appendix, due to the substantial combinatorial effort to
enumerate their conformations. We will focus here on the

more interesting case of HNNP first and then merely report
equivalent results for HN5, without the details.

Despite of the added complexity, we find remarkably
similar results near the transition for these networks, as
compared to MK1, and only some distinctly interesting
features for HNNP in the “patchy” regime below pc. Such
robust behavior suggests universal features [16,34], which can
be traced back to the fundamental phase diagram shared by all
three networks, as is evident from Fig. 4. For comparison,
this bond-percolation behavior is not shared by another
hierarchical network, MK2, which mutatis mutandis has quite
a distinct phase diagram [7,36], leading instead to a BKT
transition. See Ref. [34] for an interpolation between both
cases.

In the Appendix, Sec. B, we show how to obtain the
RG recursions for the cluster-generating functions. While
otherwise similar to the discussion in Sec. III A, HNNP (as
well as HN5) requires four such functions to account for
all possibilities, of having clusters linking any combination
of three end sites or remain isolated, even after accounting
for all symmetries of the network. The resulting recursions,
Eqs. (A10), are similar to those for MK1 in Eqs. (5), although
rather more involved. In the end, we only care for the
dominant cluster, which we label x, and consider each possible
contribution from one RG step to the next while disregarding
subdominant clusters by setting y = z = 1. Note that even
clusters that are disconnected from any end site at one step
could significantly contribute at the next via the small-world
bonds that are linking graphlets between consecutive RG steps.
In the end, we can identify ten distinct observables that form a
closed set of recursions. When combined into a single vector,

�Vn(x) = [Rn(x),Sn(x,x),Sn(x,1),Un(x,x),

Un(x,1),Nn(x,x,x),Nn(x,x,1),

Nn(x,1,x),Nn(x,1,1),Nn(1,x,1)], (15)

these satisfy the equivalent recursion in Eq. (6), with the
nonlinear RG flow given by Eqs. (A10).

To zeroth order, at x = 1, Eq. (6) gives the recursion
relation for percolation of the HNNP graph as derived in
Ref. [7]. The coupled recursion relations in (Rn,Sn,Un,Nn)
result in the roots of a sextic polynomial, which can be
solved numerically to get the probability of, say, the spanning
cluster R∞ between the end sites. Figure 4(c) gives the
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FIG. 6. Scaling of the order parameter P∞(p) for p ↘ pc according to Eq. (14) for (a) MK1, (b) HN5, and (c) HNNP. In each case, taking
p − pc = 1

2j , we plot log2[P∞(p) − P∞(pc)]/j vs. 1/j , which linearly extrapolates to β ∼ 1 as the intercept at j → ∞, i.e., p → pc.

phase diagram for HNNP representing the solutions of the
sextic equation, which correspond to the probability R∞ for
0 < p < 1. HNNP provides a unique example of a network in
which the probability of the dominant cluster to touch any end
site vanish below some finite value 0 < pl < pc. In Ref. [7]
this was interpreted as a second, lower, critical point, where
below pl neither a spanning nor an extensive cluster exists
while between pl and pc at least a spanning cluster exists that
does not need to be extensive, due to the hyperbolic structure
of the network. That spanning cluster becomes extensive only
above pc, the true critical percolation point with nonzero order
parameter, P∞ > 0. However, as was shown in Ref. [9], even
below the nonzero pl in HNNP a diverging cluster remains,
and �(p) defined in Eq. (1) remains positive for all p > 0. At
pl , �(p) merely jumps discontinuously to a lower but finite
value, yet, diverging clusters that connect end sites are almost
certainly absent. Any diverging cluster is fully contained inside
HNNP.

The nature of the largest cluster can be studied by looking
at the first-order term in the Taylor expansion, Eq. (7), of the
vector �Vn(x) in Eq. (15). For HNNP the Jacobian ∂ �F

∂ �V ( �Vn) at
x = 1 consists now of a 10 × 10 matrix and the inhomogeneity
is a 10 × 1 matrix. For large system sizes (n → ∞) at x = 1, it
can be shown that the inhomogeneity is subdominant, leaving
a homogeneous equations. As before, the largest eigenvalue of
the Jacobian gives the scaling exponent �(p) for the largest
cluster in the network from Eq. (12), as shown in Fig. 7. It
shows that �(p) < 1 for pl < p < pc, but �(p) drops to zero
discontinuously at pl and vanishes for p < pl = 0.31945 . . . ,

since the cluster measured by the RG is conditioned on being
rooted at an end site. The RG misses diverging clusters that
do not span the network, which apparently dominate below
pl [34]. In any case, since �(p) < 1, Eq. (11) ensures that
P∞ ≡ 0 for all 0 � p < pc.

Near pc = 2 − φ, where φ = (
√

5 + 1)/2 is the “golden
section,” we again find a percolation transition with a dis-
continuous jump in the order parameter P∞. By evolving the
recursion Eqs. (7) for V ′

n, the order parameter can be rigorously
shown to have monotone convergence to nonzero values at and
above pc; see Fig. 5(c). For p ↗ pc, the way �(p) approaches
unity can be found through considering the secular equation

0 = det{V ′
∞ − (2 − a1ε + a2ε

2 + . . .) × I}, (16)

expanded in terms of ε = pc − p � 1, where I is the identity
matrix. Note that at pc, the largest eigenvalue of V ′

∞ is

λ = 2, around which we expand. Since the percolation prob-
abilities at pc are given by R∞ = 1,S∞ = U∞ = N∞ = 0,
we assume an expansion of the percolation probabilities as
R∞ = 1 − ρ1ε + ρ2ε

2, S∞ = σ1ε + σ2ε
2, U∞ = ν1ε + ν2ε

2,
and N∞ = η1ε + η2ε

2. To satisfy Eq. (16), each coefficient
in powers of ε should be zero. As a result, we find that
linear corrections to the eigenvalue λ vanish; i.e., a1 = 0.
Using conservation of probability, ρi + σi + υi + ηi = 0, for
each i � 1 at p = pc, we find a nonvanishing quadratic cor-
rection, a2 = a2(ρ1,σ1,ν1,η1) = − 5

16 (38 + 17
√

5), for which
the second-order corrections in the percolation probabilities
proved irrelevant. Hence, Eq. (12) yields

�HNNP(p) ∼ 1 − 5(38 + 17
√

5)

32 loge(2)
(pc − p)2 + . . . , p ↗ pc.

(17)

For HN5, by using the same cluster-generating functions as
for HNNP in the Appendix, we obtain their RG recursions in
Eq. (A11). Again, the resulting equations for the cluster size
are too complicated to express or solve in closed form. But it
is easy to evaluate their phase diagram in Fig. 4(b) for R∞,
as well as the order parameter P∞ in Fig. 5(b) to any desired
accuracy. Here, the same local analysis near pc as for HNNP
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Ψ

FIG. 7. Plot of the fractal exponent �(p) for HNNP. The behavior
of �(p) for pl < p < pc = 0.38197 . . . (solid line) is obtained by
exact evaluation of the Jacobian matrix, which develops a branch-
point singularity at pl = 0.31945 . . .. Reference [9] has provided a
lower bound, �(p) = log2(1 + √

1 + 8p) − 1 for p < pl (dashed
line), suggesting a discontinuity in the scaling of the largest cluster
at pl (dotted line) when spanning clusters emerge.
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yields for HN5

�HN5(p) ∼ 1 − 5(677 + 304
√

5)

484 loge(2)
(pc − p)2 + . . . , p ↗ pc.

(18)

As for MK1 and HNNP, almost extensive clusters in HN5
emerge well before the transition, with �(p) varying quadrati-
cally. It suggests that the quadratic dependence below pc might
be universal for hierarchical networks with discontinuous
percolation transitions. Above pc, the scaling of P∞ in Eq. (14)
for both HN5 and HNNP also provides β ∼ 1, as shown in
Figs. 6(b) and 6(c).

V. CLUSTER SIZE FOR SITE PERCOLATION

We supplement these findings with a unique result of
even higher-order behavior in the site-percolation transition
of HN5 in Fig. 1. The fragility of complex networks under
random site removal has recently been studied on hierarchical
networks [35]. It was shown that there is no threshold at which
the network preserves an extensive cluster, i.e., pc = 1, yet,
similar quadratic corrections in scaling to the formation of an
extensive cluster for p → 1 are also found there. Hence, we
would expect that cluster formation near this discontinuity is
generic for both bond and site percolation. In light of this,
the cubic corrections we report here for HN5 may provide
an alternative, special case and a new clue in understanding
cluster formation.

With the framework for studying bond percolation on
hierarchical networks established in Sec. III, we apply the same
protocols to study site percolation. HN5 can be assembled
recursively by combining all possible triangle permutations
listed in Fig. 8 through mergers as explained in Fig. 9. Clusters
are labeled x if they at least touch the left-most root site, y if
they do not touch the left root but at least the right-most root
site, and z if they only reach the central root site. If all root
sites are unoccupied, there are no countable clusters to label,
and the argument becomes unity. Extra small-world bonds, as
in the construction of HN5 in Fig. 9, may combine clusters,
which entails a relabeling dictated by the same priority.

FIG. 8. Depiction of elementary HN5 graphlets for site percola-
tion. Listed are all (23 = 8) three-site graphlets used in the recursive
composition of Hanoi networks. Filled (or unfilled) circles mark
occupied (or unoccupied) sites, each with independent probability
p (or 1 − p). The arguments x, y, and z indicate that each triangle
harbors a single cluster, represented by a polynomial-generating
function in that variable. A solid line corresponds to an existing
connection between occupied sites, and a dashed line is a possible,
but unrealized, connection when one adjacent site is unoccupied. Note
that An and Dn, and Cn and Fn are simply mirror images of each other
that satisfy the same recursions; hence, we can eliminate Dn and Fn

from the recursions in the end.

FIG. 9. (Color online) Demonstration of the merging of elemen-
tary graphlets into a graphlet of the next generation in HN5, the
generic five-site structure being exhibited by the lower diagram. Here,
graphlets for Cn(x) and Bn(y) (defined in the legend of Fig. 8) are
merged by overlapping at the highlighted inner sites that become
one. Adding the new long-range bonds, a graphlet of HN5 is formed
(below). The lower one of those bonds unifies the occupied sites left
and right into a single cluster, reducing the labeling from x and z

into a single label x. Renormalization now consists of eliminating
the 2nd and 4th site and attributing their properties to the respective
root sites (left, right, and center sites). Here, for instance, there is
merely one cluster labeled x that only connects to the left root, the
center and right root remain empty. Thus, this graphlet renormalizes
into the type An+1(x), also defined in the legend of Fig. 8. The entire
RG consists of evaluating such a merger for all 25 = 32 possible site
occupancies in the HN5 graphlet to obtain the recursions in Eq. (19).
Of course, mergers can only be realized when the overlapping inner
sites are in the same state; that merger has to be corrected for by
dividing out 1/(1 − p) when an empty site is over-counted, as in
this example, or by 1/(xp) when an overlapping occupied site is
over-counted. Incidentally, this case (and its mirror image) is the only
graphlets among all 32 for which the lower long-range bond—the
distinguishing feature between MK1 and HN5—makes a difference;
otherwise the site from Bn(y) on the right would be disconnected
from any root and would remain uncounted.

Based on the rules explained in the legend of Fig. 9, applied
to the merger of all possible graphlets in Fig. 8, the following
RG recursions for the cluster-generating functions are derived:

Nn+1(1) = 1

1 − p
[Nn(1) + Bn(1)]2,

An+1(x) = 1

1 − p
{[An(x) + Cn(x)][Nn(1) + Bn(1)]

+Cn(x)[Bn(x) − Bn(1)]},
Bn+1(z) = 1

xp
[An(z) + Cn(z)]2,

(19)

Cn+1(x) = 1

xp
[An(x) + Cn(x)][En(x) + Gn(x)],

En+1(x) = 1

1 − p
[An(x) + Cn(x)]2,

Gn+1(x) = 1

xp
[En(x) + Gn(x)]2.

Here, we already have exploited a mirror symmetry between
An and Dn and between Cn and Fn to simplify the equations.
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The initial conditions for these RG recursions are

N0(x) = (1 − p)3, A0(x) = xp(1 − p)2,

B0(z) = zp(1 − p)2, C0(x) = x2p2(1 − p), (20)

E0(x) = x2p2(1 − p), G0(x) = x3p3.

Unlike the recursions for the bond-cluster-generating func-
tions, for example, Eq. (9) for MK1, here the site-cluster-
generating functions themselves do not satisfy interesting
recursions at x = 1. For instance, An(1) = A0(1) = p(1 − p)
for all n merely reflects the defining feature of the site-
percolation cluster An(x) of occupying the left end site but
not the right end site.

Note that without the seemingly minor distinction between
Bn(x) and Bn(1) in the An+1-relation, as explained in the
legend of Fig. 9, we could drastically reduce the recursions

further by defining

Tn(x) = 1

x2p2
[En(x) + Gn(x)],

(21)

Sn(x) = 1

xp(1 − p)
[An(x) + Cn(x)],

which converts Eqs. (19) into those for MK1 in Ref. [35].
Instead, we have to evolve the entire set of five x-dependent
relations for the RG flow in Eqs. (19).

Defining

�Vn(x) = [An(x),Bn(x),Cn(x),En(x),Gn(x)], (22)

and following the discussion in Sec. III, we obtain from
Eqs. (19) at x = 1

∂ �F
∂ �V ( �V∞) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − p p2 1 − p 0 0

2(1 − p) 0 2(1 − p) 0 0

p 0 p 1 − p 1 − p

2p 0 2p 0 0

0 2(1 − p) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (23)

where we used the IC in Eqs. (20) and the fact explained above
that �Vn(1) = �V0(1) for any n for site-percolation-generating
functions. Then, the largest eigenvalue is the largest root of
the cubic equation

0 = 4p3 − 4p4 + 2p3λ − (1 + 2p)λ2 + λ3. (24)

Again, as in Eq. (12), it is �(p) = log2 λ, which is shown in
Fig. 10. It is remarkable that, although �(p) varies smoothly
between 0 and 1, near p = 1 we find only a cubic correction
near pc = 1:

�(p) ∼ 1 − 2

ln 2
(1 − p)3, p ↗ pc = 1. (25)

0 0.2 0.4 0.6 0.8 1p
0

0.2

0.4

0.6

0.8

1

Ψ

FIG. 10. Plot of � = log2 λ in HN5 as a function of the site-
occupation probability p, obtained from largest solution of the
eigenvalue Eq. (24). Noticeable is the slow rise for p → 1− derived
in Eq. (25).

VI. CONCLUSIONS

Our investigation of properties of the cluster formation
near the discontinuous percolation transition in hyperbolic
networks affirms the robustness of the observed finite-size
scaling of the largest cluster in the system. Our study considers
more complicated classes of networks than before and extends
the analysis to include both bond and site percolation. To obtain
our results, we present an automated means of graph counting,
which are essential to accomplish the RG recursions for entire
functions that are the generators for the cluster sizes. In the Ap-
pendix, we present these methods in somewhat more detail so
that they can serve as a blueprint for similar efforts in the future.

Our RG study can merely implicate interesting scaling
features in the evolution of the emergent cluster; only detailed
simulation can provide sufficient insight into the mechanics of
their formation. In a parallel effort, we are currently studying
bond percolation on these hyperbolic networks as the familiar
limit q → 1 of the q-state Potts model [37]. In this form,
we also hope to better understand the connection between
discontinuous percolation transitions and the phenomenology
of critical transitions as found, for instance, in ferromagnets
on these networks [16], which should be revealed by the
interpolation between 1 � q � 2 in the analytic continuation
of the Potts model.
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APPENDIX: AUTOMATED GRAPH COUNTING

The recursion relation Eqs. (5) for MK1 are obtained
by a process of graph counting depicted in Fig. 3. As the
number of possible graphlets increases exponentially for more
complicated hierarchical networks (e.g., HN5 and HNNP),
automating the graph enumeration process insilico makes it
easier to obtain their recursion equations. Key to this process
is the adjacency matrix Aij , which gives the information about
the presence of single bonds between two sites in a graph.

A. Counting MK1 graphlets

In the MK1 graphlet in Fig. 3(a),

Aa =
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ (A1)

is an example of an adjacency matrix when all possible bonds
are present. The bonds are bidirectional, which results in a
symmetric matrix, and the diagonal elements are zero, since
there are no bonds that loop back to a site. In the case where
two ends are not connected by a single bond, the adjacency
matrix effectively searches for alternate paths to connect the
two end sites. In Fig 3(e), for example, the small-world bond
is missing, and sites 1 and 3 are not connected via a single
bond. The adjacency matrix is, thus,

Ae =
⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦. (A2)

By itself, the adjacency matrix gives the number of one-step
end-site connections. To find the number of two-step end-
site connections for a graphlet, the adjacency matrix must be
squared. The off-diagonal elements of A2 give the number of
possible paths between two sites that are exactly two hops
long. Squaring the adjacency matrix in Fig. 3(a) [Eq. (A1)]
gives

A2
e =

⎡
⎣1 0 1

0 2 0
1 0 1

⎤
⎦. (A3)

Since matrix element A2
e,13 = 1, there exists only one possible

path in which two-steps can be made to connect the end sites.
Since the maximum path length for the simple case of MK1
is two, only Ae,13 (one step) and A2

e,13 (two steps) need to be
checked for finding end-to-end connections.

The graphlets are classified as contributing to Tn+1(x) or
Sn+1(x,y), depending on whether an end-to-end connection
exists. The weights of the graphlets are calculated by first
labeling the end sites as x and y. Both end sites are labeled
x in fully connected graphs contributing to Tn+1(x), and
unconnected graphs contributing to Sn+1(x,y) contain the left
end site labeled x and the right end site labeled y.

For each graphlet in the nth generation, x or y is assigned
to each site and Tn(x) or Sn(x,y) to each bond, depending on
whether the end sites are attached. Isolated sites and clusters
are assigned a weight of 1. The contribution of each graphlet
in the (n + 1)th generation is set as the product of the value
assigned to the bonds and intermediate sites. For example,

the two shaded backbone bonds of Fig. 3(a) indicate that the
graphlet has two bonds of type Tn(x). The small-world bond
exists with probability p, and all the sites are connected to the
same cluster. Therefore, the graphlet contributes to Tn+1(x) in
the next generation with weight p x T 2

n (x). Similarly, for the
graphlet in Fig. 3(f), the backbone bonds are of the types Tn(x)
and Sn(x,y). The small-world bond is absent with probability
1 − p, and the end sites are connected to separate clusters, x

and y. Hence, this graphlet contributes to Sn+1(x,y) in the next
generation with weight (1 − p) x Tn(x)Sn(x,y).

B. Cluster-generating function for HNNP

The generating functions for the Hanoi network HNNP in
Fig. 1 can be calculated using the same principles described
for MK1. As in Sec. III A, we define the generating functions
for HNNP depicted in Fig. 11:

Rn(x) =
∞∑

k=0

r
(n)
k (p)xk, (A4)

Sn(x,y) =
∞∑

k=0

∞∑
l=0

s
(n)
k,l (p)xkyl, (A5)

Un(x,y) =
∞∑

k=0

∞∑
l=0

u
(n)
k,l (p)xkyl, (A6)

Nn(x,y,z) =
∞∑

k=0

n
(n)
k,l,m(p)xkylzm, (A7)

where we introduce the probabilities
(1) rn

k (p) that sites a, b, and c are all connected within the
same cluster of size k;

a b c 

a b c 

a b c 

a b c 

a b c 

Rn(x) 

Sn(x,y) 

Tn(x,y) 

Un(x,y) 

Nn(x,y,z) 

FIG. 11. (Color online) Diagrammatic definition of generating
functions for HNNP and HN5. Sites a, b, and c represent the end
sites of the network. Rn(x) consist of one cluster spanning all
three end sites, Sn(x,y), Tn(x,y), and Un(x,y), two clusters, one of
which spanning two end sites, and Nn(x,y,z) represents nonspanning
clusters, which connect to at most one end site.
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FIG. 12. (Color online) Example graphlet for HNNP. By looking
at the elements of A2

13 and A2
13 of A2, one can see that all the three end

sites are connected. So this graph contributes to Rn+1(x) in the next
generation. In fact, all the sites are connected to the same cluster in
this case, which can be verified by looking other element of A, A2, A3,
and A4. Since all sites are connected to the same cluster (say of size
x) and there is only one long-range small-world bond present, the
weight of the graphlet is p(1 − p)x2Rn(x)Sn(x,x)/4.

(2) sn
k,l(p) that a and b are mutually connected within a

cluster of size k, and c is connected to a separate cluster of
size l;

(3) tnk,l(p) that a is connected to a separate cluster of
size k, and b and c are mutually connected within cluster of
size l;

(4) un
k,l(p) that a and c are mutually connected within a

cluster of size k, and b is connected to a separate cluster of
size l;

(5) nn
k,l,m(p) that a is connected to a cluster of size k, b is

connected to a cluster of size l, and c is connected to a cluster
of size m, but all mutually disconnected.

The symmetry of sn
k,l and tnk,l are included in the definition

of Sn(x,y) [7]. As for MK1, the three end notes themselves
are not counted in the cluster size.

We want to obtain the system of RG recursions for
generating functions, where (Rn+1, Sn+1, Un+1, Nn+1) are
functions of (Rn, Sn, Un,Nn; p). The algorithm first generates
the adjacency matrices corresponding to all possible (28 =
256) graphlets for the HNNP network. For each one of
these graphlets, the possibility of their contribution to one
of (Rn+1, Sn+1, Un+1, Nn+1) in the next generation is checked
using the adjacency matrices.

As an example of our graph-counting algorithm for HNNP,
we consider the graphlet in Fig. 12. At first glance it appears
that there are two separate clusters of sizes k and l. The

adjacency matrix for this graphlet is

A =

Node a b c b′ a′

a

b

c

b′
a′

⎡
⎢⎢⎢⎣

0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎦ ,

(A8)

where the disconnect between sites a′ and b′ is indicated
by A4,5 = A5,4 = 0. After the sites b and b′ in Fig. 12 are
decimated in the RG step, the remainder is matched with
one of the graphlets in the generating function diagram in
Fig. 11. Thus, only the matrix elements in Eq. (A8) that
connect end sites a to c, a to a′, and c to a′ contribute to the
recursion equations for the generating functions. In general,
the matrix elements for A4 must be checked for a five-point
HNNP graphlet, since the maximum number of steps required
to connect all end sites is four. In our example,

A4 =

⎡
⎢⎢⎢⎣

3 0 4 0 3
0 10 0 4 0
4 0 6 0 4
0 4 0 2 0
3 0 4 0 3

⎤
⎥⎥⎥⎦. (A9)

Elements A4
13, A4

15, and A4
53 are nonzero, indicating that the end

sites (a, c, and a′) form a contiguous cluster, where a′ becomes
connected by way of the small-world bond. The graphlet,
therefore, renormalizes into an R-type bond. To determine its
weight, we note that the sites a, b, and c are connected via an
Rn-type bond and the sites c, b′, and a′ form an Sn-type bond.
Only the right-hand one of the small-world bonds is present.
Hence, the total weight of this graphlet in the next generation
is p(1 − p) x2 Rn(x)Sn(x,x)/4. Here, Sn becomes a function
of x in both arguments, since the small-world bond merges
the previously disconnected clusters x and y. The factor 1/4
is due to the symmetry explained in Ref. [7].

This process is repeated for all 256 graphlets with our au-
tomated counting algorithm, where each graphlet is attributed
to its appropriate next-generation graphlet. After adding the
weights, the generating function recursion relations are found
to be [38]

R′(x) = {xR(x) + pxU (x,x) + (1 − p)U (x,1)}2 + 2pxR(x) {pxN (x,x,x) + (1 − p)N (x,1,x)}

+pxS(x,x) {(1 − p)[xR(x) + U (x,1)] + 2xR(x) + pxU (x,x)} + 3

4
p2x2S(x,x)2,

S ′(x,y) = 1 − p

2
S(x,y){px2S(x,x) + py2S(y,y) + x2R(x) + y2R(y) + (1 − p)xy [R (x) + R(y)]

+ [x + (1 − p) y] U (x,1) + [y + (1 − p)x]U (y,1) + p[x + y]2U (x,y) + pxN (x,1,x) + pyN (y,1,y)}

+p2

2
xyS (x,y) {2U (x,y) + N (x,y,x) + N (y,x,y)} + (1 − p) N (x,1,y) {p [x + y] U (x,y)

+ (1 − p) [xR (x) + yR(y) + U (x,1) + U (y,1)]} + pxN (x,x,y) {(1 − p) [xR (x) + U (x,1)] + pyU (x,y)}
+pyN (x,y,y) {(1 − p) [yR(y) + U (y,1)] + pxU (x,y)},
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U ′(x,y) = 1

4
px [(2 − p) x + 2 (1 − p) y] S(x,y)2 + pxS(x,y)2 {(1 − p) N (x,1,y) + pxN (x,x,y)} ,

N ′ (x,y,z) = 1

4
(1 − p)2 [x + y] [y + z] S (x,y) S (y,z) + 1 − p

2
[x + y] S (x,y) {(1 − p) N (x,1,z) + pxN (y,x,z)}

+ {(1 − p) N (x,1,y) + pzN (x,z,y)} {(1 − p) N (x,1,z) + pxN (y,x,z)}

+1 − p

2
[y + z] S (y,z) {(1 − p) N (x,1,y) + pzN (x,z,y)} . (A10)

Note that for x = y = z = 1, i.e., when graphlets are counted irrespective of cluster sizes, these equations revert back to those
previously listed in Ref. [7].

C. Cluster-generating function for HN5

The discussion on how to obtain the RG recursion equations for the cluster-generating functions of HN5 parallels that for
HNNP above. The definition of the generating functions in Eqs. (A4), as illustrated in Fig. 11, equally apply to HN5. The main
difference originates with the structure of small-world bonds, which leads to a planar graph for HN5 and a nonplanar graph for
HNNP. Then, our graph counting algorithm results in the following RG recursions:

R′(x) = {U (x,1) + xR(x)}2 + 1

2
p2x2S(x,x)2 + 2p {N (x,1,x)U (x,1) + xS(x,x) [(1 − p)U (x,1) + pxU (x,x)]}

+ pxR(x) {2(1 − p)N (x,1,x) + 2pxN (x,x,x) + (3 − p)xS(x,x) − 2U (x,1) + 2xU (x,x)}
S ′(x,y) = (1 − p)N (x,1,y) {U (x,1) + U (y,1) + (1 − p) [xR(x) + yR(y)]}

+ p(1 − p){x2R(x)N (x,x,y) + y2R(y)N (x,y,y)} + 1 − p

4
S(x,y){px2S(x,x) + py2S(y,y)}

+ p(1 − p)

2
{x2 [U (x,y) + U (x,x)] + y2 [U (x,y) + U (y,y)]} + (1 − p)2

2
[x + y] {U (x,1) + U (y,1)}

+ 1 − p

2
{xR(x) [−py + x + y] + yR(y) [−px + x + y]}

U ′(x,y) = p

{
N (x,1,y) + 1

2
(1 − p) [x + y] S(x,y)

}2

+ p2S(x,y){x2N (x,x,y) + y2N (x,y,y)}

+ p

4
S(x,y)2{(1 + p − p2)x2 + 2p(1 − p)xy + (2 − p)py2}

N ′(x,y,z) = p(1 − p)

2
{S(x,y)[x2N (y,x,z) + y2N (y,y,z)] + S(y,z)[y2N (x,y,y) + z2N (x,z,y)]}

+ (1 − p)2

2
{[x + y] N (y,1,z)S(x,y) + [y + z] N (x,1,y)S(y,z)}

+ (1 − p)

4
S(x,y)S(y,z){(1 − p)[xy + xz + yz] + y2} + (1 − p)N (x,1,y)N (y,1,z). (A11)

Again, these equations revert back to those previously listed in Ref. [7] for x = y = z = 1.
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