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Energy pumping in electrical circuits under avalanche noise
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We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-
Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted
by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We
discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically
obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the
non-Gaussianity in energetics of electrical circuits.
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I. INTRODUCTION

Because of the recent experimental development such
as the single molecule manipulation, nonequilibrium
statistical mechanics for small systems is a topic of wide
interest [1]. Stochastic thermodynamics [2–5] in the presence
of thermal environment has been theoretically studied in
terms of nonequilibrium identities [6–15], and is applied to
experimental investigations in electrical [16,17] and biological
systems [18–20]. On the other hand, statistical mechanics
in the presence of athermal environment has not yet been
fully understood, while athermal fluctuation is experimentally
known to appear in various systems, such as electrical [21–25],
biological [26–28], and granular [29,30] systems.

One of the important approaches to athermal statisti-
cal mechanics is based on non-Gaussian stochastic models
[31–37], as the crucial property of athermal fluctuation is
its non-Gaussianity [21,26–28]. On the basis of this ap-
proach, several interesting phenomena have been reported
in athermal systems, which are quite different from ther-
mal ones [32,33,37]. For example, unidirectional transport
induced by asymmetric properties of noises or potentials has
been discussed with non-Gaussian stochastic models [32,33].
However, there have been so far few studies addressing
energy pumping processes of athermal systems. As energy
pumping plays crucial roles in thermal physics (i.e., the Carnot
cycles [38–42]), we expect that energy pumping will play
important roles in understanding athermal fluctuations.

In this paper, we study the geometrical pumping [43–56]
for athermal systems. When a mesoscopic system is slowly
and periodically modulated by several control parameters,
there can exist a net average current even without dc bias.
This phenomenon is known as the geometrical pumping or
the adiabatic pumping, and has been observed in various
systems [43–56]. The geometrical pumping originates from
the effect of the Berry-Sinitsyn-Nemenman phase [44], where
a cyclic manipulation in the parameter space induces a
nonzero current that is associated with a geometrical quantity
on the parameter space. However, all previous studies for
open systems address systems connected with thermal or
equilibrium reservoirs. Since we encounter athermal systems
in various systems, it would be important to study the
geometrical pumping coupled with athermal environments.

Here, we study a realistic geometrical pumping model in an
electrical circuit coupled with athermal noise (i.e., avalanche

noise). We consider an electrical circuit with a capacitor,
resistances, voltages, and avalanche diodes. In the condition
with strong reverse voltages, the avalanche diodes produce in-
termittent fluctuation whose statistics is non-Gaussian [21,22].
We model this system by a non-Gaussian Langevin equation,
and find that we can extract a positive amount of work (energy)
and power (work per unit time) from the athermal fluctuation as
a result of the geometrical effect, while the system is spatially
symmetric. We discuss the optimal protocol for the power
by using the variational method. Our results show that the
athermal fluctuation can be used as an energy source.

This paper is organized as follows. In Sec. II, we introduce
the setup of the electrical circuits with avalanche diodes. In
Sec. III, we show the main results of this paper: the work
and power formulas for quasistatic and finite-time processes.
In Sec. V, we conclude this paper with some remarks.
In Appendix A, we illustrate an example of the potential
manipulation. In Appendix B, we show the detailed derivations
of the main results. In Appendix C, we generalize our work
formula for an arbitrary potential under the condition of a
weakly non-Gaussian noise. In Appendix D, we construct
a scalar potential for quasistatic work using the method of
integrating factors.

II. SYSTEM

We consider an electrical circuit consisting of a capacitor,
resistances, avalanche diodes, and external bias voltages (see
Fig. 1). Let us denote the charge of the capacitor and time as
q and t̄ , respectively. We note that t̄ will be replaced with a
scaled time t later. The circuit equation is given by

R
dq

dt̄
+ ∂U (q,�a)

∂q
− R′i1 − R′i2 = 0, (1)

where R and R′ are resistances, and U (q,�a) is the po-
tential of the capacitor with a set of external parameters
�a = (a1, . . . ,aN ). It is known that the potential is given by
U (q,d) = ε0Aq2/d for a parallel-plate capacitor where d, A,
and ε0 are, respectively, the width between the plates, the area
of the plate, and the vacuum permittivity. Continuous manip-
ulation of the quadratic part of the potential is experimentally
realized by changing the width between the plates d, where d

corresponds to the external parameter as a1 = d with N = 1.
Nonquadratic potentials can also be realized by inserting a
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FIG. 1. Schematic of the electrical circuit with a capacitor with a
potential U (q,�a), resistances (R,R′,R′′), voltages (V ), and avalanche
diodes (D). Because of the reverse bias voltages for the avalanche
diodes, the intermittent noise appears and affects the charge in the
capacitor.

medium with nonlinear permittivity, where we manipulate
its nonquadratic part by changing the depth of insertion (see
Appendix A for the details).

We next discuss the avalanche noise. For sufficiently strong
reverse voltages, minority carriers in diodes are accelerated
enough to create ionization, producing more carriers which
in turn create more ionization. Thus electrical current is
multiplied to become an intermittent noise. This noise is
known as the avalanche noise, which can be approximated
as a white non-Gaussian noise in the case of a high level of
avalanche [21,22]. When we decompose in into the steady
and fluctuating parts as in = 〈in〉 + �ii for n = 1,2, �in can
be regarded as a white non-Gaussian noise. In the following,
〈A〉 denotes the ensemble average of a stochastic variable A,
and the Boltzmann constant is taken to be unity. Then, the
time evolution of the charge in the capacitor is reduced to the
following Langevin equation:

dq

dt
= −∂U (q,�a)

∂q
+ ξ, (2)

where t ≡ t̄/(R + 2R′) is the scaled time, and ξ ≡ R′(�i1 +
�i2) is the white non-Gaussian noise which describes the
avalanche noise. Because of the bilateral symmetry in the
circuit, we assume that ξ is symmetric for the charge reversal.
We stress that similar Langevin equations to Eq. (2) appear
in many mesoscopic systems, such as electrical circuits with
shot noises [23,57] and ATP-driven active matters [26,27].
Therefore, it is straightforward to apply our formulation to a
wide class of mesoscopic systems beyond the electrical circuit
addressed in this paper. The cumulants of the noise are given
by

〈ξ (t1) . . . ξ (tn)〉c =
{
Knδn(t1, . . . ,tn) (for even n),

0 (for odd n),
(3)

where 〈ξ (t1) . . . ξ (tn)〉c denotes the nth cumulant, and
δn(t1, . . . ,tn) is an n-point δ function [37,58] with a positive

integer n. We note that the n-point δ function satisfies the
following relations as

δn(t1, . . . ,tn) =
{∞ (t1 = · · · = tn),

0 (otherwise),
(4)

∫ ∞

−∞
dt2 . . . dtnδn(t,t2, . . . tn) = 1, (5)

where we introduce T ≡ K2/2 for later convenience. To
extract work, we externally manipulate this system through
a cyclic operational protocol C ≡ {�a(t)}0�t�τ , where τ is
the period of the manipulation, and the cyclic protocol
satisfies the relation as �a(0) = �a(τ ). On the basis of stochastic
energetics [2,4,5], we define the extracted work W as

dW ≡ −∂U

∂ �a · d�a = −
N∑

i=1

∂U

∂ai

dai . (6)

In the special case of Kn = 0 for n � 4, the Langevin
equation (2) is equivalent to the thermal Gaussian Langevin
equation, and we cannot extract positive work from the
fluctuation [2,59]: ∮

C

dWqs � 0, (7)

where the equality holds for the quasistatic processes.

III. MAIN RESULTS

In this section, we discuss the main results of this paper:
the formulas for the work and the power of the geometrical
pumping from athermal fluctuations.

A. Work along quasistatic processes

First of all, we consider a weakly quartic potential

U (q,�a) = aq2

2
+ bq4

4
, (8)

where �a = (a,b) are two external parameters. We also assume
that b is proportional to a small parameter ε. We then obtain,
for quasistatic processes,

dWqs = −d

(
T

2
log a + 3bT 2

4a2
+ bK4

16a

)

+ bK4

16a2
da + O(ε2), (9)

which will be proved in Appendix B. Equality (9) implies that
there exists a quasistatic cyclic protocol Cqs along which a
positive amount of work can be extracted as

Wqs ≡
∮

Cqs

dWqs =
∮

Cqs

bK4

16a2
da > 0, (10)

even though the potential and the noise are spatially symmetric
throughout the control protocol. For example, a positive
amount of work can be extracted through the clockwise rect-
angular protocol (Fig. 2) as Wqs = (bK4/16)[1/a0 − 1/a1].
In Eq. (9), the fourth-order cumulant appears because the
perturbative potential is quartic. If the perturbative potential
includes another higher-order polynomial, the corresponding
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FIG. 2. (Color online) Schematic of the rectangular protocol. We
assume a0 = O(1), a1 = O(1), a1 − a0 = O(1), and b0 = O(ε). We
can extract a positive amount of work from the nonequilibrium
fluctuation along the clockwise protocol.

order cumulants appear as correction terms. We note that our
result does not contradict the second law of thermodynamics,
because the avalanche noise is nonequilibrium fluctuation (i.e.,
the environment is out of equilibrium). We also note that the
work formula (9) for quasistatic processes can be extended
for an arbitrary potential for weakly non-Gaussian cases (see
Appendix C for detail).

The pumping effect in Eqs. (9) and (10) can be regarded
as the geometrical effects of the Berry-Sinitsyn-Nemenman
phase [43–56]. Indeed, by introducing χ ≡ −(T/2) log a −
3bT 2/4a2 − bK4/16a, �A ≡ (bK4/16a2,0), 
 ≡ K4/16a2,
and Sqs (the area surrounded by Cqs), we can rewrite Eqs. (9)
and (10) as

dWqs = dχ + �A · d�a + O(ε2), (11)

∮
Cqs

dWqs =
∮

Cqs

�A · d�a =
∫

Sqs


da db. (12)

This expression implies that χ , �A, and 
 respectively
correspond to the scalar potential, the vector potential, and
the curvature in the terminology of the Berry phase. We note
that the curvature 
 is nonzero since dWqs is an inexact
differential, which creates a nonzero geometrical pumping
current for cyclic operations.

We remark on the relation between thermodynamic scalar
potentials and the method of integrating factors. In the
presence of thermal environments, the integrated quasistatic
work �F = ∫

dWqs is the thermodynamic scalar potential
(Helmholtz’s free energy). On the other hand, in athermal
cases,

∫
dWqs is no longer regarded as a scalar potential

because of the presence of the nonzero curvature. Even in such
situations, the method of integrating factors is useful to find a
scalar potential if it exists, because the integrating factors can
make an inexact differential an exact differential. We stress
that we find an explicit integrating factor if we focus on the
case with the weakly quartic potential as shown in Appendix D,
though there are not necessarily appropriate integrating factors
for general athermal cases.

We numerically check the validity of Eqs. (9) and (10)
by the Monte Carlo simulation. For simplicity, we model the
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FIG. 3. (Color online) Numerical validation of the work for-
mula (9) for the quasistatic processes. From the Monte Carlo simula-
tion, we obtain stochastic trajectories and calculate the ensemble av-
erage of the extracted work. We calculate the work with the total time
of the operation τ = 3.0 × 104 and take its ensemble average with
6600 samples. Here we assume the discretized time step is 10−2. The
time scaled protocol for the simulation [ã(s̃),b̃(s̃)] ≡ [a(τ s̃),b(τ s̃)] is
given as follows: ã(s̃) = a1 (0 � s̃ � 1/4), 4a1(1/2 − s̃) + 2a0(s̃ −
1/4) (1/4 � s̃ � 1/2), a0 (1/2 � s̃ � 3/4), 4a1(s̃ − 3/4) + 4a0(1 −
s̃) (3/4 � s̃ � 1) and b̃(s̃) = 4b0(1/4 − s̃) (0 � s̃ � 1/4), 0 (1/4 �
s̃ � 1/2), 4b0(s̃ − 1/2) (1/2 � s̃ � 3/4), b0 (3/4 � s̃ � 1).

avalanche noise as the symmetric Poisson noise defined by

ξS(t) =
∞∑
i=0

Iδ(t − ti) +
∞∑
i=0

(−I )δ(t − si), (13)

where ti and si are times where the Poisson flights happen with
the flight distance ±I and the transition rate λ/2. We note that
the cumulants are given as 2T = I 2λ and K2n = I 2nλ with
integer n � 2. We consider a rectangular protocol shown in
Fig. 2 and set parameters as a0 = 1.0, a1 = 5.0, b0 = 0.1, and
λ = 1.0. Changing the flight distance parameter I , we numer-
ically obtain the work for the rectangular quasistatic protocol.
Figure 3 shows that the numerical results are consistent with
the theoretical line obtained in Eq. (9). This result implies that
we can extract more energy from the athermal fluctuation as
the non-Gaussian property characterized by the flight distance
I increases.

B. Power along slow operational processes

We next consider the power of the energy pumping for
the weakly quartic potential (8). Let C be a cyclic protocol
of the operation in the a-b space and τ be the total time of
the operation. We introduce time-scaled external parameters
ã(s̃), b̃(s̃) and a time-scaled protocol C̃ ≡ {ã(s̃),b̃(s̃)}0�s̃�1,
where ã(s̃) and b̃(s̃) are scaled by the total operational time τ

as ã(s̃) ≡ a(τ s̃) and b̃(s̃) ≡ b(τ s̃). Because we are interested
in slow but finite-time processes, we assume that 1/τ is
the order of ε, dã/ds = O(1), and db̃/ds = O(ε). As will
be shown in Appendix B with a similar calculation to that
in Ref. [59], the work for slow operational processes is
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FIG. 4. (Color online) Scaled optimal rectangular protocol (21)
and (22) on the condition of ã(0) = ã(3/4) = ã(1) = a0, ã(1/4) =
ã(1/2) = a1, b̃(0) = b̃(1/4) = b̃(1) = b0, and b̃(1/2) = b̃(3/4) = 0.

given by ∫
〈dW 〉 =

∫
dWqs − 1

τ
S[C̃] + O(ε2), (14)

S[C̃] =
∫ 1

0

ds̃T

4ã3

[
dã

ds̃

]2

. (15)

From Eq. (14), we obtain the average power:

P ≡ 1

τ

∮
C

〈dW 〉 = 1

τ

∮
Cqs

bK4

16a2
da − 1

τ 2
S[C̃] + O(ε3).

(16)

The optimal total time that maximizes the power under a fixed
time-scaled protocol C̃ is derived from the condition

dP

dτ

∣∣∣∣
τ=τ ∗

= − 1

τ 2

∮
Cqs

bK4

16a2
da + 2

τ 3
S[C̃] = 0, (17)

which leads to

τ ∗ ≡ 2S[C̃]∮
Cqs

(bK4/16a2)da
. (18)

We note that Eq. (18) is consistent with the assumption τ =
O(1/ε). Thus we obtain the optimal power for the fixed scaled
protocol as

P ∗ ≡
[ ∮

Cqs
(bK4/16a2)da

]2

4S[C̃]
+ O(ε3). (19)

As an example, let us consider the rectangular protocol
shown in Fig. 2, where the manipulation proceeds as P0 →
P1 → P2 → P3 → P0. We denote the arrival time for Pi as ti
for i = 1,2,3, and rescale ti as τ̃i ≡ ti/τ . We assume that τ̃i =
i/4 for i = 1,2,3, where dã/ds = O(1) and db̃/ds = O(ε)
are satisfied. We then consider the optimal protocol for the
rectangular protocol. We explicitly obtain

S[C̃] � 8T

∣∣∣∣ 1√
a0

− 1√
a1

∣∣∣∣
2

, (20)

which will be proved in Appendix B. Here, the equality holds
for the optimal scaled protocol C̃opt ≡ {ã∗(s̃),b̃∗(s̃)}0�s̃�1

given by (see Fig. 4)

ã∗(s̃) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣ 4s̃√
a1

+ 1−4s̃√
a0

∣∣−2 (
0 � s̃ � 1

4

)
,

a1
(

1
4 � s̃ � 1

2

)
,∣∣ 3−4s̃√

a1
+ 4s̃−2√

a0

∣∣−2 (
1
2 � s̃ � 3

4

)
,

a0
(

3
4 � s̃ � 1

)
,

(21)

b̃∗(s̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0
(
0 � s̃ � 1

4

)
,

2b0(1 − 2s̃)
(

1
4 � s̃ � 1

2

)
,

0
(

1
2 � s̃ � 3

4

)
,

b0(4s̃ − 3)
(

3
4 � s̃ � 1

)
.

(22)

We then obtain the maximum power as

P ∗ = 1

2T

[
bK4

64

]2 ∣∣∣∣ 1√
a0

+ 1√
a1

∣∣∣∣
2

+ O(ε3). (23)

This result exhibits that a positive amount of power is extracted
from the avalanche noise as the non-Gaussianity increases. The
optimal total time of the operation is given by

τ ∗ = 256T

bK4

1/
√

a0 − 1/
√

a1

1/
√

a0 + 1/
√

a1
. (24)

We have some remarks on the validity of Eqs. (21), (22),
and (23). According to Eq. (16), the processes P1 → P2 and
P3 → P0 are irrelevant for S[C̃]. Therefore, the explicit form
of Eq. (22) is arbitrary for 1/4 � s̃ � 1/2 and 3/4 � s̃ � 1 if
the following assumptions are satisfied: b̃(1/4) = b0, b̃(1/2) =
0, b̃(3/4) = 0, b̃(1) = b0, and db̃/ds̃ = O(ε). We also note
that the formula (23) is only valid under the assumptions of
a0 = O(1), a1 = O(1), and a1 − a0 = O(1), which implies
that Eq. (23) is invalid for some limits such as a0 − a1 → +0
or a1 → ∞.

We numerically verify the validity of the power for-
mula (23) for the rectangular optimal protocol (21), (22),
and (24). We consider the symmetric Poisson model (13) on
the condition that a0 = 1, a1 = 5, b0 = 0.05, and λ = 1.0. We
control the flight distance I , and we plot the average power
as a function of I in Fig. 5. The numerical data in Fig. 5 are
consistent with the theoretical line (23), which implies that a
more positive amount of power is extracted by this engine as
the non-Gaussianity increases.

IV. CONCLUDING REMARKS

We have studied the energy pumping of an electrical circuit
consisting of avalanche diodes. Using this circuit, we can
extract a positive amount of work from the nonequilibrium
fluctuations of the avalanche diodes even though the fluctua-
tion and the potential are spatially symmetric. We derive the
work and power formulas (9) and (16) to discuss quasistatic
and finite-time operational processes. We have checked the
validity of our formulas through numerical simulations. Our
theory can be used to measure high-order cumulants of the
avalanche noise.

We remark that our formulation would be applicable
to other athermal systems, such as granular [29,30] and
biological [28] systems. For example, if we regard the charge
in the capacitor as the angle of the granular motor, the circuit
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FIG. 5. (Color online) Numerical demonstration of the validity
of the power formula (23). On the basis of the method of Monte
Carlo, we numerically obtain trajectories with the fourth Runge
Kutta method and take the ensemble average of the extracted power
with the discretized time step as �t = 0.005. The ensemble number
depends on the parameter I . For example, the ensemble number is
approximately equal to 1.14 × 107 for I = 0.7.

corresponds to the motor driven by the dilute granular gas
with the air friction. It is also interesting to generalize our
formulation for non-Markovian systems.
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for valuable discussions. A part of the numerical calculations
was carried out on SR16000 at YITP in Kyoto University.
This work was supported by the JSPS Core-to-Core Program
“Non-equilibrium dynamics of soft matter and information,”
the Grants-in-Aid for Japan Society for Promotion of Science
(JSPS) Fellows (Grant No. 24·3751), and JSPS KAKENHI
Grants No. 22340114 and No. 25800217.

APPENDIX A: POSSIBLE EXAMPLE OF THE
POTENTIAL MANIPULATION

In this appendix, we illustrate a possible example to realize
the potential manipulation using medium with nonlinear
permittivity. Let us consider a capacitor composed of two
parallel plates with their area A and distance d as shown
in Fig. 6. We externally insert a medium with the nonlinear
permittivity εN (q) into the space between the plates. Let us
denote the insertion depth of the medium by l. Then, the
potential of the capacitor can be written as

U (q,d,r) = Aq2

2d
[(1 − r)ε0 + rεN (q)], (A1)

where we introduce r ≡ l/L. We note that the parameters d and
r are, respectively, the manipulation parameters in this case.
We here consider a weak nonlinear permittivity as εN (q) �
εN0 + εN1q

2/2 taking into account for the symmetry against

q+

q-
d

ε0 εN( )q

l

A

L
FIG. 6. Schematics of the potential manipulation by inserting

a medium with nonlinear permittivity. The medium with nonlinear
permittivity εN (q) is inserted as shown in this figure to control the
potential of the capacitor.

q. Then, the potential can be written as the quartic form

U (q,a,b) = a

2
q2 + b

4
q4, (A2)

where we rewrite the manipulation parameters as a ≡ A[(1 −
r)ε0 + rεN0]/d and b ≡ AεN1/d. We note that the work
defined by Eq. (6) corresponds to the mechanical work to
change the distance between plates or to insert the medium.

APPENDIX B: DERIVATIONS OF THE MAIN RESULTS

In this appendix, we show the detailed calculation for the
derivation of the main results (9), (16), and (23). The equation
of motion is given by

dq

dt
= −aq − bq3 + ξ, (B1)

where we substitute the explicit form of the weak quartic
potential (8) into Eq. (2). We assume that b is proportional
to a small parameter ε, and we expand the solution as q(t) =
q0(t) + q1(t) + · · · , where q0(t) = O(1) and q1(t) = O(ε).
For simplicity, we set the initial condition as q(0) = 0. q0

and q1 satisfy the following equations:

dq0

dt
= −aq0 + ξ, (B2)

dq1

dt
= −aq1 − bq3

0 , (B3)

whose solutions are given by

q0(t) =
∫ t

0
dt ′ exp

[
−

∫ t

t ′
ds a(s)

]
ξ (t ′), (B4)

q1(t) = −
∫ t

0
dt ′ exp

[
−

∫ t

t ′
ds a(s)

]
b(t ′)q3

0 (t ′). (B5)

1. Work along quasistatic processes

We derive the work formula (9) for quasistatic processes.
The work for quasistatic processes is given by

dWqs = −〈q2〉a,b
ss

2
da − 〈q4〉a,b

ss

4
db, (B6)
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where 〈·〉a,b
qs denotes the average in the steady state under fixed

parameters a and b. The steady average of q2 is given by

〈q2〉a,b
ss = lim

t→∞

[∫ t

0

2∏
i=1

dsie
−a(t−si )〈ξ1ξ2〉

− 2b

∫ t

0

2∏
i=1

dsie
−a(t−s1)

×
∫ s2

0

5∏
j=3

e−1(s2−sj )〈ξ1ξ3ξ4ξ5〉
⎤
⎦ + O(ε2)

= T

a
− 3bT 2

a3
− bK4

4a2
+ O(ε2), (B7)

where we have introduced the notation ξi ≡ ξ (si) and used a
relation for the fourth moment [37,57],

〈ξ1ξ3ξ4ξ5〉 = 4T 2[δ(s1 − s3)δ(s4 − s5) + δ(s1 − s4)δ(s3 − s5)

+ δ(s1 − s5)δ(s3 − s4)] + K4δ4(s1,s3,s4,s5).

(B8)

The steady average of q4 is given by

〈q4〉a,b
ss = lim

t→∞

[∫ t

0

4∏
i=1

dsie
−a(t−si )〈ξ1ξ2ξ3ξ4〉

]
+ O(ε)

= 3T 2

a2
+ K4

4a
+ O(ε). (B9)

Then, we obtain

dWqs =
(

− T

2a
+ 3bT 2

2a3
+ bK4

8a2

)
da

−
(

3T 2

4a2
+ K4

16a

)
db + O(ε2)

= −d

(
T

2
log a + 3bT 2

4a2
+ bK4

16a

)
+ bK4

16a2
da + O(ε2),

(B10)

which implies Eq. (9).

2. Power along slow operational processes

We next derive the power formula for slow operational
processes (16) and its optimal protocol and power (21)–(23).
We assume that the speed of the parameters’ control is finite but
slow: 1/τ = O(ε). Let us introduce scaled parameters ã(s̃) ≡
a(τ s̃) and b̃(s̃) ≡ b(τ s̃) with the total operation time τ . In a
perturbative calculation with respect to ε ∼ 1/τ , q0(τ s̃) can
be expanded as

q0(τ s̃) = τ

∫ s̃

0
ds̃ ′ exp

[
−τ

∫ s̃

s̃ ′
ds̃ ′′ã(s̃ ′′)

]
ξ (τ s̃ ′)

= τ

∫ s̃

0
ds̃ ′e−τ ã(s̃)(s̃−s̃ ′)

×
[

1 + τ
(s̃ − s̃ ′)2

2

dã(s̃)

ds̃

]
ξ (τ s̃ ′) + O(ε2), (B11)

where we have used the relation |s̃ − s̃ ′| ∼ 1/τ and

exp

[
−τ

∫ s̃

s̃ ′
ds̃ ′′ã(s̃ ′′)

]

= exp

[
−τ

∫ s̃

s̃ ′
ds̃ ′′

{
a(s̃)+ dã(s̃)

ds̃
(s̃ ′′ − s̃)+O((s̃ ′′ − s̃)2)

}]

= exp

[
−τ (s̃ − s̃ ′)ã(s̃)+τ

(s̃ − s̃ ′)2

2

dã(s̃)

ds̃
+τO((s̃ − s̃ ′)3)

]

= e−τ ã(s̃)(s̃−s̃ ′)
[

1 + τ
(s̃ − s̃ ′)2

2

dã(s̃)

ds̃

]
+ O(1/τ 2). (B12)

From a similar calculation, q1(τ s̃) is also expanded as

q1(τ s̃) = −
∫ τ s̃

0
dt ′ exp

[
−

∫ t

t ′
ds a(s)

]
b(t ′)q3

0 (t ′)

= − τ 4
∫ s̃

0
ds̃1e

−τ ã(s̃)(s̃−s̃1)b(s̃1)

×
∫ s̃1

0

4∏
i=2

ds̃ie
−τ ã(s̃1)(s̃1−s̃i )ξ (τ s̃i) + O(ε2). (B13)

From Eqs. (B11) and (B13), we obtain

〈q2(τ s̃)〉 = T

ã
− 3bT 2

ã3
− bK4

4ã2
+ T

2τ ã3

dã

ds̃
+ O(ε2), (B14)

〈q4(τ s̃)〉 = 3T 2

ã2
+ K4

4ã
+ O(ε). (B15)

Therefore, we obtain Eqs. (14) and (15).
We next consider the rectangular protocol shown in Fig. 2

assuming that the arrival time at Pi is given by τ̃i = i/4
for i = 1,2,3. The optimal scaled protocol C̃ is given by
the variational principle as follows. We first introduce the
Lagrangian L(ã,dã/ds̃) ≡ (dã/ds̃)2/ã3. Then, the variational
principle δS[C̃] = 0 gives

∂L
∂(dã/ds̃)

dã

ds̃
− L = c2, (B16)

which is equivalent to

1

ã3(s̃)

(
dã(s̃)

ds̃

)2

= c2, (B17)

where c2 is a time-independent constant. Then, we obtain

1

ã3/2(s̃)

dã(s̃)

ds̃
= c, (B18)

for 0 � s̃ � 1/4, which is equivalent to

ã(s̃) =
∣∣∣∣ 4s̃√

a1
+ 1 − 4s̃√

a0

∣∣∣∣
−2

, (B19)

under the condition of ã(0) = a0 and ã(1/4) = a1. From a
parallel calculation, we obtain

ã(s̃) =
∣∣∣∣3 − 4s̃√

a1
+ 4s̃ − 2√

a0

∣∣∣∣
−2

, (B20)

for 1/2 � s̃ � 3/4, ã(1/2) = a1, and ã(3/4) = a0. Equa-
tion (16) predicts that the processes P1 → P2 (1/4 � s̃ � 1/2)
and P3 → P0 (3/4 � s̃ � 1) are irrelevant for S[C̃] and,
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therefore, their explicit forms are arbitrary if the assump-
tions of b̃(1/4) = b0, b̃(1/2) = 0, b̃(3/4) = 0, b̃(1) = b0, and
db̃/ds̃ = O(ε) are satisfied. Thus the following process is an
optimal protocol for b̃(s̃):

b̃∗(s̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b
(
0 � s̃ � 1

4

)
,

2b(1 − 2s̃)
(

1
4 � s̃ � 1

2

)
,

0
(

1
2 � s̃ � 3

4

)
,

b(4s̃ − 3)
(

3
4 � s̃ � 1

)
.

(B21)

For this optimal protocol Copt, we obtain

S[Copt] = 8T

∣∣∣∣ 1√
a0

− 1√
a1

∣∣∣∣
2

, (B22)

which implies Eqs. (20) and (23).

APPENDIX C: WEAKLY NON-GAUSSIAN NOISES
WITH AN ARBITRARY POTENTIAL

In this appendix, we consider weakly non-Gaussian cases
with an arbitrary potential U (q,�a) and obtain a work formula
along quasistatic processes. We assume that higherorder
coefficient K2n in the Kramers-Moyal expansion satisfies
K2n = O(ε) for n � 2 with a small parameter ε. The Kramers-
Moyal expansion of this system [57] is given by

∂P (q,t)

∂t
= ∂

∂q

[
∂U (q,�a)

∂q
+

∞∑
i=1

K2i

(2i)!

∂2i

∂q2i

]
P (q,t). (C1)

Let us consider the stationary distribution by the perturbation
with respect to ε. We expand the stationary distribution
as PSS(q) = P0(q) + P1(q) + · · · , where P0(q) = O(1) and
P1(q) = O(ε). Then, P0(q) and P1(q) satisfy the following
equations:

∂U

∂q
P0(q) + T

dP0(q)

dq
= 0, (C2)

∂U

∂q
P1(q) + T

dP1(q)

dq
= −

∑
i=2

K2i

(2i)!

∂2i−1

∂q2i−1
P0(q), (C3)

whose solutions are, respectively, given by

P0(q) = e−U (q,�a)/T∫ ∞
−∞ dq ′e−U (q ′,�a)/T

, (C4)

P1(q) = P0(q)

[
C +

∞∑
i=2

K2i

(2i)!
U2i(q)

]
. (C5)

Here, C is a normalization constant satisfying
∫ ∞
−∞ dq P1(q) =

0, and we have introduced

U2i(q) ≡ −
∫ q

0

dq ′

T
e

U (q′ ,�a)
T

∂2i−1

∂q ′2i−1
e− U (q′ ,�a)

T . (C6)

Then, in the first-order perturbation, we obtain an integrated
work formula for a quasistatic protocol Cqs:∮

Cqs

dW =
∞∑
i=2

K2i

(2i)!

∮
Cqs

d�a · �F (2i)(�a) = 0, (C7)

where

�F (2i)(�a) =
〈
∂U (q,�a)

∂ �a U2i(q,�a)

〉
eq

. (C8)

This formula implies that we can extract the work from the
non-Gaussian properties of the noise.

APPENDIX D: METHOD OF INTEGRATING FACTORS

We have shown that the integrated quasistatic work is not
a scalar potential in general. Here we demonstrate that we
can construct a scalar potential by the method of integrating
factor, and obtain an inequality similar to the second law only
in the case with the weakly quartic potential. Integrating factors
allow an inexact differential to become an exact differential.
For example, in the case of equilibrium thermodynamics, tem-
perature is introduced as the integrating factor for heat [38,60].
It is known that integrating factors always exist for the case of
two parameters. In the present case, we find an integral factor
1/T ∗ ≡ 1 + bK4/8aT in the perturbation with respect to ε,
and we obtain a thermodynamic scalar potential as

G(a,b) ≡
∫

dWqs

T ∗ = −T

2
log a − 3T 2b

4a2
− bK4

16a
+ O(ε2).

(D1)

Furthermore, for the slow operational processes with dã/ds =
O(1) and db̃/ds = O(ε), we can show the following equality∫ 〈dW 〉

T ∗ − G(a,b) = − 1

τ

∫ 1

0

ds̃ T

4ã3

[
dã

ds̃

]2

+ O(ε2),

(D2)
which implies an inequality similar to the second law as∫ 〈dW 〉

T ∗ � G(a,b) + O(ε2). (D3)

We note that we obtain such an inequality similar to the
second law only for the weakly quartic potential and the
slow processes. However, it is unclear whether we can show
second-law-like inequalities using the method of integrating
factor for general cases.

We here briefly present the derivation of Eq. (D2). On the
conditions of dã/ds = O(1) and db̃/ds = O(ε), we obtain

d〈W 〉
ds̃

=
(

− T

2ã
+ 3b̃T 2

2ã3
+ b̃K4

8ã2

)
dã

ds̃

−
(

3T 2

4ã2
+ K4

16ã

)
db̃

ds̃
− T

4τ ã3

(
dã

ds̃

)2

+ O(ε2),

(D4)

where we used Eqs. (B14) and (B15). Then, we obtain

1

T ∗
d〈W 〉
ds̃

=
(

− T

2ã
+ 3b̃T 2

2ã3
+ b̃K4

16ã2

)
dã

ds̃

−
(

3T 2

4ã2
+ K4

16ã

)
db̃

ds̃
− T

4τ ã3

(
dã

ds̃

)2

+ O(ε2)

= dG(a,b)

ds̃
− T

4τ ã3

(
dã

ds̃

)2

+ O(ε2), (D5)

which implies Eq. (D2).
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