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Effect of coupling strength on a two-lane partially asymmetric coupled totally asymmetric simple
exclusion process with Langmuir kinetics
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We analyze an open system comprised of two parallel totally asymmetric simple exclusion processes with
particle attachment and detachment in the bulk under partially asymmetric coupling conditions. The phase
diagrams are obtained using boundary layer analysis of continuum mean-field equations and characterized for
different values of lane-changing rates. The structure of the phase diagram remains qualitatively the same as the
one in fully asymmetric coupling conditions up to a certain critical order of lane-changing rates, after which
significant changes are found in the phase diagram. The effect of system size on the steady-state dynamics has
also been examined. To validate theoretical findings, extensive Monte Carlo simulations are carried out.
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I. INTRODUCTION

The totally asymmetric simple exclusion process (TASEP)
is considered to be a paradigmatic model for self-driven
many-particle systems. The recent research to understand
such nonequilibrium systems is motivated by their important
applications in physics, chemistry, and biology such as kinetics
of biopolymerization [1], protein synthesis [2,3], dynamics of
motor proteins [4], gel electrophoresis [5], vehicular traffic
[6], and modeling of ant trails [7]. In the TASEP, particles
move along a one-dimensional lattice obeying a hard-core
exclusion principle with certain preassigned rules. This simple
model can well describe some of the complex nonequilibrium
phenomena such as boundary-induced phase transitions [8,9],
phase separation [10], spontaneous symmetry breaking [11],
and shock formation [12–14].

The coupling of a one-dimensional TASEP with a particle
attachment-detachment process [Langmuir kinetics (LK)] has
gained much attention in the past decade. The additional
attachment-detachment dynamics violate particle conservation
in the bulk. The importance of studying such processes lies
not only in understanding nonequilibrium systems but also
in the intracellular transport, where processive molecular
motors advance along cytoskeletal filaments and attachment-
detachment of motors occurs between the cytoplasm and
the filament [15]. The steady-state behavior observed by
coupling of the TASEP and LK is considerably different
from those known in reference models of the TASEP and
LK individually. Mirin and Kolomeisky [16] studied the
effects of irreversible detachments in a single-channel TASEP.
Parmeggiani et al. [17] presented a detailed study about the
competing dynamics of particle conservation (TASEP) and
particle nonconservation (LK) in a single-channel lattice. The
distinguishing characteristics of localization of shocks and
phase coexistence have also been identified [12,18]. Mukherji
and Mishra [19] performed a boundary layer analysis to study
bulk and surface transitions in a one-dimensional TASEP with
LK.

Looking at the wide occurrence of multichannel transport
processes in the real world, it becomes important to study
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multichannel nonequilibrium systems. In spite of the sub-
stantial work done on multichannel TASEPs [20–29], a few
studies have been reported in the literature that investigate
multichannel TASEPs in the presence of Langmuir kinetics.
In this direction, Jiang et al. [30] studied a two-lane TASEP
with particle creation and annihilation only in one of the two
lanes. Moreover, the particles could jump from one lane to
another with equal rates (symmetric coupling). In the context
of motor protein traffic, Wang et al. [31] proposed a two-lane
symmetrically coupled TASEP model with LK in both the
lanes. Gupta and Dhiman [32] examined a two-channel TASEP
model with Langmuir kinetics in both the lanes with lane
changing only in one direction. They found that even a small
asymmetry in lane-changing rates can produce significant
changes in the phase diagram in comparison to the one of
a symmetrically coupled system. The appreciable difference
in steady-state properties of a two-channel TASEP with LK
in two extreme coupling environments, viz., symmetric and
fully asymmetric, encourages us to investigate the system in
partially asymmetric coupling conditions, in which particles
can move between both lanes, but with unequal rates.

II. TWO-LANE MODEL AND HYDRODYNAMIC
MEAN-FIELD APPROXIMATION

We define a system of two parallel one-dimensional
lattice channels, each with L sites, denoted by A and B, in
which particles are distributed under the hard-core exclusion
principle (see Fig. 1). For each time step, a lattice site (i,j )
(i = 1,2,3, . . . ,L; j = A,B) is randomly chosen. The state of
the system is characterized by a set of occupation numbers
τi,j (i = 1,2,3, . . . ,L; j = A,B), each of which is either zero
(vacant site) or one (occupied site). At the entrance (i = 1) a
particle can enter the lattice with a rate α provided τ1,j = 0
and at the exit (i = L) a particle can leave the lattice with a
rate β when τL,j = 1. In the bulk, if τi,j = 1, then the particle
at site (i,j ) first tries to detach itself from the system with a
rate wd (detachment rate) and if it fails then it moves forward
to site (i + 1,j ) provided τi+1,j = 0; otherwise it attempts to
shift to the other lane with a rate wj (lane-changing rate from
the j th lane to the other) only if the target site is vacant. In the
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FIG. 1. Schematic diagram of the model. Crossed arrows indicate
the forbidden transitions.

bulk, if τi,j = 0, a particle attaches to the site with a rate wa

(attachment rate).
The proposed model can be thought of as a two-lane

asymmetrically coupled TASEP with LK in both the lanes.
The rule for an asymmetric lane change between the two lanes
imparts to the model its generality over the existing two-lane
coupled TASEP models with LK [30–32]. Note that our model
is suitable to study a number of two-lane transport processes
such as vehicular traffic and motor proteins because normally
a vehicle or a molecular motor does not change its lane unless
hindered by another one preceding it. This is completely in
accordance with the lane-changing rules defined by us.

The temporal evolution of bulk particle densities (1 < i <

L) in both lanes (j = A,B) can be computed from the master
equations

d〈τi,j 〉
dt

= 〈τi−1,j (1 − τi,j )〉 − 〈τi,j (1 − τi+1,j )〉
+ωa〈1 − τi,j 〉 − ωd〈τi,j 〉
∓ωA〈τi,Aτi+1,A(1 − τi,B)〉
±ωB〈τi,Bτi+1,B (1 − τi,A)〉, (1)

where 〈· · · 〉 denotes the statistical average and last two terms
on right-hand side take a negative (positive) sign and a positive
(negative) sign for lane A (B), respectively. At the boundaries,
the particle densities evolve according to

d〈τ1,j 〉
dt

= α〈(1 − τ1,j )〉 − 〈τ1,j (1 − τ2,j )〉, (2)

d〈τL,j 〉
dt

= 〈τL−1,j (1 − τL,j )〉 − β〈τL,j 〉. (3)

Factorizing the correlations using the mean-field approxima-
tion, we get

〈τi,j τi+1,j 〉 = 〈τi,j 〉〈τi+1,j 〉. (4)

In the hydrodynamic limit L → ∞, we can derive the
continuum limit of the model by coarse graining a discrete
lattice with lattice constant ε = 1/L and rescaling the time
as t ′ = t/L. When the nonconserving processes in the system
occur at a comparatively lower rate than particle conserving
processes, the system attains a stationary state locally due to
conservative dynamics only. Thus, rescaling the time variable
is reasonable to understand the engagement between particle
conserving and nonconserving dynamics. To observe the com-
peting interplay between the boundary and bulk dynamics, we
rescale the attachment, detachment, and lane-changing rates

in such a way that the kinetic rates decrease simultaneously
with an increase in system size [17]:

�a = ωaL, �d = ωdL, �A = ωAL,�B = ωBL. (5)

Note that the parameters �a , �d , �A, and �B remain finite in
the limit L → ∞.

We replace the binary discrete variables τi,j with continuous
variables ρi,j ∈ [0,1] and retain the terms up to second order
in a Taylor series expansion (for a large system, i.e., L 	 1)
to obtain

ρi,j±1 = ρi,j ± 1

L

∂ρi,j

∂x
+ 1

2L2

∂2ρi,j

∂x2
+ O

(
1

L3

)
. (6)

In the absence of any kind of spatial inhomogeneity, we can
drop the subscript i. The average densities (ρA and ρB) in
both lanes, which are functions of time t ′ and quasicontinuous
space variable x ∈ [0,1], describe the state of the system as

∂ρ

∂t ′
+ ∂J

∂x
= S, (7)

where

ρ =
[
ρA

ρB

]
,

J =
[− ε

2
∂ρA

∂x
+ ρA(1 − ρA)

− ε
2

∂ρB

∂x
+ ρB(1 − ρB)

]
,

and

S=
[
�a(1 − ρA) − �dρA − �Aρ2

A(1 − ρB) + �Bρ2
B(1−ρA)

�a(1 − ρB) − �dρB + �Aρ2
A(1 − ρB) − �Bρ2

B(1−ρA)

]
.

Here S represents the nonconservative terms formed by
the combination of lane-changing transitions and Langmuir
kinetics. The components of J are the currents in the particle
conservation situation in lanes A and B, respectively. In the
particular case of �B = 0, the coupling term, arising due to
the biased lane-changing rule, acts as a sink for lane A and a
source for lane B [32]. This aspect does not hold true for the
present general case of �A,B 
= 0.

III. STEADY-STATE SOLUTION: BOUNDARY
LAYER ANALYSIS

In this section we determine the steady-state solution of the
coupled system (7), for which we need to solve the system

ε

2

d2ρA

dx2
+ (2ρA − 1)

dρA

dx
+ �a(1 − ρA) − �dρA

−�Aρ2
A(1 − ρB) + �Bρ2

B(1 − ρA) = 0,
(8)

ε

2

d2ρB

dx2
+ (2ρB − 1)

dρB

dx
+ �a(1 − ρB) − �dρB

+�Aρ2
A(1 − ρB) − �Bρ2

B(1 − ρA) = 0.

The boundary conditions for the coupled nonlinear system (8)
are ρA(0) = ρB(0) = α and ρA(1) = ρB(1) = 1 − β = γ . The
leading-order terms in the above system play a role similar to
that performed by the vanishing viscosity term (regularizing
term) in the Burgers equation. Retaining second-order terms in
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the system ensures the generation of a smooth solution fitting
all four boundary conditions. The shocks or boundary layers (if
any) are formed over regions of width of O(ε = 1/L), across
which a sudden rise or fall in the density profile occurs while
the current remains constant. This constancy in current is due
to the irrelevance of the particle nonconserving dynamics in
the narrow boundary layer or shock region.

To understand the steady-state behavior of the system
(7), we employ a boundary layer analysis of the continuum
mean-field equations. Being a general scheme to solve the
hydrodynamic equation in the thermodynamic limit [33], this
approach has been quite successful in explaining the complete
rich phase diagrams of the single-channel TASEP with LK
[19] and the two-channel TASEP with LK in fully asymmetric
coupling conditions [32], respectively. In the thermodynamic
limit (L 	 1), the contribution of the regularizing terms is
negligible and the major part of the density profile is described
by the solution of the system of first-order equations obtained
after neglecting second-order terms in the system (7). This
solution is known as the outer solution or bulk solution.
The omission of the second-order system makes the coupled
system overdetermined, due to which the outer solution is
unable to meet the boundary conditions at both boundaries
simultaneously. This generates the notion of left outer and
right outer solutions. The solution satisfying the left (right)
boundary condition is known as left (right) outer solution.
Since the density profile has to satisfy the boundary condition
at other end also, the global solution cannot be given by the
outer solution alone. Thus, to satisfy the boundary conditions
at both ends, a narrow regime crossing, from left to right, the
solution is formed that gives rise to either a boundary layer or
a shock in the density profile. This solution is known as the
inner solution and is found by ignoring the nonconservative
terms in the steady-state system.

A. Outer solution

Now we need to solve the system of first-order coupled
ordinary differential equations [taking the limit ε → 0 in the
system (8)] to obtain the outer solution in both lanes. Though
the elimination of second-order terms simplifies the system,
still it cannot be solved analytically because of the coupling
terms. Moreover, the system is overdetermined, due to which
it cannot fulfill the four boundary conditions simultaneously.
These limitations suggest the use of a suitable numerical
scheme to get an approximate outer solution of the continuum
mean-field equations. The following numerical scheme for
j th lane is used to find the outer solution of the continuum
mean-field equations

ρn+1
i,j = ρn

i,j + ε

2

�t ′

�x2

(
ρn

i+1,j − 2ρn
i,j + ρn

i−1,j

)
+ �t ′

2�x

[(
2ρn

i,j − 1
)(

ρn
i+1,j − ρn

i−1,j

)]
+�t ′

[
�a

(
1 − ρn

i,j

) − �dρ
n
i,j

∓�A

(
ρn

i,A

)2(
1 − ρn

i,B

) ± �B

(
ρn

i,B

)2(
1 − ρn

i,A

)]
+O(�t,�x2). (9)

Here the last two terms take negative (positive) and positive
(negative) signs for lane A (B), respectively. The density
profiles in the steady state have been obtained by capturing the
solution of the above discretized system in the limit n → ∞,
which ensures the occurrence of a steady state.

B. Inner solution

To find the inner solution, we introduce a variable x̃ = x−xd

ε
,

where xd is the position of the boundary layer. This rescaling
leads to the elimination of the source and sink terms in
the hydrodynamic equations, which is well justified because
particle nonconserving dynamics are irrelevant in regions of
width of O(ε). In terms of the variable x̃, the equations
governing the inner solution in the thermodynamic limit can
be expressed in a concise form (j = A,B) as

1

2

d2ρj,in

dx̃2
+ (2ρj,in − 1)

dρj,in

dx̃
= 0. (10)

Integrating once with respect to x̃, we have

dρj,in

dx̃
= 2

(
aj + ρj,in − ρ2

j,in

)
. (11)

Here aj is the constant of integration and is computed from
the matching condition of outer and inner solutions.

If we suppose that the boundary layer appears at the right
boundary (x = 1) for lane j , the matching condition requires

ρj,in(x̃ → −∞) = ρj,out (x = 1) = ρj,o. (12)

Here ρj,o is value of the left outer solution in lane j at x = 1.
Clearly, ρj,o is a function of the system parameters �d and �.

Equation (12) gives aj = ρ2
j,o − ρj,o, which physically

interprets that the current across the inner solution region
must be equal to the bulk current entering the region. Solving
Eq. (11) after substituting the value of aj , we obtain the inner
solution in lane j given by

ρj,in = 1

2
+ |2ρj,o − 1|

2
tanh

(
x̃

wj

+ ξj

)
, (13)

where wj = 1
|2ρj,o−1| and ξj = tanh−1( 2γ−1

|2ρj,o−1| ). The value of
ξj is computed from the condition ρj,in(x̃ = 0) = γ . The left
outer solution ρj,o is a function of the entrance rate α as
it respects the left boundary condition. Thus, ξj becomes a
function of α as well as γ . This dependence of the inner
solution on the boundary rates gives rise to a region in α − γ

in which we get a right boundary layer in lane j with positive
slope. This region is a subregion of the low-density (LD) phase
and exists for γ > ρj,o(α). The solution given by Eq. (13) is
referred to as the tanh −r solution. Here r denotes the right
boundary, i.e., x = 1. The slope of the boundary layer given
by tanh −r is positive, as shown in Fig. 2, curve (iv). As
x̃ → ∞, the boundary layer at x = 1 saturates to, say, ρj,s . The
saturation of the boundary layer is mathematically expressed
by the condition ρ2

j,o − ρj,o + ρj,s − ρ2
j,s = 0, which gives

ρj,s = 1 − ρj,o. When γ > ρj,s(α), the inner solution fails
to satisfy the right boundary condition ρj,in(x̃ → ∞) = γ

and deconfines from the boundary to enter the bulk of lane
j in the form of a shock. Thus γ = 1 − ρj,o(α) acts as a
bulk transition line between LD and shock phases. Such a
continuous transition is reminiscent of the bulk transition
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FIG. 2. (Color online) Density profiles showing different kinds
of boundary layers: (i) α = 0.9,γ = 0.9, lane A; (ii) α = 0.9,γ =
0.45, lane B; (iii) α = 0.55,γ = 0.45, lane A; and (iv) α = 0.1,γ =
0.45, lane A.

observed in the single-channel TASEP with LK [19,34], known
as a shockening transition. Within the LD phase, the slope of
the boundary layer is negative for γ < ρj,o(α) and the inner
solution in this region is

ρj,in = 1

2
+ |2ρj,o − 1|

2
coth

(
x̃

wj

+ ξ̂j

)
, (14)

where ξ̂j = coth−1( 2γ−1
|2ρj,o−1| ). This solution is denoted by

coth −r . The change in the slope of the boundary layer
describes a surface transition, which does not affect bulk
density profile. The length scale described by ξj shows a
logarithmic divergence (ξj ∼ ln |γ − ρj,o|) as one approaches
the surface transition line from either of the two subregions.
When α > 1/2, a decaying boundary layer starts developing
at x = 0 and grows in size with an increase in the entrance
rate. The appearance of the left boundary layer (LBL) can
be understood as follows. In the LD phase, the bulk density
is less than 1/2, which is not compatible with the boundary
condition ρA(x = 0) = α(>1/2). Thus, in order to satisfy the
left boundary condition, a decaying boundary layer evolves at
x = 0. The tanh −r solution becomes tanh − r with the LBL
[Fig. 2, curve (iii)] as one crosses the vertical line α = 1/2
in the phase plane. Along similar lines, we can analyze the
boundary layer at x = 0.

Importantly, one should not infer from here that the inner
solutions in both lanes are independent of nonconservative
dynamics. Moreover, the inner solution in lane A is influenced
by the inner solution in lane B and vice versa, although this
might not appear explicitly by looking at the uncoupled system
[Eq. (10)]. However, the lane-changing and attachment-
detachment phenomena impart their effect in the inner solution
through the matching conditions.

IV. PHASE DIAGRAMS AND THE EFFECT OF
LANE-CHANGING RATES

In this section we derive phase diagrams for different values
of lane-changing rates and investigate the effect of coupling
strength on the steady-state properties. We also validate the
numerical solutions of continuum mean-field equations with
Monte Carlo simulations for system size L = 1000. The Monte
Carlo simulations are carried out for 1010–1011 time steps and
the first 5% of the steps are ignored to ensure the occurrence
of a steady state. The densities in both lanes are computed by
taking time averages over an interval of 10L.

It is important to note that the steady-state dynamics of a
symmetrically coupled two-lane TASEP with LK are similar
to those in a single-lane TASEP with LK (ignoring finite-size
effects) [31]. The symmetry in coupling rates leads to the
cancellation of lane-changing source terms with sink terms
in the mean-field hydrodynamic equations, which gives two
uncoupled ordinary differential equations representing two
independent TASEPs with LK. Hence, the topology of the
phase diagram of the single-lane TASEP with LK model is
preserved. This is totally in contrast to the fully asymmetric
coupling conditions [32], where we have the existence of
another phase diagram, considerably different from that of
a single-lane TASEP with LK [17,19].

The two-lane TASEP with LK model has already been
analyzed under symmetric [31] and fully asymmetric coupling
conditions [32]. Now we consider the important case of
partially asymmetric coupling conditions. It has been reported
in the literature [20,21,24,29] that the phase diagram of a two-
lane TASEP without LK is significantly different in partially
asymmetric and fully asymmetric coupling environments. This
stimulates the need to answer two important questions: (a)
Does there exist any difference in the phase diagrams of a
two-lane TASEP with LK under partially asymmetric and
fully asymmetric coupling environments? (b) If there are
any differences, are they similar to those observed in the
corresponding system without LK?

In an attempt to answer the above questions, we investigate
the effect of lane-changing rates on the steady-state dynamics
of the system. Without any loss of generality, we assume
that �A > �B . We adopt a new terminology to identify the
different transition rates. The order of a transition rate �t

(t = a,d,A,B) is said to be 10−m, denoted by O(�t ) = 10−m,
if it can be expressed in the form

�t = p ∗ 10−m, p ∈ [1,10).

To begin with, we analyze the case in which the orders of
attachment, detachment, and lane-changing rates are consis-
tent. Figure 3 shows the phase diagram for �d = �a = 0.2,
�A = 0.8, and �B = 0.2. In particular, Fig. 3(b) shows the
composition of the phase plane on the basis of bulk transitions
only, which clearly indicates that there exists six steady-state
distinct phases, namely, (LD,LD), (LD,S), (S,HD), (S,S),
(HD,HD), and (LD,HD).

On comparing the steady-state phase diagram for �A =
0.8 and �B = 0.2 with that in �A = 1 and �B = 0 [32], the
following inferences can be drawn.

(i) There is no qualitative difference in the phase diagram
with �A = 0.8 and �B = 0.2 from the one in fully asymmetric
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FIG. 3. (Color online) (a) Phase diagram for �d = 0.2, �A =
0.8, and �B = 0.2. The following notation is used: D1, tanh−r;
D2, coth−r; D3, tanh−r with a LBL; D4, coth−r with a LBL;
D5, tanh−l; D6, coth−l; D7, tanh−l with a RBL; D8, coth−l

with a RBL; D9, S plus a LBL; and D10, S plus a RBL. Here
S denotes shock and LBL and RBL denote the left boundary
layer and right boundary layer, respectively. Curves marked with
triangles and squares represent phase boundaries of lanes A and
B, respectively. Solid and dashed curves denote bulk and surface
transitions, respectively. (b) Classification of phases on the basis of
bulk transitions only.

coupling conditions. The number of phases also remains
conserved.

(ii) When �A = �B , the phase diagram reduces to the
one in the symmetric coupling case and densities in both
lanes become equal [31]. The larger the difference is between
�A and �B , the greater the deviation is from the phase
diagram in symmetric coupling conditions and the greater the
density difference is between two lanes. The deviation in the
structure as well as the density difference is maximum for fully
asymmetric coupling conditions.

(iii) With an increase in �A − �B , the LD phase in lane A

expands while the high-density (HD) phase in lane B shrinks.
The reverse phenomenon occurs for phases in lane B. This
is due to the increased number of particles shifting from lane

A to lane B, which leads to a deficiency and abundance of
particles in lane A and lane B, respectively.

(iv) More importantly, the aforementioned observations are
true for any values of �A 
= �B [provided their magnitude is
of O(�d )].

So far, we have investigated the case in which lane-changing
rates are of the same order as the attachment and detachment
rates. Further, we discuss how the higher orders of lane-
changing rates affect the steady-state properties of the system.
It is observed that the phase diagram of our system with
O(�A,B) =10O(�a,d ) has no structural difference from the
one with consistent orders. The only noticeable difference is
the shifting of various phase boundaries in the phase plane,
which leads to a variation in the size of various phases in
the phase diagram. For example, the LD phase in lane A (B)
expands (contracts) while the HD phase in lane A (B) contracts
(expands) with increasing lane-changing rates.

As soon as O(�A,B) = 100O(�a,d ), the contribution of the
attachment and detachment in the system dynamics reduces
enough that the behavior of the system is mainly dominated
by lane-changing dynamics. A significantly different structure
of the phase diagram is obtained as shown in Fig. 4.
Figure 4(a) shows a rich and detailed classification of the phase
plane into distinct phases generated by bulk as well as surface
transitions for �A = 80 and �B = 20. Figure 4(b) represents
the composition of the phase plane into six different phases,
viz., (LD,LD), (HD,HD), (S,S), (LD,HD), intermediate phase
1, and intermediate phase 2. The division in Fig. 4(b) is on the
basis of bulk transitions only.

It is clear from Fig. 4(a) that the phase plane comprises of
18 distinct phases, each of which describes a different density
profile. For smaller values of both α and γ , the system is in
the LD phase. In the (coth − r,coth − r) phase, the density in
both lanes is less than 1/2 with a coth-type right boundary
layer (RBL) at x = 1. Fixing α, if one moves in the direction
of increasing γ , the coth-type RBL first undergoes a surface
transition to the tanh-type RBL, which then deconfines from
the boundary to enter the bulk in the form of a shock. The line
of deconfinement appears as the phase boundary between the
(LD,LD) and (S,S) phases.

For γ < 1/2, the density in both lanes increases, while the
shape of the density profile remains the same on increasing
α. As soon as α � 0.25, we enter the intermediate phase in
which, up to a certain position in the domain, ρB < 1/2 and
then ρB > 1/2. Thus, this phase cannot be designated as either
(LD,LD) or (LD,HD). An example of the density profile in the
intermediate phase 1 is shown in Fig. 5. This phase persists
until α = 0.35, after which the system is in the (LD,HD) phase.
Similar arguments can be given for the transitions from the
(HD,HD) phase to the (LD,HD) via the intermediate phase 2
and to the (S,S) phases. In the intermediate phase 2, the density
profile in lane A lies neither in the LD nor in the HD phase.

The density profile within the (LD,HD) phase is not of
one kind; rather it is classified into nine distinct categories
according to the shape of the boundary layer. This particular
observation is similar to the phase diagrams for lower orders
of lane-changing rates [32].

Now we discuss the three important and distinguishing
features of the steady-state phase diagram with �A = 80 and
�B = 20.
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FIG. 5. (Color online) (a) Density profiles in the intermediate
phase 1 for α = 0.3,γ = 0.4. The continuum mean-field density
profiles are shown in red (blue) and by a solid (dashed) line in lane
A (B). The curve marked with triangles (squares) shows the Monte
Carlo simulation results for lane A (B). Clearly, lane A is in the LD
phase while lane B is in neither the LD nor the HD phase.

A. Regions of surface transition in the boundary layer

The first important difference in the phase diagram structure
of �A = 80 and �B = 20 from the one with lower orders is
the appearance of new subregions in the phase plane. So far,
we have identified the lines of the surface transition in the
LD and HD phases for O(�A) = O(�B) < 100O(�d ) that
accompany a bulk transition from the LD and HD phases to
the shock phase [32]. This surface transition leads to a change
in sign of the slope of the boundary layer. In the present case,
we obtain regions instead of lines of the surface transition
in the LD and HD phases. From Fig. 4(a) one finds the four
subregions marked I–IV (shaded), in which the density profile
incurs a kink near one of the boundaries. The value of the bulk
density is such that the profile of the outer solution cannot meet
the inner solution smoothly near the boundary, which leads to
the formation of a kink in the density profile. Within the LD
phase, subregion I is the region of the surface transition of
the RBL in lane A, where the density profile is comprised of
a downward kink at the right boundary shown in Fig. 6(a).
Similarly, subregion II indicates the surface transition of
the right boundary layer in lane B, where the profile at
the right boundary shows an upward kink [Fig. 6(b)]. The
corresponding regions for the slope change of the left boundary
layer in the HD phase are represented by III and IV in lane B

and lane A, respectively. It is clear from Fig. 6(c) [Fig. 6(d)]
that the LBL in lane B (A) has an upward (downward) kink.
Additionally, regions I and IV extend outside the (LD,LD) and
(HD,HD) phases, respectively. The density profiles in region
V contain a kink at the right boundary layer in lane A and a
kink at the left boundary layer in lane B.

B. Synchronization of shocks

Since �A > �B , the shifting of additional particles from
lane A to B creates a relative shortage of particles in lane A

and an abundance of particles in lane B. Therefore, the average
density in lane A is always lower than the average density in
lane B. An interesting observation is that whenever shock
occurs in both the lanes, one cannot get a density profile of the
kind shown in Fig. 7(a), as such a profile violates the condition
ρA < ρB . One can infer from the above reasoning that shock in
lane A is always to the right of the shock in lane B.

Figure 7(b) shows the variation in the distance between
shocks in lane A and lane B with respect to �A for different
system sizes. Note that �B = 0.25�A, which means that both
lane-changing rates grow together. Clearly, for small values
of �A, there is a significant difference between the positions
of the two respective shocks, denoted by xs,A − xs,B for all
system sizes. Here xs,j denotes the position of the shock in lane
j . For small values of �A, the intershock distance xs,A − xs,B

is quite small and approaches zero on further increasing �A.
The order of the lane-changing rates, where xs,A − xs,B ∼ 0,
is referred to as the order of synchronization, which is found
to be 100O(�d ). Clearly, the system size has no effect on the
order of synchronization.

For O(�A,B) < 100O(�d ), the shocks or domain walls
(DWs) in the two lanes appear at different positions in the
bulk, as clear from Figs. 8(a) and 8(b). On increasing the
lane-changing rates, the shock in lane A moves leftward while
the shock in lane B moves rightward. As soon as the order
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of the lane-changing rates reaches 100O(�d ), the positions of
the shocks in both lanes almost match [see Fig. 8(c)], which is
referred to as synchronization of shocks. We find that shocks
are completely synchronized when O(�A,B)= 1000O(�d )
[Fig. 8(d)]. Moreover, after synchronization the two shocks
move in the same direction in the bulk with respect to any
further increase in lane-changing rates.

The synchronization occurs due to the gradually decreasing
distance between the shocks as �A and �B grow. This
phenomenon has also been observed in the past. In Ref. [35],
Mitsudo and Hayakawa found that kinks (shocks) in two
lanes become synchronized in a two-lane asymmetric simple
exclusion process model without Langmuir kinetics. Later,
Jiang et al. [30] introduced Langmuir kinetics into one of
the lanes of a two-lane system. Although the lane-changing
rates in the two-lane model of Jiang et al. [30] are symmetric,
the dynamics of the particle attachment and detachment in
exactly one of the two lanes imparts asymmetry to their model.
Jiang et al. [30] found that synchronization of shocks in both
lanes occurs when the lane-changing rate exceeds a specific
threshold value. Interestingly, the threshold value specified in
[30] is �c = 10, which has the same order as the one observed
for our asymmetrically coupled system. The matching of order
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and �B = 20.

of the threshold value of the lane-changing rates indicates
that synchronization of shocks is one of the characteristics of
two-lane particle nonconserving TASEPs.

In addition to its dependence on the order of lane-changing
rates, the phenomenon of synchronization also depends on
the ratio of the lane-changing rates. We have seen that
synchronization of shocks does not occur when �B/�A is
quite small, even for higher order of �A. Our present study
focuses on the fixed ratio of lane-changing rates (�B/�A =
0.25).

Figure 9 depicts that for fixed α, an increase in γ not only
increases the height of the domain wall (shock) in lane A

but also shifts its location leftward in the bulk. Physically,
increasing γ means decreasing removal rate β, which leads to
an increase in the density of particles at the right boundary and
hence the HD portion of the shock profile moves to a higher
magnitude and extends over a larger number of lattice sites.
For the sake of clarity, we have given shock profiles in lane
A only. The shock in lane B, which is at the same position as
the shock in lane A, also shows similar dynamics due to the
phenomenon of synchronization.

C. Disappearance of (LD,S) and (S,HD) phases

An important noteworthy aspect of the phase diagram
[Fig. 4(b)] is that our system cannot exist in the (LD,S) and
(S,HD) phases. The reason for the nonexistence of these two
phases can be attributed to the synchronization of domain walls
in both lanes, which restrains the two domain walls to occupy
the same position in the bulk. So, their deconfinement from
the boundary (either right or left) also occurs simultaneously.
Thus, the domain wall cannot be present in the bulk (shock)
in one lane while it is at the boundary in other lane. In this
way, we cannot have (LD,S) and (S,HD) phases in the phase
diagram.

As mentioned earlier, the synchronization of shocks does
not occur for a small ratio of lane-changing rates. As a result,
both (LD,S) and (S,HD) phases exist when �B/�A is small.
This observation is consistent with the results obtained in [14],
where we see the existence of (LD,S) and (S,HD) phases
with �B/�A � 0.1 for any order of �A. Although the model
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FIG. 10. Phase diagram with �A = 800 and �B = 200. The
notation is the same as in Fig. 4(a).

studied in [14] is a two-channel TASEP without LK, it is
reasonable to compare it with our model because O(�A,B) =
100O(�a,d ) in our case.

The aforementioned distinguishing features of steady-
state dynamics are preserved for the case when O(�A) =
O(�B)=1000O(�d ). Figure 10 shows the steady-state phase
diagram with �A = 800 and �B = 200. The regions of surface
transitions, denoted by I, II, III, and IV, have enlarged as a
result of increasing lane-changing rates. Moreover, regions
I and II and regions III and IV merge (but do not overlap)
in such a way that leads to the extinction of two phases,
namely, (tanh − r,coth − r) and (coth − l,tanh − l). There is
no other noticeable change in the composition of the phase
diagram. We have also investigated the effect of the system
size on our results and observed that the bulk solution given
by Monte Carlo simulations is independent of the lattice size.
It is clear from Fig. 11(a) that the sharpness in the steep rise
of the shock increases as one increases the number of lattice
sites. For the sake of clarity, average densities in only one
of the two lanes, viz., lane A, are shown. These observations
are consistent with the results reported in the literature [31].
Figure 11(b) shows that the kink at the boundary layer emerges
more clearly with an increase in the number of lattice sites,
which also justifies that the system size chosen by us, viz.,
L = 1000, is appropriate to study such a system.

V. COMPARISON OF PARTIALLY ASYMMETRIC WITH
FULLY ASYMMETRIC COUPLING CONDITIONS

As mentioned earlier, there are no structural differences
between the phase diagrams under fully and partially asym-
metric coupling conditions until O(�A,B) < 100O(�a,d ). The
density profiles also show a continuous transition as one moves
from zero asymmetry (symmetric) to maximum asymmetry
(fully asymmetric) via partially asymmetry. Figure 12(a)
shows the variation in density profile in the (LD,S) phase for
different values of lane-changing rates having order consistent
with that of detachment-attachment rates. Clearly, the shape
of the density profile does not change with a variation in the
magnitude of �B . Similarly, the other phases also preserve

0.2 0.3 0.4 0.5 0.6
0.1

0.3

0.5

0.7

(a)

x

ρ A L = 100, MC
L = 500, MC
L = 1000, MC
L = 5000, MC
L = 1000, CMF

−0.01 0 0.01 0.02 0.03
0.55

0.6

0.65

0.7

0.75

x

ρ B

(b)

L = 100, MC
L = 500, MC
L = 1000, MC
L = 5000, MC
L = 1000, CMF

FIG. 11. (Color online) Effect of system size on the (a) shock
profile and (b) kink in the boundary layer.

the shapes of density profiles. Moreover, there is no sudden
appearance or disappearance of any phase in the phase plane.
Thus, one can conclude that the consistency is preserved while
moving between different coupling conditions for O(�A,B) <

100O(�a,d ).
The above inference does not hold true for higher orders

of lane-changing rates, i.e., O(�A,B) � 100O(�a,d ). Here the
phase diagrams of the system in fully and partially asymmetric
coupling conditions are topologically different. Although the
number of phases in phase diagrams with �A = 100, �B = 0
[32] and �A = 80, �B = 20 is the same, the nature of the
phases differs. Importantly, we have seen that the two phases
(LD,S) and (S,HD), which cover a considerable portion of the
phase plane for �A = 100 and �B = 0, do not even exist for
�B 
= 0. It is evident from Fig. 12(b) that the density profiles
in lane B suddenly incur a shock as soon as �B = 0. Thus, we
can conclude that there is a loss of consistency in the structure
of the phase diagram as one shifts from partially asymmetric
to fully asymmetric coupling conditions for higher orders of
lane-changing rates. The disappearance of (LD,S) and (S,HD)
phases does not happen abruptly when �B takes a nonzero
value. While �A is fixed, a gradual increase in �B leads to
shrinkage of the (LD,S) and (S,HD) phases, which ultimately
disappear for a certain value of �B .

The aforementioned observations can be understood as
follows. It is well known in the literature that for a
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two-lane TASEP without LK there are significant differences
in the phase diagrams under fully asymmetric and partially
asymmetric coupling conditions [23,24,29]. For O(�A,B) �
100O(�a,d ), the effect of attachment and detachment is
quite small as compared to lane changing, due to which the
steady-state dynamics show a significant variation in partially

and fully asymmetric coupling environments, parallel to the
case of a two-lane TASEP without LK.

VI. CONCLUSION

In this work we have studied a two-lane totally asymmetric
simple exclusion process with Langmuir kinetics in both lanes
under partially asymmetric coupling conditions. A detailed
study of the steady-state properties of the system was carried
out using a boundary layer analysis of the mean-field equations
in the continuum limit. The phase diagrams were obtained and
the effect of lane-changing rates was thoroughly investigated.
We classified the phase diagrams in terms of the order of
transition rates. When the order of the lane-changing rates was
equal to or ten times the order of the attachment-detachment
rates, the structure of the phase diagram was qualitatively
similar to the one in fully asymmetric coupling conditions. As
we increased the order of the lane-changing rates to 100 times
the order of the attachment-detachment rates, we observed
significant changes in the phase diagram. Instead of getting a
line of surface transition, we obtained subregions of surface
transition in the phase plane. In these subregions, the boundary
layer was neither tanh type nor coth type, but involved a kink
at the boundary. The second important feature of the phase
diagram is the synchronization of shocks in two lanes, which
was not observed for lower orders of lane-changing rates or in
fully asymmetric coupling conditions. The third distinguishing
characteristic of the phase diagram is the disappearance or
appearance of certain phases. We have also examined the
effect of the system size on the density profiles. The results of
continuum mean-field equations agree well with Monte Carlo
simulations.

This work is an attempt to provide completeness to the
steady-state properties of a two-lane TASEP with LK in all
possible coupling environments. The present study might
help not only in understanding complex dynamics of motor
proteins but also towards enhancement of one’s insight into
nonequilibrium statistical mechanics.
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