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We show how the formalism used for thermoelectric transport may be adapted to Smoluchowski’s seminal
thought experiment, also known as Feynman’s ratchet and pawl system. Our analysis rests on the notion of useful
flux, which for a thermoelectric system is the electrical current and for Feynman’s ratchet is the effective jump
frequency. Our approach yields original insight into the derivation and analysis of the system’s properties. In
particular we define an entropy per tooth in analogy with the entropy per carrier or Seebeck coefficient, and we
derive the analog to Kelvin’s second relation for Feynman’s ratchet. Owing to the formal similarity between the
heat fluxes balance equations for a thermoelectric generator (TEG) and those for Feynman’s ratchet, we introduce
a distribution parameter γ that quantifies the amount of heat that flows through the cold and hot sides of both
heat engines. While it is well established that γ = 1/2 for a TEG, it is equal to 1 for Feynman’s ratchet. This
implies that no heat may be rejected in the cold reservoir for the latter case. Further, the analysis of the efficiency
at maximum power shows that the so-called Feynman efficiency corresponds to that of an exoreversible engine,
with γ = 1. Then, turning to the nonlinear regime, we generalize the approach based on the convection picture
and introduce two different types of resistance to distinguish the dynamical behavior of the considered system
from its ability to dissipate energy. We finally put forth the strong similarity between the original Feynman ratchet
and a mesoscopic thermoelectric generator with a single conducting channel.
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I. INTRODUCTION

In his reflections on the motive power of heat, Carnot
established that heat-to-work conversion is a process that
occurs only with a limited efficiency [1]. More than a century
later, Feynman, in his Lectures on Physics [2], thought it was
worthwhile to provide a physically transparent explanation of
this limitation, basing his analysis on elementary mechanical
arguments. The simplest mechanical device that could serve
this purpose was that which allows a shaft to rotate only
one way to transmit motion: the ratchet and pawl system,
originally designed by Smoluchowski (among other demons
in the thermodynamic bestiary [3]) and known nowadays as
a Brownian or Feynman ratchet. The system is composed of
an axle attached on one side to vanes immersed in a gas at
temperature T1 while the other end is attached to a ratchet
wheel with asymmetric teeth immersed in a thermal reservoir
at temperature T2. The motion of the wheel is constrained by
the presence of a pawl which allows its rotation only in one
direction. Further, the axle is also provided with a drum on
which is attached a load to lift; this latter exerts a torque on
the axle.

According to Feynman [2], if the system is sufficiently
small, the Brownian motion of the particles in the reservoir 1
communicates a fluctuating motion to the vanes which in turn
provides, through the axle, random rotations of the ratchet
wheel. When one of the rotations caused by the fluctuations
is sufficiently important to make the pawl jump from one
tooth to the next, one observes a breaking of the rotational
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symmetry: Thermal fluctuations then have a nonvanishing
average effect. The axle thus experiences an effective motion
of rotation in a given direction (determined by the orientation
of the teeth) that might be transferred to the load; thereby,
work is produced. As such, Feynman’s ratchet may be viewed
as one of the possible realizations of Maxwell’s demon since its
purpose is to extract useful work from the thermal fluctuations
in a thermal reservoir. But extracting work from a single
thermal reservoir is in contradiction with the second law of
thermodynamics: “No process is possible whose sole result
is the complete conversion of heat into work,” according to
Kelvin’s statement [4].

To overcome this contradiction, Feynman focused on the
rectification process caused by the pawl, which indeed is also
affected by thermal fluctuations since the mechanical system
is assumed to be sufficiently small to operate on Brownian
motion. The temperature fluctuations in the thermal reservoir
2 affect the spring attached to the pawl, necessary to replace
this latter on the ratchet wheel after the jump from one tooth to
the next. If these fluctuations become important, the pawl may
disengage from the ratchet and allow, and even force, the wheel
to turn in the direction opposite to that which permits work
production. Feynman thus introduced the necessity to consider
two reservoirs and the exchange of heat between them: work
can be extracted only if some heat flows from the hotter to the
colder reservoir, satisfying thereby the second law. With his
toy model, Feynman obtained much insight into the operation
of a heat engine and could discuss the notions of reversibility
and irreversibility, as well as order and entropy.

Since its publication, Feynman’s analysis of the ratchet
and pawl has inspired numerous works based on more so-
phisticated model systems (see, e.g., the studies of Sakaguchi
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[5] and Van den Broeck et al. [6], and works cited therein).
Feynman’s ratchet also serves as a reference model for studies
of molecular motors [7–10]. Therefore, a finer understanding
of this particular heat engine not only is of theoretical interest
but may also be useful in the field of biophysics, especially
for the determination of the performance of molecular motors.
Now, only a handful of studies [11–13] concern the original
mechanical device proposed by Feynman. In this article,
we revisit the original ratchet and pawl system in light of
thermoelectric transport theory. Thermoelectricity has long
been recognized as a touchstone for theories of irreversible
thermodynamics [14] since it provides sufficiently simple
arguments and formalism to rigorously tackle outstanding
problems in this field, as shown yet again recently [15]. One
purpose of the present work is to show that there is a strong
analogy between the properties of Feynman’s ratchet and those
of a model thermoelectric generator, which can be fruitfully
exploited to model autonomous heat engines.

The article is organized as follows. In Sec. II, we recall
the principal features of Feynman’s ratchet by giving the
constitutive relations of the model. Then, focusing first on
the linear approximation of these relations as done by Velasco
and co-workers in Ref. [16], we demonstrate in Sec. III how
the formalism used in thermoelectricity may be adapted to
analyze Feynman’s ratchet. In particular we introduce the
notion of entropy per tooth in analogy with the entropy per
carrier and we discuss the validity of the strong-coupling
assumption already questioned in Ref. [13]. Next, in Sec.
IV, we extend our analysis to the original nonlinear case
considered by Feynman, putting forth the distinction between
the dynamical response of the system and its ability to dissipate
energy. We end the present work by stressing the similitude
between Feynman’s ratchet and a mesoscopic thermoelectric
generator with a single conducting channel.

II. CONSTITUTIVE RELATIONS

A generic autonomous heat engine in contact with two
thermal reservoirs is depicted on Fig. 1. A load, which
receives power extracted from the heat flux, embodies the
time-independent boundary conditions that drive the operation
of the autonomous engine maintained in a nonequilibrium
steady state. Onsager’s formalism [17] is very well suited to
analyze such a situation.

Just as in Ref. [2], we consider that the reservoir 1 is
hotter than the reservoir 2. For clarity, we set T1 = Thot and
T2 = Tcold with Thot > Tcold. To determine the heat fluxes, we
express first the effective jump frequency Ṅeff from one tooth
to the next as a function of the various characteristics, internal
and external, of the system. The quantity Ṅeff represents the

FIG. 1. Thermodynamic picture of an autonomous heat engine.

difference between the forward jump frequency Ṅ+ associated
with a lift of the load, and the backward jump frequency Ṅ−
associated with a fall of the load. A forward jump is obtained
when the thermal energy provided to the vanes in the reservoir
1 allows lifting the load but also compressing the spring to let
the pawl reach the next tooth. The required energy to compress
the spring is denoted ξ ; the potential energy delivered to the
load is the product of the torque L exerted by this load on
the axle by the angle θ between two successive teeth of the
wheel. The probability of a forward jump is then supposed to
be proportional to exp [−(ξ + Lθ )/(kBThot)], where kB is the
Boltzmann constant. In the case of a backward jump, only the
compression of the spring is involved: The probability of this
event is proportional to exp [−ξ/(kBTcold)]. Hence, the jump
frequencies are given by

Ṅ+ = 1

t
exp

(
−ξ + Lθ

kBThot

)
,

(1)

Ṅ− = 1

t
exp

(
− ξ

kBTcold

)
,

so that the effective jump frequency Ṅeff = Ṅ+ − Ṅ− reads

Ṅeff = 1

t

[
exp

(
−ξ + Lθ

kBThot

)
− exp

(
− ξ

kBTcold

)]
, (2)

where t is a characteristic time of the system, which is the same
in both expressions (1), since one should recover the situation
of thermal equilibrium in the absence of the load (Lθ = 0),
and with a vanishing average rotation of the axle (Ṅ+ =
Ṅ−), when both heat reservoirs are at the same temperature
(Thot = Tcold).

The mean heat fluxes between the device and the thermal
reservoirs can be obtained as the product of the effective jump
frequency and of the energy extracted (delivered) from (to) the
reservoir. The convention used for the orientations of the heat
fluxes is displayed on Fig. 1. Since for each forward jump an
energy ξ + Lθ is taken from the hot reservoir while an energy
ξ is delivered to the cold reservoir, the heat fluxes are given by

IQhot = (Lθ + ξ ) Ṅeff,
(3)

IQcold = ξṄeff .

Thereby, the power P transferred to the load is

P = IQhot − IQcold = LθṄeff . (4)

Note that this power may be viewed as the product of a
generalized flux Ṅeff and a generalized thermodynamic force
applied to the load Lθ .

III. LINEAR DESCRIPTION

Because of the exponential dependence of the effective
jump frequency Ṅeff on the external control parameter Lθ , it
is difficult to obtain a clear physical picture of the phenomena
at stake in the operation of Feynman’s ratchet. In order to
simplify the problem and hence clarify its analysis, we assume
in this section that the energies associated with each jump,
namely, ξ and ξ + Lθ , remain negligible compared to the
thermal energies of the reservoirs kBThot and kBTcold.
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A. Linearization of the jump frequencies

Using this simplifying hypothesis, the number of forward
and backward jumps per unit of time are respectively given by

Ṅ+ = 1

t

(
1 − ξ + Lθ

kBThot

)
,

(5)

Ṅ− = 1

t

(
1 − ξ

kBTcold

)
,

which yield a simplified expression for the effective jump
frequency:

Ṅeff = 1

t

(
ξ

kBTcold
− ξ + Lθ

kBThot

)
= L0θ − Lθ

tkBThot
, (6)

where, following Velasco and co-workers [16], we introduced
the parameter L0θ = �T ξ/Tcold. We see that L0θ is the value
of the control parameter, through the choice of the load, for
which Ṅeff vanishes. In the following, L0θ will thus be called
the stopping force.

B. Analogy with thermoelectricity

The heat fluxes (3) may now be rewritten as

IQhot =
(

ξ

Tcold

)
ThotṄeff − tkBThotṄ

2
eff,

(7)

IQcold =
(

ξ

Tcold

)
TcoldṄeff .

With this form, we notice a strong similitude with the
heat fluxes between a thermoelectric engine and the thermal
reservoirs with which it is in contact. We do not use here
the classical expressions of Ioffe [18]; rather we use the
generalized expressions derived in Ref. [19]:

IQhot = αThotI + K�T − γRI 2,
(8)

IQcold = αTcoldI + K�T + (1 − γ )RI 2,

with I being the electrical current, α being the Seebeck
coefficient, K being the thermal conductance of the engine,
R being its electrical resistance, and γ being the coefficient
of partition of the dissipated heat between the two thermal
reservoirs. The electrical current I for a thermoelectric system
and the effective jump frequency Ṅeff for Feynman’s ratchet
play similar roles: both are a “useful flux” in the sense that they
are associated with work production. Now, identifying Eqs. (7)
and (8) term by term, it is thus possible to find a thermoelectric
equivalent to each parameter of the Feynman ratchet.

1. Entropy per tooth

Various mechanisms such as radiation, conduction, and
convection contribute to heat transfer. In thermoelectricity,
convection may be associated with the net useful flux of
electric charges since this mechanism underlies the thermo-
electric conversion process [20,21]: The power delivered by a
thermoelectric generator to a load results from the difference
between the incoming and outgoing convective heat fluxes
across the generator. Now, assuming that the heat transported
by convection is proportional to the local temperature T , the
energy conversion is then only related to the temperature

change along the device and one may define a constant
quantity α, the Seebeck coefficient, such that the heat flux
reads IQ = αT I .

We may adapt the same reasoning to Feynman’s ratchet and,
with Eq. (7), introduce an entropy per tooth, αFR, in analogy
with the Seebeck coefficient, sometimes defined as the entropy
per particle:

αFR = ξ

Tcold
. (9)

This expression depends only on the compression energy ξ of
the spring and on Tcold. It is important to notice that the load
has no influence whatsoever on the value of αFR. The entropy
per tooth αFR could also be obtained by reasoning from the
stopping force L0θ . In the thermoelectric case, this stopping
force is given by α�T . For Feynman’s ratchet, we also find

L0θ = αFR�T. (10)

Now, the fact that both ways yield the same expression for
αFR is related to a fundamental property of the system: Eq. (9)
is based on the analysis of the quantity of heat associated with
each jump, and hence it is tightly related to the analog of the
Peltier coefficient �FR, while Eq. (10) is obtained from the
response of the system to an applied temperature difference.
Since αFR is identical for these two aspects of the energy
conversion, we may state that

�FR = αFRT , (11)

which means that Kelvin’s second relation also holds for the
Feynman ratchet.

2. Resistance and dissipation

The comparison of the dissipation terms in Eqs. (7) and
(8) shows that the dissipated heat appears only on the hot
side of Feynman’s ratchet, which implies that the partition
parameter γ is 1 for this system. This situation is different
from the thermoelectric generator for which γ = 1/2. Further,
for Feynman’s ratchet, the dissipation term is proportional
to the square of the useful flux Ṅ2

eff , just as Joule heating
is proportional to I 2. We may thus express the equivalent
dissipative resistance for Feynman’s ratchet as

R�
dis = tkBThot. (12)

As for αFR, this resistance does not depend on the load.
In analogy with the thermoelectric generator for which I =

(α�T − �V )/R, the relation between the useful flux Ṅeff and
the generalized force (L0θ − Lθ ) may take the form

Ṅeff = (L0θ − Lθ )/R�
dyn, (13)

where R�
dyn is a dynamical resistance characterizing the

proportionality between these two quantities. With Eq. (6),
we see that

R�
dis = R�

dyn, (14)

which constitutes the simplest formulation of the fluctuation-
dissipation theorem. From this simple case, we recover the fact
that if a system is linear, the useful flux is proportional to the
applied force and that it dissipates power quadratically with
the flux as stressed in Ref. [22]. We insist here on the fact that
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these quadratic terms are fully part of the linear description
of the engine and may not, in principle, be justified by the
introduction of ad hoc nonlinear terms as was done for example
in Ref. [23]. As a matter of fact, the so-called minimally
nonlinear irreversible thermodynamic models [23,24] are ad
hoc theoretical constructs which find a use when passing from
the local to the global scale seems infeasible in a reasonable
fashion for some model systems.

For Feynman’s ratchet, dissipation is due to the damping
mechanism necessary to stop the bouncing of the pawl [2].
From a Maxwell’s demon viewpoint, one would say that the
pawl needs to “forget” that it was moved. It is thus surprising
that the dissipation occurs in the cold reservoir, where the
pawl lies, while on the macroscopic scale it appears that all
the dissipated heat is released in the hot reservoir (γ = 1).

3. Thermal conductance

Since in Feynman’s description [2] the axle is assumed to be
a perfect thermal insulator, no term related to heat conduction,
i.e., heat transfer when Ṅeff = 0, appears in Eq. (7): The ratchet
thus works under the so-called strong-coupling condition [25].
While Gomez-Marin and Sancho arrive at a similar conclusion
in Ref. [26], this result is in contradiction with the article of
Parrondo and Español who demonstrate that there are heat
leaks in this engine [13]. But, since they considered a system
in which the ratchet wheel and pawl part is replaced by other
vanes, which is not the genuine Feynman ratchet configuration,
the behavior of their system is obviously quite different:
the presence of a temperature difference between the two
reservoirs and the choice of a load condition Lθ = 0 (which is
equivalent to a shortcircuit in thermoelectricity), implies that
the effective jump frequency is finite. As a result, a convective
heat flux is generated. We believe that this convective flux has
been erroneously interpreted as a conductive heat transfer,
leading Parrondo and Español to challenge the idea that
Feynman’s ratchet may operate in the strong-coupling regime.
As the effective jump frequency vanishes for Lθ = L0θ the
heat exchange between the reservoirs also vanishes. For this
particular working condition, in the absence of heat leaks,
the Carnot efficiency may be reached as for a thermoelectric
generator operating under the strong-coupling condition [27].
Note that, just as Feynman did, we neglect here the contribution
of heat transfer due to the difference of the pawl trajectories
along a single tooth for backward and forward rotation, which
indeed may be another source of heat leakage [12].

Although we have just demonstrated from the constitutive
relations that there are no heat leaks, the strong-coupling
condition for Feynman’s ratchet still has to be questioned.
Indeed there is a discrepancy between the constitutive relations
and the global description of the system. As a matter of fact,
the system’s properties are such that in reservoir 1 low-energy
particles do not contribute to the energy exchange; but this is
not the case for the high-energy particles. According to the
mathematical description given by Feynman, only particles
with an energy exactly equal to Lθ + ξ can contribute to the
energy exchange. Since this theoretical fact has no physical
justification, the possibility of actually achieving the strong-
coupling condition must be checked rigorously, especially
when high-energy particles are involved: the thermal conduc-

tance under vanishing effective jump frequency might then be
no longer negligible.

C. Discussion of the model

Equation (8) gives the heat fluxes at the global scale
of the considered thermoelectric generator model; it was
derived in Ref. [19], where we made the assumption of local
equilibrium to use the force-flux formalism [17] combined
with the heat equation to satisfy the principle of conservation
of the energy. As Callen provided the correspondence between
the kinetic coefficients used by Onsager and the more useful
thermoelectric parameters α, R, and K [28], Eq. (8) is an
Onsager-Callen description of a thermogenerator. Now, our
analysis of Feynman’s ratchet presented above is based on
an analogy with the Onsager-Callen formalism, and we must
discuss the relevance in this context of some of the hypotheses
that apply in thermoelectricity.

Feynman’s ratchet has already been studied with Onsager’s
formalism by Gomez-Marin and Sancho [26]. Even if their
analysis is rather based on Sakaguchi’s model of the ratchet [5],
it also applies to the original Feynman ratchet. In their article,
Gomez-Marin and Sancho express the kinetic coefficients Lij

of the system considering that the thermodynamical forces are
X1 = F/Thot and X2 = �T/Thot, where F has a role similar
to that of L0θ − Lθ . We see that these expressions do not
correspond to local definitions since the temperature of the
system is supposed to be always Thot. This example illustrates
the fact that, as discussed in Ref. [19], it is impossible
to rigorously study an energy-conversion process based on
coupled fluxes with a straight Onsager approach. Indeed,
within this framework, one must focus on the local scale but
not on the system as a whole. However, it is possible to move
from the local to the global scale and obtain Eq. (8) as long as
the principle of energy conservation is rigorously satisfied.

To proceed with the discussion it is useful to recall that
the hypothesis of microreversibility was used to prove the
reciprocal relations at the heart of Onsager’s theory of irre-
versible thermodynamics [17,29], and that the same hypothesis
was also used later to merge into one formalism, known
as the Onsager-Machlup theory [30], the phenomenology
of irreversible processes and the stochastic analysis of the
spontaneous fluctuations of thermodynamic variables. The
microreversibility hypothesis applies correctly to a thermo-
dynamic system undergoing irreversible changes, only at the
local scale, which implies that the said system is in a situation
of near equilibrium, where Onsager’s force-flux formalism
yields a satisfactory account of the physical processes at work.
The description of a thermodynamic system not too far from
equilibrium may thus be done with the assumption of local
equilibrium [31]. More precisely, the system is viewed as
an ensemble of regions or cells of intermediate sizes, i.e.,
large enough to be considered as thermodynamic subsystems
with variables thus defined locally, and in contact with their
environment (the cells are open to energy and matter transport),
but sufficiently small to ensure little variation of the local
thermodynamic variables.

In the case of Feynman’s ratchet we derived constitutive
relations similar to those obtained for a thermoelectric systems
but there is no such thing as a local equilibrium for this
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system. Our analysis is based on an analogy between two
different systems, and it may seem rather surprising to obtain
the results we showed above without the assumption of
local equilibrium for Feynman’s ratchet (in particular no
thermodynamic variable has been associated with the axle),
while this assumption is crucial for a thermoelectric generator.
We thus conclude that, despite the fact it was first obtained with
an Onsager-Callen approach, Eq. (8) has a much broader scope
than that of linear force-flux formalism since the assumption
of local equilibrium of the system is superfluous.

As regards the analog to the second Kelvin relation,
Eq. (11), one may wonder what microscopic reversibility,
which is an essential assumption in the case of thermoelec-
tricity, means for the Feynman’s ratchet. Our view is that
the condition of microscopic reversibility might be linked to
the necessity for the characteristic times t in Eq. (1), to be
identical. The justification for this identity originates in the
condition of thermal equilibrium with �T = 0 and Lθ = 0;
we thus consider that the second Kelvin relation in this case
stems from the zeroth law of thermodynamics.

The angle θ is an internal parameter of the system,
which appears in the definition of the generalized force Lθ

associated with the load. This definition simplifies the physical
description of the system and has no impact on our derivations.
Actually θ plays the same role for Feynman’s ratchet as that
of the elementary electrical charge e in thermoelectricity:
For convenience, and without any consequence, the electrical
current I = −eIparticle has been considered instead of the
particle current Iparticle and the potential difference �V has
been considered instead of the electrochemical potential
difference �μ = −e�V .

Finally, we stress that a generalized configuration of the
Feynman ratchet, which accounts for dissipative thermal
contacts between the engine and the heat reservoirs, must be
analyzed with care, as in this case the temperatures T1 and T2

are no longer equal to Thot and Tcold and depend on the working
conditions, so αFR and R�

dis do: The linear behavior is thus lost.

D. Efficiency at maximum power

The efficiency at maximum power for the linear model of
Feynman’s ratchet was derived by Velasco and co-workers
[16], and they named it the Feynman efficiency:

ηFeynman = ηC

2 − ηC
, (15)

where ηC is the Carnot efficiency. This result may easily be
recovered using the general expression initially derived in
Ref. [32]:

ηSS = ηC

2 − γ ηC
(16)

since we have just found that the partition coefficient of the
dissipated heat γ is 1 for Feynman’s ratchet, which is the
most favorable configuration for maximizing the efficiency at
maximum power.

IV. NONLINEAR MODEL

We turn now to the nonlinear properties of Feynman’s
ratchet. Although we necessarily move beyond the linear

regime studied above, we adopt essentially the same approach
to retain the clarity of our analysis so far, basing our reasoning
on analogies with thermoelectricity.

A. Modified relationship between Rdis and Rdyn

The effective jump frequency, Eq. (2), takes the following
form:

Ṅeff = t−1 exp

(
−ξ + Lθ

kBThot

)[
1 − exp

(
−L0θ − Lθ

kBThot

)]
,

(17)

using the notations introduced in the previous section. It
vanishes for Lθ = L0θ as for the linear model; so the quantity
L0θ is still viewed as the stopping force in the nonlinear model.
The heat fluxes are given by

IQhot = αFRThotṄeff − [L0θ − Lθ ] Ṅeff,
(18)

IQcold = αFRTcoldṄeff .

To keep the same form for the heat flux as in Eq. (7), we give
the following general definition of the resistance associated
with the dissipation process:

Rdis = L0θ − Lθ

Ṅeff
. (19)

One may recover R�
dis from this expression, assuming a linear

regime.
We also give a different definition of the dynamical

resistance Rdyn, which was interpreted above as the link
between the generalized force and the useful flux. In the
nonlinear model, we do not consider the global behavior of
the system but rather the vicinity of the considered working
point: Rdyn is the derivative of the generalized force L0θ − Lθ

with respect to the useful flux Ṅeff :

Rdyn = −d(L0θ − Lθ )

dṄeff
= −d(Lθ )

dṄeff
. (20)

For Feynman’s ratchet the two resistances are

Rdyn = tkBThot exp

(
ξ + Lθ

kBThot

)
(21)

and

Rdis = L0θ − Lθ

kBThot
[
1 − exp

( − L0θ−Lθ

kBThot

)]Rdyn. (22)

In contrast to their linear counterparts, both resistances depend
on Lθ and hence on the working conditions. Further, they are
not equal except in the quasistatic limit, reached for Lθ =
L0θ , where Ṅeff vanishes. For this particular engine, we notice
that Rdis � Rdyn. The main differences between the linear and
nonlinear models of Feynman’s ratchet are summarized on
Fig. 2.

B. Analogy with a mesoscopic thermoelectric generator

The analogy with a thermoelectric generator may be carried
out further, even in the nonlinear case. To this purpose, we
consider a mesoscopic system made of a single ballistic
conducting channel connecting two reservoirs at different
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FIG. 2. Behavior of the linear (a) and nonlinear (b) Feynman’s
ratchet. The working point is selected by setting the value of the
torque L defined by the load.

temperatures such as that described by Humphrey and co-
workers in Refs. [33,34]. If the conducting channel is at
an energy sufficiently above the electrochemical potentials,
i.e., the Fermi levels, of the reservoirs, then the electron
distribution may be approximated by a Boltzmann distribution
which is similar to the probability law for a jump from one
tooth to the next in Feynman’s ratchet. As stressed in the
previous section, only particles with a very specific energy
may contribute to the conversion process; then it possible
to model Feynman’s ratchet like a mesoscopic device as
illustrated in Fig. 3(a). Comparison with a genuine mesoscopic
thermoelectric generator, in Fig. 3(b), shows that the only
difference between these two systems is the choice of the
energy reference. In the case of Feynman’s ratchet the energy
level of the cold reservoir is chosen as a reference, and it is
not modified when the load is changed; whereas in the case of
the thermoelectric generator the energy reference is set as the
mean of the Fermi levels in the cold and the hot reservoirs, μcold

and μhot: When the load is modified, the potential difference
�V and both μcold and μhot are modified. This discrepancy
between the two models explains the difference for the value of
the partition coefficient of the dissipated heat γ , whose value
is 1 for Feynman’s ratchet, but 1/2 for the thermoelectric
generator. In both cases the “conducting channel” is placed
above the energy reference at a constant energy value: ξ for
Feynman’s ratchet and αT e for the thermoelectric generator
[35], with T = (Thot + Tcold)/2.

From this comparison, we may also propose a different
viewpoint on the characteristic time t . Indeed, 1/t appears
to play the same role as the transmission coefficient of the
channel. It is thus easy to understand why this value is the
same for both reservoirs in Eq. (1): it is an intrinsic property of
the link between the reservoirs rather than a property of each

FIG. 3. (Color online) Comparison of Feynman’s ratchet (a) and
a thermoelectric generator with a single conducting channel (b) using
mesoscopic physics formalism.

reservoir. We end this section by noticing that, as a matter
of fact, Feynman was probably the first to use a result that
was derived later by Mahan and Sofo [35] and discussed in
Refs. [33,34]: a single ballistic channel, corresponding to a
Dirac distribution for the transmission function, is a way to
reach the strong-coupling condition, i.e., ZT −→ ∞ for a
thermoelectric system.

V. SUMMARY AND CONCLUDING REMARKS

We have shown how to adapt the formalism of Onsager
and Callen in thermoelectric transport theory to analyze the
linear model of Feynman’s ratchet. We defined an entropy per
tooth in analogy with the entropy per particle. We generalized
and extended our analysis beyond the linear model, stressing
the necessary distinction between the dynamical resistance
Rdyn and the dissipation resistance Rdis. The present analysis
of Feynman’s ratchet should prove useful for the modeling
of autonomous heat engines. Indeed our work puts forth the
need for a transition from Onsager’s formalism, for which
the assumption of local equilibrium is mandatory, to a more
general description where the global behavior of the engine
is considered, and thus is closer to Callen’s description of
the thermoelectric phenomena [28]. The Feynman ratchet
example illustrates the facts that this transition is simple
and that the assumption of local equilibrium is not required
to derive the macroscopic properties (αFR , Rdis, Rdyn, and
K). In principle, thermoelectric equivalent parameters may
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be derived for various systems; this would allow the direct
use of the well-established results in thermoelectricity, in
particular for finite-time optimization [19,27], rather than an
elaborate investigation from scratch for each system. Actually,
the thermoelectric analogy has already been implicitly used
to describe the coupled transport of heat and particles in
the case of cold atoms [36]. This approach may also be
useful to interpret recent results concerning ion-exchange
membranes [37].

To conclude this article, it is instructive to recall that
theoretical studies of Feynman’s ratchet, a Brownian system
mathematically characterized by a Wiener process, may be
tackled with various approaches. It is worth mentioning that
those based on the so-called Onsager-Machlup theory [30] are
particularly well suited to this purpose. The Onsager-Machlup

variational approach was developed in a number of works,
and an effective action principle for nonequilibrium dynamics
was proposed [38] and used to show how linear stochastic
models may describe nonlinear dynamical systems [39]. Hence
our analyses of the nonlinear behavior of Feynman’s ratchet
could be revisited using the effective action principle. Our
purpose in this article was to propose a physically transparent
analysis of the linear and nonlinear dynamics of Feynman’s
ratchet as originally described in the Lectures on Physics [2];
our view being that thermoelectricity provides an interesting
approach owing to the analogies we put forth in the various
sections of the paper. In a forthcoming presentation, we will
build on the nonlinear model of Feynman’s ratchet to derive a
general expression of the efficiency at maximum power of an
autonomous engine [40].
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