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Self-propelled particle in an external potential: Existence of an effective temperature
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We study a stationary state of a single self-propelled, athermal particle in linear and quadratic external
potentials. The self-propulsion is modeled as a fluctuating internal driving force evolving according to the
Ornstein-Uhlenbeck process, independently of the state of the particle. Without an external potential, in the long
time limit, the self-propelled particle moving in a viscous medium performs diffusive motion, which allows one
to identify an effective temperature. We show that in the presence of a linear external potential the stationary
state distribution has an exponential form with the sedimentation length determined by the effective temperature
of the free self-propelled particle. In the presence of a quadratic external potential the stationary state distribution
has a Gaussian form. However, in general, this distribution is not determined by the effective temperature of the
free self-propelled particle.
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I. INTRODUCTION

Recently, there has been a lot of interest in the static and
dynamic properties of particles that are self-propelled and,
thus, can move on their own accord [1–3]. These particles are
said to move actively and to form active matter.

There are two motivations for the interest in active matter
systems. First, these systems model static and dynamic
properties of specific biological and physical systems in
which self-propelled motion occurs. For example, a system
of particles with the so-called run-and-tumble motion serves
as a model for Escherichia coli bacteria [3]. Similarly, a system
of so-called active Brownian particles [2] is a model system
for Janus colloidal particles [4]. The second motivation for the
interest in active matter systems is the fundamental fascination
with nonequilibrium physical systems and, in particular, with
systems without detailed balance.

The present contribution is inspired by recent studies that
showed that, at least in some cases, active matter systems
can exhibit phenomena that are commonly found in standard
(thermal, nonactive) systems. For example, Palacci et al. [5]
found that a dilute active colloidal suspension under gravity
exhibits qualitatively the same exponential density distribution
as a standard dilute thermal colloidal system. Notably, the
parameter that replaces the thermal system’s temperature
coincides with the effective temperature that was inferred from
an independent measurement of the long-time diffusive motion
of an active colloidal particle. More interestingly, behavior
similar to that common in thermal systems was found in
systems consisting of interacting active particles. For example,
Bialké et al. [6] used computer simulations to show that a
system of active Brownian particles can crystallize at suffi-
ciently high densities. Next, Das et al. [7] used both a computer
simulation and an integral equation theory to show that activity
promotes phase separation in an active binary mixture. Finally,
it was found that active systems can exhibit glassy dynamics.
Berthier and Kurchan [8] analyzed a simple model active
system inspired by the so-called spherical p-spin model and
showed that it can exhibit kinetic arrest. This pioneering study
was followed by two computer simulation investigations of
systems of active Brownian particles [9,10] which showed
that, generically, active systems exhibit glassy dynamics, but

the onset of glassy behavior is pushed towards higher densities
compared with systems of nonactive particles. In turn, the
latter simulations inspired a very recent mode-coupling-like
description of glassy dynamics in active systems [11].

Results of some of the investigations mentioned above [5,7]
suggest an emergence of effective thermal behavior and, more
importantly, effective temperature [12]. It should be noted,
however, that other studies [6,13] question the usefulness of
the notion of effective temperature. In particular, Fily and
Marchetti [13] argue that this notion holds only in the dilute
limit.

Our goal is to test the validity of effective temperature in a
simple model. To keep the model exactly solvable we replace
a system of interacting particles by a single active particle in
an external field. Specifically, we compare the behavior of a
single particle without any external potential (for which an
effective temperature can be easily defined) with the behavior
of the same particle in two different external potentials.

There is a number of different models of self-propelled
motion [2]. Their common feature is that an active particle
moves under an influence of an internal self-propulsion
which evolves in some specified way, independently of the
state of the particle. Here we will consider the continuous
time, one-dimensional version of the model introduced by
Berthier [10,14]. In the original model of Ref. [10] Monte
Carlo dynamics with correlated trial moves was used (in
standard Monte Carlo dynamics subsequent trial moves are
uncorrelated [15]). In our model, the particle is subjected
to an internal self-propulsion force and, possibly, a con-
servative force originating from an external potential. The
self-propulsion force has a vanishing average, a finite mean-
square and a finite persistence (i.e., relaxation) time. We
choose a rather simple evolution for the self-propulsion:
we assume that the self-propulsion force evolves according
to the Ornstein-Uhlenbeck stochastic process, independently
of the state of the particle and, in particular, of any ex-
ternal force acting on it. Our choice of the self-propulsion
force evolution leads to relatively simple equations of mo-
tion for the probability distribution of the active parti-
cle, with stationary state distributions that can be derived
analytically.
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We will be mostly concerned with the stationary state
distributions under the influence of an external potential. In
particular, we will show that even though the self-propulsion
force evolves on its own, nontrivial correlations between the
position of the particle and the self-propulsion force can
develop.

We should mention that motion of a single active particle
has already been considered a number of times in the literature,
e.g., in Refs. [16–19]. Some of these studies were concerned
with a very interesting time dependence of the mean-square
displacement [16] and a surprising form of a stationary state
velocity distribution [17] for specific models of active motion
of a single particle without any external force. Other studies
focused on the time dependence of the motion under the
influence of external potentials [18]. Finally, Enculescu and
Stark [19] investigated the stationary state distribution in a
constant external force, which is one of the cases considered
in the present contribution. We will compare their results to
ours in Sec. III.

We start by briefly discussing the motion of a free self-
propelled particle. We note that by using the theoretical
apparatus developed to analyze Brownian motion we can easily
derive the long-time-scale description of the active motion
and define the free particle effective temperature. Next, we
analyze the self-propelled particle under the influence of a
constant force. We show that the stationary state probability
distribution has the usual exponential form and that it can be
expressed in terms of the free particle’s effective temperature.
Finally, we analyze the self-propelled particle under the
influence of a harmonic force. We show that in this case
the stationary state probability distribution has the familiar
Gaussian form. However, in general, it is not determined
by the effective temperature obtained from the motion of
the free self-propelled particle. We also examine an effective
temperature defined through a fluctuation-dissipation relation.
We end the paper with a brief discussion of the results, which
should be applicable in a broader context.

II. FREE SELF-PROPELLED PARTICLE

The free active particle moves in a viscous medium under
the influence of an internal self-propulsion. Although the
motion of real swimming bacteria or self-propelled Janus
particles is force free, we follow previous studies [18] and
describe the self-propulsion as an effective internal driving
force. We assume that viscous dissipation dominates and
consequently the motion is overdamped. The medium (solvent)
is characterized by the single-particle friction coefficient ξ0.
We assume that the active particle is big enough so that any
random force originating from the solvent’s fluctuations is
negligible. Thus, the particle is non-Brownian and, since it
moves in a viscous medium, its velocity is proportional to the
force acting on it.

The self-propulsion force evolves according to the
Ornstein-Uhlenbeck stochastic process. Specifically, the av-
erage value of the force relaxes to zero on the time scale
characterized by the inverse rate γ −1 and instantaneous force
changes by random, uncorrelated increments due to an internal
noise. As a consequence, the self-propulsion force acquires a
finite, nonzero mean square. We note that the statistics of the

force is qualitatively similar to that in the one-dimensional
version of the standard model of active Brownian particles
(see, e.g., Ref. [18]). In the latter model the spatial motion
of the particle is one-dimensional but the direction of the
self-propulsion moves via rotational diffusion resulting in
the zero average and a finite, nonzero mean square of the
self-propulsion force along the direction of the spatial motion.
The motivation for our specific model is that its equations
of motion are linear which allows to find stationary state
distributions analytically.

The time evolution of our system is described by the
following equations of motion:

∂tx(t) = ξ−1
0 f (t), (1)

∂tf (t) = −γf (t) + η(t). (2)

Equation (1) describes overdamped motion of the particle, and
Eq. (2) describes the evolution of the self-propulsion force. In
Eq. (2) η(t) is a white Gaussian noise with the autocorrelation
function given by

〈η(t)η(t ′)〉noise = 2Df δ(t − t ′), (3)

where 〈. . . 〉noise denotes averaging of a Gaussian white noise
η.

Equivalently, the motion of the self-propelled particle can
be described by a joint probability distribution for the particle’s
position and the self-propulsion force, P (x,f ; t). The equation
of motion for this distribution reads:

∂tP (x,f ; t) = − f

ξ0

∂P (x,f ; t)

∂x

+ ∂

∂f

[
γf P (x,f ; t) + Df

∂

∂f
P (x,f ; t)

]
. (4)

It can be easily showed that in the stationary state

P ss(x,f ) ∝ exp

(
− γf 2

2Df

)
(5)

and 〈f 2〉 = Df /γ . Here and in the following 〈. . . 〉 denotes
averaging over the stationary distribution of the position and
self-propulsion force.

We note that Eq. (4) is formally equivalent to the so-
called Fokker-Planck equation that describes the motion of
a Brownian particle on a time scale on which its velocity
relaxation can be observed [20]. Indeed, replacing f/ξ0 by the
particle’s velocity v changes Eq. (4) into the Fokker-Planck
equation. Consequently, we can use the well-known theoretical
analyzes of Brownian motion [20,21] for the present case of
self-propelled motion. We see immediately that the long-time
motion of the self-propelled particle is diffusive and the
diffusion constant is equal to

D = 〈f 2〉/(ξ 2
0 γ

) = Df /(ξ0γ )2. (6)

Since the particle is moving in a viscous medium, using
the standard Einstein relation between the temperature and
friction, and diffusion constant allows us to define an effective
temperature,

Teff = Dξ0 = Df /(ξ0γ
2) (7)
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(we use a system of units in which the Boltzmann constant kB

is equal to 1).
We should note that this long-time diffusive motion of

the self-propelled particle, with diffusion constant given by
Eq. (6), is established on the time scale much longer than
γ −1. We might expect that the long-time motion may become
different [or at least that the diffusion constant becomes
different from (6)] if there is another comparable or shorter
time scale in the problem. We should note in this context that
interesting self-propulsion-related phenomena are observed
for slowly relaxing self-propulsion forces, i.e., precisely when
γ −1 is not the shortest time scale in the problem.

III. SELF-PROPELLED PARTICLE UNDER THE
INFLUENCE OF A CONSTANT FORCE: SEDIMENTATION

If there is an external, conservative, time-independent force
acting on the particle, the equation of motion for the position
of the self-propelled particle has the following form:

∂tx(t) = ξ−1
0 {f (t) + F ext[x(t)]}, (8)

where F ext(x) = −∂xV
ext(x) is the external, conservative,

time-independent force acting on the particle. Equation (8)
needs to be augmented by the equation of motion for the self-
propulsion force [Eq. (2)]. We emphasize that the evolution of
the self-propulsion force is unchanged.

As in the case of a free self-propelled particle, we can
describe the time dependence of the state of the particle
through the joint probability distribution of the position and the
self-propulsion force, which satisfies the following evolution
equation:

∂tP (x,f ; t) = − 1

ξ0

∂

∂x
{[f + F ext(x)]P (x,f ; t)}

+ ∂

∂f

[
γf P (x,f ; t) + Df

∂

∂f
P (x,f ; t)

]
.

(9)

We should emphasize that since the self-propulsion force
evolves independently of the external force, equation of
motion (9) is qualitatively different from the Fokker-Planck
equation for the joint probability distribution of the position
and velocity of a Brownian particle moving under the influence
of an external force. Thus, we cannot use the theoretical
apparatus developed in Refs. [20,21].

In the remainder of this section we briefly analyze the
stationary state of a self-propelled particle under the influence
of a constant external force, which models sedimentation in a
dilute active colloidal suspension [5]. In the next section we
investigate a self-propelled particle in a harmonic potential.

We note that the stationary state of a self-propelled particle
under the influence of a constant external force was also
considered by Enculescu and Stark [19]. They considered
the standard model of active Brownian motion [2], which
models the experimental system of Palacci et al. In this model
the amplitude of the self-propulsion force is constant and its
direction changes via rotational diffusion of the active particle.
Enculescu and Stark showed that in this case the stationary
state probability distribution can be found perturbatively. In

contrast, we will show that for our model a closed form of the
stationary state distribution can be derived.

For a single self-propelled particle under the influence of a
constant gravitational force, F ext(x) = −mg, the equation of
motion has the following form:

∂tP (x,f ; t) = − 1

ξ0

∂

∂x
[(f − mg)P (x,f ; t)]

+ ∂

∂f

[
γf P (x,f ; t) + Df

∂

∂f
P (x,f ; t)

]
,

(10)

where g is the gravitational acceleration and m is the mass of
the particle.

Note that Eq. (10) is only valid above a lower wall, which
we assume to be located at x = 0. For a hard wall, this equation
has to be accompanied by a boundary term that ensures that the
current through the lower wall vanishes. For a wall modeled by
a continuous potential (e.g., a repulsive power law potential),
a term proportional to the gradient of the wall potential needs
to be added to Eq. (10).

For a hard wall, the consequence of the boundary term is
that at the wall, for each value of the self-propulsion force,
the current through the wall vanishes. In contrast, as we
show below, for the solution of homogeneous Eq. (10) only
the current integrated over all self-propulsions vanishes. The
complete solution of the sedimentation problem is a sum of
the solution of the homogeneous Eq. (10) and a term due to
the boundary condition. We expect that relative magnitude of
the latter term will decrease with increasing distance from the
wall and that far from the wall the stationary state probability
distribution will approach the solution of the homogeneous
Eq. (10). This has indeed been found by Enculescu and
Stark [19] through a numerical analysis of the sedimentation
problem for the standard model of active Brownian particles.
For the remainder of this section we will use the term stationary
state distribution for the time-independent solution of the
homogeneous Eq. (10).

We note that the so-called drift coefficients [20] in Eq. (10)
are linear in x and f . This fact suggests looking for a stationary
distribution having a Gaussian form. It can be shown that the
following distribution is a stationary solution of Eq. (10):

P ss(x,f ) ∝ exp(−ax − bf 2 − cf ), (11)

where a = mgξ0γ
2/Df , b = γ /(2Df ) and c = −a/(ξ0γ ).

According to the stationary state distribution (11) there is a
nonzero local stationary state self-propulsion:

〈f 〉lss =
∫

dff P ss(f |x) = − c

2b
= mg, (12)

where 〈...〉lss denotes the local stationary state average or, more
precisely, the stationary state average over self-propulsion
under the condition that the particle is at position x. In other
words, P ss(f |x) in Eq. (12) is the conditional stationary state
distribution of the self-propulsion force,

P ss(f |x) = P ss(x,f )/P ss(x), (13)

where P ss(x) is the stationary state distribution of the particle’s
positions, P ss(x) = ∫

df P ss(x,f ).
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Nonzero average self-propulsion follows from the condition
that the current in the stationary state, integrated over all
self-propulsions, should vanish. Let us define the current den-
sity integrated over all self-propulsions through the continuity
equation for the probability distribution of positions,

∂tP (x; t) = −∂xj (x; t), (14)

where P (x; t) = ∫
df P (x,f ; t). Thus the current density is

given by

ξ−1
0

[∫
dff P (x,f ; t) − mgP (x; t)

]
, (15)

and therefore in the stationary state we need to have 〈f 〉lss =
mg.

It follows from Eq. (11) that the stationary state distribution
of positions is exponential,

P ss(x) =
∫

df P ss(x,f ) ∝ exp(−x/δeff ), (16)

where the so-called sedimentation length δeff = 1/a =
Df /(mgξ0γ

2). We note that the sedimentation length of a
dilute system of nonactive Brownian particles at temperature
T is given by δ = T/(mg). We can thus conclude that the
sedimentation length of a dilute system of self-propelled
particles has the same form as that of nonactive Brownian
particles if instead of the equilibrium temperature one uses
an effective temperature Teff of a free self-propelled particle,
Teff = Df /(ξ0γ

2). This agrees with the experimental result
of Palacci et al. [5]

We note that the consistency between the free particle
effective temperature and the sedimentation length is not
obvious. In fact, Enculescu and Stark [19] showed that
already for the standard model of active Brownian motion the
free particle effective temperature is equal to the parameter
determining the sedimentation length only in the lowest
nontrivial order in the strength of the self-propulsion. They
predicted that the difference between the free particle effective
temperature and the parameter determining the sedimentation
length should become apparent for strengths of the self-
propulsion somewhat larger than those used in experiments of
Palacci et al. In addition, Tailleur and Cates [22] showed that
for the run-and-tumble model of active particles the stationary
state distribution in a linear potential has the exponential form,
but the free particle effective temperature does not determine
the sedimentation length.

IV. SELF-PROPELLED PARTICLE IN A
HARMONIC POTENTIAL

We show in this section that the effective temperature
defined through the long-time diffusive motion of a free self-
propelled particle does not always determine the stationary
state probability distribution of the particle’s position in an
external harmonic potential. To analyze this finding a little
further, we investigate the particle’s position autocorrelation
function and the linear response to an external perturbation,
and use these analyzes to examine a fluctuation-dissipation
relation-based effective temperature.

A. Stationary state probability distribution

For a single self-propelled particle in a harmonic potential,
V ext(x) = 1

2kx2, the equation of motion for the joint probabil-
ity distribution of the position and self-propulsion force has
the following form:

∂tP (x,f ; t) = − 1

ξ0

∂

∂x
[(f − kx)P (x,f ; t)]

+ ∂

∂f

[
γf P (x,f ; t) + Df

∂

∂f
P (x,f ; t)

]
,

(17)

where k is the force constant that determines the strength of
the potential.

Again, we note that the so-called drift coefficients [20]
in Eq. (17) are linear in x and f and therefore a stationary
distribution has a Gaussian form,

P ss(x,f ) ∝ exp(−ax2 − bf 2 − cf x), (18)

where a = kξ0(γ + k/ξ0)2/(2Df ), b = (γ + k/ξ0)/(2Df )
and c = −k(γ + k/ξ0)/Df .

It follows from Eq. (18) that the stationary distribution of
the particle’s positions is also Gaussian,

P ss(x) =
∫

df P ss(x,f )

=
[
a − c2/(4b)

π

]1/2

exp{−[a − c2/(4b)]x2}, (19)

where a − c2/(4b) = (k/2)(γ + k/ξ0)γ ξ0/Df . If we were to
define an effective temperature through the relation P ss(x) ∝
exp[−V ext(x)/Teff ], we would get

Teff = Df /[γ ξ0(γ + k/ξ0)]. (20)

We note that this effective temperature is different from that
defined through the long-time diffusive motion of the free
self-propelled particle, Eq. (7). We note, furthermore, that
in the present problem there are two different time scales.
First, there is the time scale on which the self-propulsion
force forgets its initial value. As for the free particle, this time
scale is proportional to γ −1. Second, there is the characteristic
time scale for the relaxation of a particle moving in a viscous
medium under the influence of a harmonic potential. This
time scale is proportional to ξ0/k. If the former time scale
is much shorter than the latter, γ −1 � ξ0/k, the effective
temperature (20) coincides with the effective temperature of
the free self-propelled particle (7). In the opposite case, γ −1 �
ξ0/k, which is the interesting strong self-propulsion limit, the
effective temperature (20) approaches Df /(kγ ) and can be sig-
nificantly lower than that of the free self-propelled particle (7).

In contrast to the case of a constant external force, the
self-propulsion distribution of a particle moving under the
influence of a harmonic force agrees with that of the free
self-propelled particle,

P ss(f ) =
∫

dxP ss(x,f )

=
[
b − c2/(4a)

π

]1/2

exp{−[b − c2/(4a)]f 2}, (21)

where b − c2/(4a) = γ /(2Df ).
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However, there is still nonzero local stationary state self-
propulsion,

〈f 〉lss =
∫

dff P ss(f |x) = −cx

2b
= kx. (22)

This result is not unexpected since the joint stationary state
distribution (18) does not factorize into distributions of po-
sitions and self-propulsions. Physically, this happens because
particles with larger (albeit temporary) self-propulsions are
able to venture farther into the high potential energy regions.

Finally, we note that, as in the case of a constant external
force, in the stationary state the current density, integrated over
all self-propulsions, vanishes,

ξ−1
0

[∫
dff P ss(x,f ) − kxP ss(x)

]
= 0. (23)

B. Particle’s position autocorrelation function

We use standard methods [20] to derive coupled equations
of motion for the time-dependent autocorrelation function of
the position of the self-propelled particle, 〈x(t)x(0)〉, and the
correlation function between the self-propulsion force at time
t and the position at the initial time, 〈f (t)x(0)〉,

∂t 〈x(t)x(0)〉 = ξ−1
0 〈f (t)x(0)〉 − kξ−1

0 〈x(t)x(0)〉, (24)

∂t 〈f (t)x(0)〉 = −γ 〈f (t)x(0)〉. (25)

Usually, equations of motion for these two functions would
involve other, more complicated time-dependent correlation
functions. The equations above are closed due to the simplicity
of the external potential. Initial conditions for Eqs. (24)–(25)
are

〈x(0)x(0)〉 ≡ 〈x2〉 = Df /[kγ ξ0(γ + k/ξ0)], (26)

〈f (0)x(0)〉 ≡ 〈f x〉 = k〈x2〉, (27)

where second equalities in Eqs. (26)–(27) follow from the
stationary state distribution (18).

Equations of motion (24)–(25) can be easily solved. The
second equation, Eq. (25), is independent of the first. Its
solution reads

〈f (t)x(0)〉 = e
− k

ξ0
t
k〈x2〉. (28)

Substituting Eq. (28) into Eq. (24) and integrating we get the
following expression for the particle’s position autocorrelation
function:

〈x(t)x(0)〉 =
(

γ

γ − k/ξ0
e
− k

ξ0
t + k/ξ0

k/ξ0 − γ
e−γ t

)
〈x2〉. (29)

We note two qualitatively different behaviors in two
limiting cases identified in the previous subsection. If the
self-propulsion force relaxation time is the shortest relevant
time scale, γ −1 � ξ0/k, we get

〈x(t)x(0)〉 ≈ e
− k

ξ0
t Df

kγ 2ξ0
. (30)

In this case the self-propelled particle’s position autocorrela-
tion function has the same form as the autocorrelation function
of a nonactive Brownian particle in equilibrium in an external
harmonic potential.

In the opposite limit, γ −1 � ξ0/k, we get

〈x(t)x(0)〉 ≈ e−γ t Df

k2γ
. (31)

We note that in this limit the time dependence of the particle’s
position autocorrelation function is slaved to the evolution
of the self-propulsion force. Interestingly, the autocorrelation
function is independent of the friction coefficient ξ0.

C. Linear response to an external force

To calculate a linear response function we consider the
self-propelled particle in the harmonic potential and under an
influence of a weak time-dependent force. In this case, the
evolution equation for the joint probability distribution of the
position and the self-propulsion force has the following form:

∂tP (x,f ; t) = − 1

ξ0

∂

∂x
[(f − kx)P (x,f ; t)]

+ ∂

∂f

[
γf P (x,f ; t) + Df

∂

∂f
P (x,f ; t)

]

− 1

ξ0

∂

∂x
[f ext(t)P (x,f ; t)]. (32)

Here f ext(t) is a weak, time-dependent force which, following
the analysis of the linear response in equilibrium [23], we take
to be position independent.

To examine the linear response we linearize Eq. (32) with
respect to the external force. To this end we substitute into
Eq. (32) the distribution of the form

P (x,f ; t) = P ss(x,f ) + δP (x,f ; t). (33)

Here δP (x,f ; t) is the difference between the probability
distribution in the presence of the force and its stationary state
form. Next, we assume that δP (x,f ; t) is of the same order
as the weak external force f ext(t) and we keep only terms of
the lowest (linear) order in the weak external force. Using the
fact that P ss(x,f ) is the stationary state distribution without
the force we get the following equation for δP (x,f ; t):

∂tδP (x,f ; t) = − 1

ξ0

∂

∂x
[(f − kx)δP (x,f ; t)]

+ ∂

∂f

[
γf δP (x,f ; t) + Df

∂

∂f
δP (x,f ; t)

]

− 1

ξ0

∂

∂x
[f ext(t)P ss(x,f )]. (34)

We assume that the force is turned on at t = 0 and thus the
initial condition for δP (x,f ; t) is δP (x,f ; t = 0) = 0.

Our goal is to calculate the time-dependent change of the
particle’s position, δ〈x(t)〉 = ∫

dxdf xδP (x,f ; t). To this end
we use Eq. (34) to derive coupled equations of motion for
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δ〈x(t)〉 and δ〈f (t)〉 = ∫
dx dff δP (x,f ; t),

∂tδ〈x(t)〉 = 1

ξ0
δ〈f (t)〉 − k

ξ0
δ〈x(t)〉 + 1

ξ0
f ext(t), (35)

∂tδ〈f (t)〉 = −γ δ〈f (t)〉. (36)

The initial conditions for these equations are δ〈x(t = 0)〉 =
0 = δ〈f (t = 0)〉.

Equations (35) can be easily solved. We get δ〈f (t)〉 ≡ 0
and

δ〈x(t)〉 = 1

ξ0

∫ t

0
dt ′e− k

ξ0
(t−t ′)

f ext(t ′), (37)

and thus the response function is given by

R(t) = 1

ξ0
e
− k

ξ0
t
. (38)

D. Fluctuation-dissipation relation

The form of the joint stationary state distribution (18)
suggests an effective temperature can be defined for both
rapidly evolving self-propulsion force (in which case Teff

is the same as the one defined through diffusive motion of
the free particle) and for the more interesting slowly evolving
self-propulsion force (strong self-propulsion limit). Physically,
in the former case the existence of an effective temperature is
expected but in the latter case it seems to be related to the
special form of the interaction potential. Here, to investigate
this a little further, we examine a different way to introduce an
effective temperature, one that uses a fluctuation-dissipation
relation (FDR).

Following a recent review [24] we define a frequency-
dependent fluctuation-dissipation relation-based effective tem-
perature,

T FDR
eff (ω) = ωReC(ω)

χ ′′(ω)
, (39)

where ReC(ω) is the real part of the one-sided Fourier
transform of the particle’s position autocorrelation function,
ReC(ω) = Re

∫ ∞
0 eiωt 〈x(t)x(0)〉, and χ ′′(ω) is the imaginary

part of the one-sided Fourier transform of the response
function, χ ′′(ω) = Im

∫ ∞
0 eiωtR(t).

Using explicit forms of the autocorrelation function and the
response function we get

T FDR
eff (ω) = Df

ξ0(ω2 + γ 2)
. (40)

In principle, the fluctuation-dissipation relation-based ef-
fective temperature is frequency-dependent and, thus, the
fluctuation-dissipation relation is violated. A more appropriate
interpretation of Eq. (40) is that, in the limit of small-
frequency perturbations, ω � γ , the fluctuation-dissipation
relation is recovered and T FDR

eff (ω) coincides with the effective
temperature obtained from the long-time diffusive motion
of the free self-propelled particle. We note that a similar
agreement of effective temperatures measured in different
ways has been found by Loi et al. [12]. We shall emphasize,
however, that in the strong self-propulsion limit, γ −1 � ξ0/k,
the free self-propelled particle-based effective temperature
does not determine the stationary state distribution.

V. DISCUSSION

We have found that even for our simple model of active
motion the most natural effective temperature defined through
the long-time diffusive motion of a free self-propelled particle
does not always determine the stationary state distribution
in an external field, even in the dilute (single particle) limit.
This finding nicely complements earlier work of Enculescu
and Stark who showed that Palacci et al.’s result for the
standard model of active Brownian particles, that the free
particle effective temperature and a temperature-like parameter
determining the sedimentation length are identical, is only
valid for not too strong self-propulsion.

For the single active particle in a harmonic potential, we
have calculated a frequency-dependent fluctuation-dissipation
relation-based effective temperature. It has a well-defined low-
frequency limit, which, for the simple model considered in the
present contribution, coincides with the effective temperature
of the free self-propelled particle. This explicit, exact calcula-
tion complements earlier studies of the fluctuation-dissipation
relation-based effective temperature of active matter [12].

Although the fluctuation-dissipation relation-based effec-
tive temperature can be defined for active systems, it remains
to be seen what properties of active systems it determines.
In particular, it does not necessarily determine the stationary
state of the self-propelled particle in an external potential. In
this regard the answer to the question of the usefulness of the
effective temperature is similar to that for thermal systems
where, in spite of the large body of work [24], the situation is
still far from well understood.

Finally, we shall emphasize a point that we expect to be
quite general. Even though the self-propulsion force evolves
independently of the state of the self-propelled particle (and
independently of the interaction of this particle with an
external force or with other particles), nontrivial correlations
between self-propulsion force and the particle’s position can
develop. We also expect that in the case of many interacting
self-propelled particles, correlations between self-propulsions
and distances between particles can develop. These cor-
relations imply the appearance of a nontrivial anisotropic
pair distribution function which is thought to be responsible
for the instability of a single phase uniform state in some
systems of self-propelled particles [25]. It is possible that
similar correlations are also present in jammed states of active
matter [26].
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