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Equilibrium states of generic quantum systems subject to periodic driving
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When a closed quantum system is driven periodically with period T , it approaches a periodic state synchronized
with the drive in which any local observable measured stroboscopically approaches a steady value. For integrable
systems, the resulting behavior is captured by a periodic version of a generalized Gibbs ensemble. By contrast,
here we show that for generic nonintegrable interacting systems, local observables become independent of the
initial state entirely. Essentially, this happens because Floquet eigenstates of the driven system at quasienergy
ωα consist of a mixture of the exponentially many eigenstates of the undriven Hamiltonian, which are thus drawn
from the entire extensive undriven spectrum. This is a form of equilibration which depends only on the Hilbert
space of the undriven system and not on any details of its Hamiltonian.
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I. INTRODUCTION

There has been intense recent interest in equilibration
and thermalization of closed quantum systems. If large
enough, such systems approach a steady state well described
by the usual constructs of statistical mechanics. The effort
to understand the mechanisms by which unitary quantum
evolution leads to time-independent states, which can be
characterized by fixing a reasonably small number of ob-
servables, as it must if statistical mechanics is to apply, has
been one of the most fruitful in nonequilibrium quantum
dynamics [1–7].

At the same time, much experimental and theoretical effort
has been devoted to periodically driven systems [8]. The
formal framework has been mostly set up by Shirley [9]
and Sambe [10] and has been successfully applied in various
fields, such as NMR [11,12], nonlinear optics [13], and others
[14–16]. Closer to the subject of this work, it has recently been
shown that isolated many-body periodically driven systems
eventually synchronize into a periodic steady state with the
driving [17,18], in analogy with closed, nondriven systems
approaching a stationary equilibrium state.

In a recent article [18], we have taken a first step towards
characterizing the long-time synchronized state, by obtaining
a description of the long-time steady state of an integrable
system analogous to the generalized Gibbs ensemble (GGE)
[19] for undriven systems, finding that memory of the relevant
conserved quantities persists for all time.

Here we study the generic situation of a nonintegrable
periodically driven model. Remarkably, we find that the long-
time behavior is stationary and independent of both the initial
condition and details of the undriven Hamiltonian beyond its
Hilbert space.

We give a physical mechanism explaining this result:
the expectation values of observables in any eigenstate are
the same for all eigenstates. This is caused by the width of the
quasienergy spectrum being finite, whereas that of the energy
spectrum of the undriven Hamiltonian is extensive. This leads
to a perturbation theory in the driving having vanishing radius
of convergence, instead immediately mixing any initial state
with a finite fraction of the states of the entire spectrum in the
thermodynamic limit.

The importance of this feature of the quasienergy spectrum
appears to have been appreciated first by Hone, Ketzmerick,
and Kohn in the context of continuum single-particle problems
[20,21]. Our result is also in keeping with a very recent
preprint of D’Alessio and Rigol, who argued that closed
driven quantum systems tend to a circular ensemble of random
matrix theory, which they interpret as an infinite temperature
state [22].

The remainder of this paper is organized as follows. We first
define the problem and introduce notation, before deriving
our central result of the existence of a steady state which
is independent of all of time, driving, and the undriven
Hamiltonian, depending only on the Hilbert space. We then
analyze a particular model Hamiltonian numerically in order
to demonstrate the correctness of the central ingredients of
our analysis. Finally we discuss the difference with integrable
systems, and conclude with an outlook.

II. SETUP

We consider a periodically driven system described by the
Hamiltonian

H (t) = HS + uhD(t) (1)

with HS time-independent and nonintegrable and hD(t + T ) =
hD(t) the periodically driven part, with u a driving amplitude
with units of energy.

We shall take HS to satisfy the eigenstate thermalization
hypothesis (ETH): eigenstates that are close in energy look
“similar” [23]; this notion has been made more concrete
recently [1–3,24]. Following these, we say that the ETH is
satisfied for a certain operator Ô if the eigenstate expectation
values (EEVs) of Ô, defined as 〈εα|Ô|εα〉 with |ε〉 an energy
eigenstate of energy ε, form a smooth function of the eigenstate
energy ε in the thermodynamic limit. Thus the mean energy
of a macroscopic system fixes the expectation value of Ô, and
a small variation in the energy results in a small variation in
the expectation value. Had this not been the case, arbitrarily
small (microscopic) changes in energy would result in vastly
different expectation values of the operator on macroscopic
scales. The ETH has been confirmed to occur in a number of
systems [3,24,25].
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Adding a periodically driven part, uhD(t), to HS neces-
sitates a change of viewpoint: instead of eigenstates and
eigenenergies, one considers Floquet states and quasienergies.
These are obtained from the eigenfunctions and eigenvalues
of the operator

U (ε,ε + T ) = T exp

[
−i

∫ ε+T

ε

dt H (t)

]
(2)

from which one may define an effective Hamiltonian via
exp[−iHeff (ε) T ] = U (ε,ε + T ). Its eigenvectors |α(ε)〉 sat-
isfy |α(ε)〉 = |α(ε + T )〉, while its eigenvalues have the
form exp (−iωαT ), with quasienergies ωα independent of ε.
The Floquet states, forming a complete set for equal-time
properties, are defined as |uα(t)〉 = exp (−iωαt) |α(t)〉.

Note that, as behooves a periodic system, the quasienergies
necessarily lie in a “Brillouin zone” (BZ) of finite, nonexten-
sive width ω = 2π/T ; this feature will play a crucial role in
our analysis.

Starting from an initial state, after a transient period
synchronization with the driving is achieved [17,18] in
the following sense: Take an initial density matrix ρ̂(0) =∑

α,β ρα,β |α(0)〉〈β(0)|; at long times, the system behaves
indistinguishably [6,7] from one described by

ρ̂DE(t) =
∑

α

ρα,α|α(t)〉〈α(t)|, (3)

which is evidently periodic in time. The expectation value of
an operator Ô in this state is

O(t) =
∑

α

ρα,αOα,α(t) (4)

with the eigenstate expectation values (EEVs) Oα,α(t) =
〈α(t)|Ô|α(t)〉. This is analogous to the so-called diagonal
ensemble (DE) for nondriven systems; in principle, this
depends on the initial state through the quantities ρα,α .

III. EIGENSTATE MIXING

We begin by discussing the eigenvectors and quasinergies
of Heff(ε). For vanishing u (alternatively, for stroboscopic
observations of the system in the absence of any driving),
the eigenstates |α (ε)〉 are time independent and identical
to those of HS . The corresponding quasienergies are thus
ωα = mod(εα,ω). This implies that, even if the (nondriven)
system HS satisfies the ETH for some observable, labeling
the eigenstates by ωα instead of εα will in general destroy
this property: the EEVs will not be a smooth function of the
quasienergy, since now eigenstates whose energy differs by an
integer number of “reciprocal lattice vectors” ω = h/T (with
h Planck’s constant) have the same quasienergy. By continuity,
one might expect this to remain true for “small” u. However,
this expectation turns out to be wrong in the thermodynamic
limit.

One may see this from the results of Refs. [20,21], from
which the following picture emerges: Suppose we fix a u and
calculate the states |α (ε)〉. If u → u + δu, one might hope
to use perturbation theory to obtain the new states. However,
the quantity compared to which δu needs to be small is the
quasienergy level spacing. As the dimension of Hilbert DH

increases exponentially with system size, and the width of

the quasienergy BZ is independent of it, the level spacing is
exponentially small, and hence so is the radius of convergence
of such a perturbation theory; one cannot expect adiabatic
evolution. In particular, the basis states at arbitrarily small
u are not perturbatively related to the undriven ones in the
thermodynamic limit; and an arbitrarily small change in u

mixes the |α (ε)〉 among themselves. This mixing implies that
each |α (ε)〉 contains contributions from a finite fraction of
the undriven states, uniformly spread over the entire spectrum.
We have confirmed this explicitly by calculating the average
participation ratio of the eigenstates of Heff (ε) in the basis of
the eigenstates of HS (see Appendix A).

Given this strong mixing across the entire spectrum of
HS , it is thus natural to expect that expectation values
with respect to the |α (ε)〉 effectively average essentially
uniformly over those with respect to the eigenstates of HS ,
as captured qualitatively by the following rough argument.
Let us expand the former in terms of the latter, |α (ε)〉 =∑

n |n〉〈n|α(ε)〉, and replace 〈α(ε)|m〉 ≈ 1/
√

DH exp (iφm(ε))
with the phases φm(ε) uncorrelated between different m.
Note that for this replacement to be reasonable, provided a
smooth dependence of 〈m|Ô|m〉 on εm, it is not necessary
that all overlaps 〈α (ε)| m〉 are finite; rather, a sufficient
condition is that the ones that are finite are uniformly and
densely spread throughout the band of HS , which we numer-
ically observe (see Appendix A). Then, 〈α (ε) |Ô|α (ε)〉 ≈
D−1

H

∑
m,n exp {i [φn (ε) − φm (ε)]} 〈m|Ô|n〉. Finally, given

that (a) the phases are uncorrelated and (b) 〈m|Ô|n〉 decreases
rapidly with increasing |εm − εn|, as occurs in nonintegrable
systems, and assuming that none of the 〈m|Ô|n〉 grows
with DH (in other words, that the observable is not lo-
calized in the basis of the |m〉) we find 〈α (ε) |Ô|α (ε)〉 ≈

1
DH

∑
m〈m|Ô|m〉 = D−1

H tr
(
Ô

)
, independent of both α and ε.

This implies that the long-time steady state of the observ-
able is not just periodic, but in fact even independent of time.
In addition, since Eq. (4) becomes

O(t) = O(t)
∑

α

ρα,α = D−1
H tr(Ô),

so that the long-time state is even completely independent of
the initial condition (encoded in ρα,α).

We now turn to the numerical confirmation of the ingredi-
ents of our above analysis for a particular instance of a driven
model system.

IV. EIGENSTATE EXPECTATION VALUES

We consider hardcore bosons (b2
i = 0) with

H (t) = −1

2

∑
i

b
†
i bi+1 + H.c. + V1

∑
i

nini+1

+ V2

∑
i

nini+2 + u
∑

i

Vi(t)ni (5)

featuring a potential Vi(t) = ũ (t) (−1)i with ũ(t) = +1 for
0<t<T/2 and ũ(t) = −1 for T/2 � t � T (see Appendix C
for another example). Throughout, J = V1 = V2 = 1.

For this system [26], we calculate the EEVs of the
(arbitrarily chosen) local density operator b

†
8b8, plot them, and
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FIG. 1. (Color online) Example of the EEV dependence on the
quasienergy ωf for u/�ω = 1 and system size and particle number
L = 14, N = 7 for a Hilbert space dimension DH = 3432, with
parameters u = V1 = V2 = J and driving frequency �ω = h/T =
J/4. Points indicate expectation value of the density at site i = 8 in
an eigenstate |α(ε)〉 of Heff (ε) versus the state’s quasienergy ωα at
two different times. The black line indicates tr(b†

8b8) = N/L = 0.5.

compare to the mean EEV in a window centered at the current
EEV; an example is shown in Fig. 1 [27]. As expected, the
EEVs show no dependence on quasienergy. Indeed, this result
seems to be natural absent a preferred choice of origin of the
quasienergy BZ.

We next study the approach to the thermodynamic limit.
To do this, we define a root mean square deviation of the
EEVs. Taking an average over a window of w + 1 states, Ōα =
1
w

∑
β Oβ,β with β running from α − w/2 to α + w/2, the root

mean square deviation is V 2 = 1
DH

∑DH

α (Oαα − Ōα)2. We are
interested in whether and how V vanishes with increasing DH .
By numerically fitting its behavior, we find that V = cDα

H (see
Appendix B for an example fit); the exponent α for a number
of different DH (which we vary by varying the system size
L, and the number of particles N ) and two observables, the
density at site i = 8 and the operator b

†
3b4, is shown in Fig. 2.

From this, α appears to be independent of u and approxi-
mately equal to −1/2; the upwards shift for small u is a finite-
size effect, as u becomes too small given the level spacing of

b3 b3

Re b3 b4

0.5 1.0 1.5 2.0
u

0.5

0.4

0.3

0.2

0.1

Α
V DH

Α u

FIG. 2. (Color online) Fitted exponent α vs driving amplitude u,
extracted for the observable b

†
3b4 as well as the density at site i = 3

for the Hamiltonian of Eq. (5) for driving period ω = 2π/T = 1. The
upturn at small u is a finite-size effect.

the system sizes we have access to. We therefore conclude that
for a large enough system, the EEVs Oα,α become independent
of α in the thermodynamic limit as expected.

V. DYNAMICS

Having confirmed that the EEVs are all equal, we now
confirm that this does indeed lead to independence of the
final state from the initial state. To this end we explicitly
calculate the dynamics starting from different initial states
and check whether the final state is the same. We follow the
following protocol. Diagonalizing the Hamiltonian of Eq. (5)
with J = V1 = V2 = 1 and a diagonal potential Vi = i2, we
select three states: the ground state, the eigenstate 1/4 of the
way up from the ground state, and the state in the middle of the
band. We then switch off the diagonal potential and, for each
state, calculate the time evolution under periodic driving with,
again, J = V1 = V2 = 1, u = 5J and Vi(t) = u (t) (−1)i with
u(t) = +u for 0 < t < T/2 and u(t) = −u for T/2 � t � T ,
as in the preceding discussion. At the beginning of each
period, we calculate the instantaneous expectation of the
Hamiltonian of Eq. (5). The results are displayed in Fig. 3:
for two different system sizes, the expectation value of the
instantaneous energy evolves to the same value in all three
states, as do the expectation values of the operator b

†
3b4.

VI. DISCUSSION

Taking a step back, we recognize two things happening
here. First, at long times the system approaches a steady state
[Eq. (4)], which is in principle periodic in time. Second,
and more surprisingly, the EEVs are independent of the
quasienergy, which leads to the synchronized state being
independent of the initial condition. It is rather a property
of the basic degrees of freedom of the system only, such as
their locality and the Hilbert space they span, being essentially
independent of any further “details” of the Hamiltonian. The
system therefore loses all memory of the initial state, unlike
the situation in either nondriven systems undergoing a quench
or integrable driven systems [18].

The necessary ingredient is the absence of an adiabatic limit
as u is varied for large enough systems [20,21]. This causes an
arbitrarily small change in u to mix all eigenstates together;
applying this to u close to the undriven limit u = 0, we see
that the information contained in the dependence of the EEVs
on energy, which determines the macroscopic properties of the
system as a function of its energy, is completely scrambled. The
final state mixes together macroscopic properties of undriven
states at all energies and ends up completely featureless as a
result.

By contrast, for a nondriven system, a finite-strength
perturbation only couples unperturbed eigenstates within a
finite fraction of the energy band. As a consequence, the EEVs
of any operator in the perturbed basis are sensitive only to the
unperturbed EEVs from nearby energies. This results in the
perturbed EEVs remaining energy dependent and, in general,
continuous.

The fact that this does not occur for integrable driven
systems, where a periodic generalized Gibbs ensemble is found
instead [18], seems at odds with the generality of the above
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FIG. 3. (Color online) Left: Dynamical evolution of instantaneous value of the energy at the beginning of each period. The blue, gold red,
and gold data points (three lower lines) correspond to different states, selected from different parts of the band of a Hamiltonian (which is
different from the Hamiltonian used during the driving) and for for L = 12, N = 6 so DH = 924. The three top lines show time evolution of
the same states, but for for L = 14, N = 7 so DH = 3003. In both cases, u/�ω = 5. Right: Similar results are obtained for other observables,
such as b

†
3b4. The bottom three lines are for L = 12, N = 6 while the top three lines are for L = 14, N = 7, and are offset vertically for clarity

(in reality, they also oscillate about 0).

arguments. However, note that the extensive number (propor-
tional to system size L) of conserved quantities exponentially
reduces the number of states which get mixed together, as
fixing L quantities independently leads to a Hamiltonian
matrix block diagonal with exponentially many uncoupled
blocks. In those cases where the driving does not couple the
different blocks (as it does not for systems mappable to free
fermions via a Jordan-Wigner transformation, for instance)
the scrambling of the eigenstates described above happens
only inside each (small) block of size polynomial in L. This is
not sufficient to randomize the eigenvectors, so that Oαα (t) is
neither t- nor α-independent and cannot be pulled out of the
sum on the right-hand side of Eq. (4). Therefore, the long-time
state is sensitive to the (initial state dependent) form of ρα,α .

Finally, we note that our results might be inapplicable to
systems with infinite local Hilbert spaces, such as nonhardcore
bosonic or continuum systems. This follows from the fact that
the diagonal ensemble result for the long-time expectation
value of the instantaneous energy density tr(H (nT ))/L di-
verges.

Several avenues for future work immediately suggest
themselves. First, it will be interesting to study the approach to
the steady state as a function of time and system size. Second,
it will be interesting to study and classify the effect of driving
for systems not obeying ETH in the undriven limit. Finally,

10 20 30 40 50
u

0.05

0.10

0.15

0.20

Φ(0)

L 10 L 12 L 14

FIG. 4. (Color online) Participation ratios for a number of system
sizes.

given our analysis was phrased largely perturbatively in u, it
is not entirely clear what happens when u becomes arbitrarily
large.
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APPENDIX A: PARTICIPATION RATIOS

Define the participation ratio (PR) φα(ε) =
[DH

∑DH

n=1 |〈n|α(ε)〉|4]−1 and its average φ̄ (ε) =
D−1

H

∑DH

α=1 φα (ε); the quantity φα (ε) is 1/DH if a
single |n〉 has finite overlap with |α (ε)〉 and becomes
1 if every single |n〉 participates equally in |α (ε)〉. It
therefore roughly measures the fraction of the eigenstates
of HS mixed into |α (ε)〉. For convenience, we also define

0 2 4 6 8 10
u

0.05

0.10

0.15

0.20

0.25

0.30
w

L 10 L 12

FIG. 5. (Color online) Width of bandwidth of HS participating
in each eigenstate of Heff (0), averaged over all its eigenstates for the
superlattice Hamiltonian described in the text. The solid line indicates
the result for the limit in which all states participate equally.
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FIG. 6. (Color online) Best fit and data points for u = 0.5. This
figure corresponds to a single data point in Fig. 2. It is obtained by
varying L, the system size, and N , the number of particles.

m̄ = 1∑
m fm

∑
m mfm with fm = |〈α(ε)|m〉|, the mean position

of the participating eigenstates, and a “radius of gyration,”
w2 = 1∑

m fm

∑
m (m − m̄)2 fm. This roughly indicates how

much of the bandwidth of HS is involved in each eigenstate
of Heff (0). Together, these quantities allow us to show
two things: first, that a finite fraction of eigenstates of
HS participate in each |α(0)〉, and, second, that the entire
bandwidth of HS participates in each |α(0)〉.

Figure 4 shows the average participation ratios φ (0) for
a number of system sizes as a function of u. Evidently the
fraction of undriven eigenstates involved in each |α (0)〉 is
finite. Figure 5 then shows that the participating states are not
concentrated in some region of the spectrum of HS but rather
occupy the entire bandwidth (compare the black line which
indicates the result for a uniform distribution throughout the
band).

APPENDIX B: EXAMPLE RESULTS FOR EEV VARIANCE
VERSUS SYSTEM SIZE

Figure 6 shows how the exponent α for the scaling of the
EEV variance V with Hilbert space dimension DH is extracted.
The results shown in Fig. 2 of the main text are obtained by
repeating this for different values of u.

0 10 20 30 40 50
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0.6

0.8

1.0
Ψ nT b3 b3 Ψ nT

FIG. 7. (Color online) Stroboscopic observation of the density at
site i = 3 for a breathing trap as a function of period. The initial states
are prepared as described in the main text, and the observations are
made at the beginning of the period, ε = 0.
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FIG. 8. (Color online) Eigenstate expectation values for the den-
sity at site i = 3 for a breathing trap for ε = 0.

APPENDIX C: BREATHING-TRAP POTENTIAL

Here we show plots of EEVs, dynamics, and the final
state for a Hamiltonian of the same form as in the main text
[Eq. (5)] but with a time-dependent potential

Vi(t) = [(i − L/2) /�ho(t)]2 (C1)

with �ho(t) = �0 + ũ (t) δ� and ũ(t) = +1 for 0 < t < T/2
and ũ(t) = −1 for T/2 � t � T . We take �0 = 5 and δ� = 1,
and, again, J = V1 = V2.

Figure 7 displays the dynamics evolution for three initial
states selected as described in the main text, then evolved
with the Hamiltonian of Eq. (5) of the main text but with
the potential of Eq. (C1), for system size l = 12 and N = 6
particles. Note that, again, all three states evolve to the same
stationary state. This is understood again from the flatness of
the EEVs, shown in Fig. 8. Finally, a snapshot at long times
of one of the states is shown in Fig. 9. Note that, despite the
strong DC component of the potential, the density is spatially
uniform. This is as expected, since, according to the discussion
in the main text, the density at site i is given by tr(b†i bi).

0 2 4 6 8 10 12
i

0.2

0.4

0.6

0.8

1.0
bi bi

FIG. 9. (Color online) Snapshot of final density for a “breathing
trap” potential, corresponding to the last point of the blue line of
Fig. 7. Note the spatially uniform density despite the strong DC
component in the quadratic “trapping” potential.
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