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Generation of a tunable environment for electrical oscillator systems
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Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic
oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented,
the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a
subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate
a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup
by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability
and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator’s frequency
fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as
noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon
that takes place in quantum and classical coupled oscillator networks.
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I. INTRODUCTION

For many years, it has been known that fluctuations or
noise can play an important role in various effects that take
place in different physical, chemical, and biological systems.
Some examples of such effects are stochastic resonance [1],
noise-induced transitions [2,3], and noise-induced transport,
a phenomenon that has been observed in quantum [4,5] and
classical [6,7] systems.

Because noise-induced effects are generally described
by models where several, albeit reasonable, assumptions
are made, an experimental confirmation of these surprising,
sometimes counterintuitive, theoretical predictions is certainly
most desirable. The verification of predicted noise effects
is, in general, most easily achieved on simple experimental
systems. As stated in Ref. [2], these systems should exhibit
the following features: (i) their time evolution should be well
known for deterministic conditions, (ii) their experimental
design should not present great technical difficulties, and
(iii) variables of the system and the externally introduced
noise should be easily controlled. In view of these points, we
immediately realize that electrical oscillator circuits are the
ideal choice. Indeed, the majority of the experimental studies
on noise-induced phenomena have been carried out using
electrical circuits [8–11]. Other systems where noise effects
have been studied involve surface waves [12], spin waves in
ferrites and antiferromagnets [13], and electroconvection in
nematic liquid crystals [14].

Most of the experiments mentioned above make use of
systems driven by Gaussian white noise. However, it has
been shown that systems driven by non-Gaussian noises
might also exhibit interesting features, such as shifts in the
transition line for noise-induced transitions [15], enhancement
of the signal-to-noise ratio in stochastic resonance [16,17], and
enhancement of transport efficiency in Brownian motors [18].
Therefore, in order to experimentally investigate new non-
Gaussian noise effects, one needs to design a system capable of
producing various types of noise bearing different probability
distributions.

In this paper, we introduce an experimental setup that
performs as a tunable environment for classical electrical
oscillators. We test our scheme by implementing the case
of a damped random-frequency harmonic oscillator. We have
chosen this system because it represents a fundamental tool
in statistical physics, which has been extensively used to
describe a myriad of physical systems in different research
fields [19–23]. The tunability of our system is demonstrated
by gradually modifying the statistics of frequency fluctuations,
which is managed by properly controlling the mean and
variance of the oscillator’s frequency distribution. This is
particularly relevant because it implies that the system directly
introduces fluctuations in the frequency of the signal, which is
in contrast to previous experimental studies where fluctuations
in the amplitude, rather than frequency, are introduced in the
system [11,12].

Because of its high degree of tunability and control, this
setup can readily be used to experimentally observe effects of
Gaussian [11,24] and non-Gaussian [15] noise-induced tran-
sitions, as well as noise-induced transport phenomena [6,7].

II. THE MODEL

We consider a damped random-frequency harmonic oscil-
lator whose temporal evolution reads [25]

d2x

dt2
+ �

dx

dt
+ ω2

0[1 + φ(t)]x = 0, (1)

where � is the damping coefficient, ω0 is the average frequency
of the oscillator, and φ(t) describes a stochastic Gaussian
process with zero average 〈φ(t)〉 = 0, and a specific autocorre-
lation function defined by the expression 〈φ(t)φ(t ′)〉 = κ(t −
t ′), where the function κ(t − t ′) defines the type of noise that
is considered. For instance, in the case of ideal white noise, the
autocorrelation function is defined as 〈φ(t)φ(t ′)〉 = 2Dδ(t −
t ′), where D denotes the intensity of the noise. A more realistic
example is colored noise, where the autocorrelation function
is written as 〈φ(t)φ(t ′)〉 = (D/τc) exp(−|t − t ′|/τc), with τc

being the correlation time of the stochastic process [26].
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Using the cumulant expansion described by Van Kam-
pen [27], Gitterman showed [19,25] that the equation for 〈x〉,
in the fast fluctuations regime, has the form (see the Appendix
for a detailed derivation)

d2〈x〉
dt2

+
(

� + ω4
0

2ν2
c2

)
d〈x〉
dt

+ω2
0

[
1 − ω2

0

2ν

(
c1 − �

2ν
c2

)]
〈x〉 = 0, (2)

where ν = (ω2
0 − �2/4)1/2, and the coefficients c1 and c2 are

defined by

c1 =
∫ ∞

0
〈φ(t)φ(t − ξ )〉 sin(2ω0ξ )dξ, (3)

c2 =
∫ ∞

0
〈φ(t)φ(t − ξ )〉[1 − cos(2ω0ξ )]dξ. (4)

Notice that, as pointed out in Ref. [19], the existence of
frequency fluctuations in Eq. (1) introduces a noise-induced
additional damping and a noise-induced frequency shift to the
average signal of the oscillator.

III. EXPERIMENT

A. The setup

The experimental setup that allows us to introduce random
frequency fluctuations into a harmonic oscillator model is the
following. First, note that one can construct a system governed
by Eq. (1) by making use of electrical RLC oscillators
(where R stands for resistance, L for inductance, and C for
capacitance). In these systems, the charge in the capacitor
satisfies the same equation as Eq. (1), where the coefficients �

and ω0 are defined by [11]

� = R/L, (5)

ω0 = (LC0)−1/2, (6)

with C0 denoting the average capacitance of the circuit. From
Eq. (6) one can see that fluctuations in the frequency of the
RLC oscillator can be introduced by randomly switching the
values of the capacitance [28].

Random switching of capacitance is performed in the
following way: An array of eight capacitors, each with equal
capacitance Ca , is connected in parallel to a central capacitor C

of a RLC circuit. To produce uncorrelated random switching,
the individual capacitors are independently turned on and
off by means of analog switches (NXP-74HC4066N quad
bilateral switch), which are driven by independent digital
signals provided by an arbitrary function generator (Signadyne
digital I/O module SD-PXE-DIO-H0001), as shown in Fig. 1.
Because we are interested in designing a Gaussian stochastic
process, we program the arbitrary function generator, so each
capacitor has the same probability to be on or off, in the same
fashion as in a coin-tossing event. It is easy to show that the
probability that n capacitors in the array are on satisfies a
binomial distribution given by

P (n) =
(

8

n

)
1

28
, (7)

FIG. 1. (Color online) Scheme of the damped random-frequency
electrical oscillator consisting of a RLC circuit with central capac-
itance C, inductance L, and a parasitic resistance R. Frequency
fluctuations are achieved by switching on and off individual capacitors
Ca by means of analog switches S that are driven by an arbitrary
function generator.

where n = {0,1,2, . . . ,8}. This distribution is defined by a
mean value 〈n〉 = 4 and a variance σ 2

b = 2. Notice that the
binomial distribution described in Eq. (7) is a discrete version
of a Gaussian distribution with the same mean and variance,
as depicted in Fig. 2. It is important to remark that due to
the nonlinear relation between frequency and capacitance
[Eq. (6)], when calculating the probability distribution of
frequency, a Gaussian distribution is obtained provided that
the condition Ca � C is satisfied [29].

B. Implementation and results

To test the proposed scheme, we construct a RLC circuit
where the central capacitance C is provided by a 1 nF ceramic
capacitor, inductance L is provided by a 1.5 mH ferrite core
inductor, and resistance R represents parasitic losses within
the system. For the random switching of capacitance, we have
designed several arrays using different ceramic capacitors
with capacitance value Ca = {4.7,10,18,33,47,68,100} pF.
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FIG. 2. (Color online) The probability that n capacitors in the
array are on follows a binomial distribution, which corresponds to a
discretized Gaussian distribution with the same average and variance.
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FIG. 3. (Color online) (a) Signal frequency histograms us-
ing different capacitor arrays. From left to right: Ca =
100,68,47,33,18,10,4.7 pF. Dotted line: experimental data; solid
line: Gaussian fitting. (b) Frequency shift as a function of the standard
deviation σs . Dotted line: experiment; solid line: theory.

Notice from Fig. 2 that by changing the values of Ca

one can modify the variance of the Gaussian distribution,
which in turn modifies the statistics of the noise in the
system [26].

To guarantee that our system is well described by Eq. (2),
we make sure that frequency fluctuations are faster than the
characteristic time evolution of the system; that is, they satisfy
the fast fluctuations condition [19]. To this end, the digital
signals from the arbitrary function generator are set with a time
rate τ = 650 ns, which is longer than the response time of the
analog switches (400 ns) and much shorter than the temporal
evolution window of the measured signal (t = 100 μs).

Using the system described above, we have performed the
simulation of Eq. (1). To this end, we keep the capacitor
C fixed and measure the averaged signal of the oscillator
connected to different capacitor arrays. Figure 3(a) shows
the histograms of the measured frequency in each case.
Histograms are obtained from 50 000 different realizations,
and they are normalized to the maximum number of events,
where we define the number of events as the number of
realizations that have the same value of frequency. Notice
that in all cases the probability distribution of the frequency
follows a Gaussian distribution whose variance σ 2

s depends
strongly on the value of Ca used in the connected array. This
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FIG. 4. (Color online) Frequency histograms for different capac-
itor arrays centered in the same mean frequency f0 � 123 kHz. Dotted
line: experimental data; solid line: Gaussian fitting.

implies that this scheme allows us to control the variance of the
noise that is introduced in the system. Moreover, notice that
by changing the way in which capacitors are turned on and
off, one can modify the frequency probability distribution.
For instance, a dichotomous-like random frequency could
be obtained by switching on and off all capacitors at the
same time.

To compare the results obtained in Fig. 3(a) with the
theoretical model, we have measured the frequency shift
that arises from the influence of frequency fluctuations, as
predicted by Eq. (2). Figure 3(b) shows the frequency shift
for each capacitor array. We have made use of Eq. (2) and
the relation [26] D = σ 2τ to find that the driving noise
of our system can be described by a colored-noise-like
autocorrelation function of the form

〈φ(t)φ(t ′)〉 = σ 2

ω2
0

exp

(
−|t − t ′|

τ

)
, (8)

where the mean value of the frequency is computed with
C0 = C + 4Ca and the variance of the driving noise is σ 2 =
(ησs)2, with η = 3.4. This relation between both variances
can be understood as a consequence of the damping term in
Eq. (1). The same effect can be found, for instance, in the
Ornstein-Uhlenbeck process, where the resulting variance is
proportional to the variance of the driving noise due to the
presence of a damping term [27].

In general, when simulating noise-induced transport effects,
one is interested in keeping the mean frequency of each oscil-
lator fixed while increasing the strength of the noise [4,5,7].
This can be achieved in our system by controlling the values
of the central capacitance C and the time duration τ of
the digital signals. Figure 4 shows the frequency histograms
measured with different capacitor arrays. Notice that by
properly controlling the parameters of the system, we are able
to center all the probability distributions in the same value
of frequency f0 � 123 kHz. This demonstrates the flexibility
of our system when modifying the statistical properties of
the environmental noise that interacts with the oscillator. The
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TABLE I. Experimental parameters used to obtain the histograms
shown in Fig. 4.

Ca (pF)

4.7 10 18 33 47 68 100

C (nF) 1.120 1.090 1.053 0.978 0.933 0.840 0.355
τ (ns) 650 650 750 780 800 720 650

parameters of the system used in each case are summarized in
Table I.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have demonstrated a system that performs
as a tunable environment for classical electrical oscillators.
We have shown its operation by implementing the case
of a damped random-frequency oscillator, where perfect
agreement with the theoretical model has been obtained.
Finally, we have demonstrated the degree of control that
one can achieve with this system by gradually modifying
the variance of the frequency fluctuations while maintaining
a fixed central frequency of oscillation, which is of critical
importance when simulating noise-induced energy transfer
mechanisms in different scenarios, such as in the case of energy
transfer in molecular aggregates.

The high degree of tunability and control of the proposed
system can be further used to design various types of noise with
different probability distributions. Moreover, it might allow
us to study the transition from Markovian to non-Markovian
dynamics of open systems. The results reported here represent
an important step towards the experimental observation of
Gaussian and non-Gaussian noise-induced transitions and
noise-induced transport effects.
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APPENDIX: DERIVATION OF THE AVERAGED
AMPLITUDE EQUATION OF A DAMPED

RANDOM-FREQUENCY HARMONIC OSCILLATOR

Let us consider the equation for a damped random-
frequency harmonic oscillator,

d2x

dt2
+ �

dx

dt
+ ω2

0[1 + αφ(t)]x = 0, (A1)

where � is the damping coefficient, ω0 is the average frequency
of the oscillator, and φ(t) is a dimensionless stochastic variable
with zero average 〈φ(t)〉 = 0, and an autocorrelation function
satisfying 〈φ(t1)φ(t2)〉 → 0 for any two time points t1, t2 such
that |t2 − t1| > τc, where τc is the correlation time of the
stochastic process. To simplify the derivation of Eq. (2), and
for consistency with Ref. [27], we have included in Eq. (A1)
the parameter α, which represents the strength of the stochastic
fluctuations.

In order to solve Eq. (A1), we first transform it into a set of
first-order differential equations

d

dt
X = (Md + Ms)X, (A2)

where

X =
[
x(t)

ẋ(t)

]
, (A3)

Md =
[

0 1

−ω2
0 −�

]
, (A4)

Ms =
[

0 0

−αω2
0φ(t) 0

]
. (A5)

Here, the matrices Md and Ms represent the deterministic and
stochastic evolution of the oscillator, respectively, and ẋ(t)
stands for the time derivative of the oscillator’s amplitude x.

In the matrix representation, it is easy to show that the
equation for the deterministic evolution of the oscillator, i.e.,
Ẋd = MdXd, has the solution

Xd(t) = Ud(t)Xd(0), (A6)

where

Ud(t) = exp

(
− �

2
t

)[
cos (νt) + (�/2ν) sin (νt) sin (νt) /ν

−ω2
0 sin (νt) /ν cos (νt) − (�/2ν) sin (νt)

]
. (A7)

Notice that the presence of damping in the harmonic oscillator produces a frequency shift that is given by ν =
√

ω2
0 − �2/4.

Now, we make use of Eq. (A7) to perform the transformation

X(t) = Ud(t)X̃(t), (A8)

which, when substituted into Eq. (A2), allows us to write

d

dt
X̃ = αUd (−t) Ms (t) Ud (t) X̃ (t) . (A9)
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Then, we iteratively solve Eq. (A9) to find that the average of X̃ is written as

〈X̃(t)〉 = 〈X̃ (0)〉 + α2
∫ t

0
dt1

∫ ∞

0
dt2〈Ud (−t1) Ms (t1) Ud (t1 − t2) Ms (t2) Ud (t2)〉〈X̃ (0)〉. (A10)

Notice that the linear term with α disappears since 〈Ms(t)〉 = 0. In writing Eq. (A10), we have considered only the contributions
up to α2, which is an approximation that is valid as long as the condition ατc � 1 is satisfied. In addition, we have assumed that
the correlation time τc is much shorter than the integration time, so we can take 〈X̃(t)〉 → 〈X̃ (0)〉 and integrate to infinity in the
second term of Eq. (A10).

We now perform the time derivative of Eq. (A10) to obtain

d

dt
〈X̃(t)〉 = α2

∫ ∞

0
dξ 〈Ud (−t) Ms(t)Ud (ξ ) Ms (t − ξ ) Ud (t − ξ )〉〈X̃ (0)〉, (A11)

where the substitutions ξ = t1 − t2 and t = t1 are used. Inverse transformation of Eq. (A11), by means of Eq. (A8), then gives

d

dt
〈X(t)〉 =

[
Md + α2

∫ ∞

0
dξ 〈Ms(t)Ud (ξ ) Ms (t − ξ ) Ud (−ξ )〉

]
〈X(t)〉. (A12)

Using Eqs. (A5) and (A7), we can readily find that the expression inside the integral of Eq. (A12) is written as

〈Ms(t)Ud (ξ ) Ms (t − ξ ) Ud (−ξ )〉 = ω4
0〈φ (t) φ (t − ξ )〉

{
0 0

[sin (νξ ) /ν] [cos (νξ ) − (�/2ν) sin (νξ )] − sin2 (νξ ) /ν2

}
.

(A13)

Finally, by substituting Eq. (A13) into Eq. (A12) and transforming the set of two first-order equations to a single second-order
differential equation, Eq. (2) is obtained.
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