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Nonequilibrium ensemble inequivalence and large deviations of the density in the ABC model
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We consider the one-dimensional driven ABC model under particle-conserving and particle-nonconserving
processes. Two limiting cases are studied: (a) The rates of the nonconserving processes are vanishingly slow
compared with the conserving processes in the thermodynamic limit and (b) the two rates are comparable. For
case (a) we provide a detailed analysis of the phase diagram and the large deviations function of the overall
density, G(r). The phase diagram of the nonconserving model, derived from G(r), is found to be different from
the conserving one. This difference, which stems from the nonconvexity of G(r), is analogous to ensemble
inequivalence found in equilibrium systems with long-range interactions. An outline of the analysis of case (a)
was given in an earlier letter. For case (b) we show that, unlike the conserving model, the nonconserving model
exhibits a moving density profile in the steady state with a velocity that remains finite in the thermodynamic limit.
Moreover, in contrast with case (a), the critical lines of the conserving and nonconserving models do not coincide.
These are new features which are present only when the rates of the conserving and nonconserving processes
are comparable. In addition, we analyze G(r) in case (b) using macroscopic fluctuations theory. Much of the
derivation presented in this paper is applicable to any driven-diffusive system coupled to an external particle bath
via a slow dynamics.
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I. INTRODUCTION

Systems that are driven out of equilibrium by an external
field, such as temperature gradient or electric field, exhibit
in many cases long-range correlations in their steady states,
even when their dynamics is strictly local. This has been
demonstrated in numerous studies both for specific models and
in more generic settings [1–7]. Studying generic steady-state
features that result from these long-range correlations would
be of great interest. A useful insight into this behavior may
be gained by comparing it to that of an equilibrium system,
where long-range correlations appear either in systems with
short-range interactions at criticality or in systems with explicit
long-range interactions. The latter type bears more similarity
to driven systems, as in both cases the long-range correlations
appear generically, i.e., also away from any phase transition
points.

Equilibrium systems with long-range interactions are those
where the two body potential decays at large distance, R, as
1/Rd+σ , with −d � σ � 0 in d dimensions. One consequence
of this long-range decay is nonadditivity, whereby the energy
does not increase linearly with the system’s size. Nonaddi-
tivity may cause various ensembles of the same long-range
interacting system to exhibit different phase diagrams, as has
been shown in numerous studies [8–21]. This occurs, for
instance, when the microcanonical entropy is not a convex
function of the energy for a certain range of energies, leading
to negative specific heat in the microcanonical ensemble. This
is in contrast with the canonical ensemble, where the entropy is
inherently convex and the specific heat is non-negative. Similar
effects can be found when comparing the canonical and the
grand-canonical ensembles [22–24].

In a recent letter [25] we demonstrated that a phenomenon
similar to ensemble inequivalence exists in a specific driven
system, known as the ABC model [26,27]. The ABC model is
defined on a one-dimensional lattice of length L, where each
site is occupied by one particle of type A, B, or C. The model

evolves by sequential updates whereby particles on randomly
chosen neighboring sites are exchanged with the following
rates:

AB
q

�
1

BA, BC
q

�
1

CB, CA
q

�
1

AC. (1)

The ABC model is often studied in the limit of weak
asymmetry where the asymmetry in the rates scales with the
size of the system, L, as q = exp (−β/L) [28]. With this
scaling the model undergoes a transition between a phase
where the particles are homogenously distributed in the system
and a phase where the three species phase separate into three
macroscopic domains [28]. The value of β where the transition
occurs is a function of the average densities of particles,
defined as rα ≡ Nα/L for α = A,B,C, where Nα is the overall
number of particles of type α. A unique property of the
ABC model is that when the number of particles of the three
species are equal, NA = NB = NC , the model obeys detailed
balance with respect to an effective Hamiltonian with long-
range interactions. This special equilibrium point provides an
analytical framework for investigating the mechanism behind
long-range correlations in driven systems.

The ABC model has been generalized to include particle-
non-conserving process in [24,29]. In this generalized model
sites can also be occupied by inert vacancies, denoted by 0,
whose dynamics is defined as

A0
1
�
1

0A, B0
1
�
1

0B, C0
1
�
1

0C. (2)

In addition, triplets of particles can evaporate and condense
with the rates

ABC
p e−3βμ

�
p

000, (3)

where p is a rate parameter and μ plays the role of the
chemical potential. Studies of this model in the equal-densities
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regime revealed inequivalence between the phase diagram of a
conserving model, defined by rules (1)–(2), and that of a non-
conserving model, defined by rules (1)–(3). The two models
correspond to the canonical and grand-canonical ensembles
of the ABC Hamiltonian, respectively. The generalized ABC

model has then been analyzed for nonequal densities, where
an effective Hamiltonian cannot be defined [25] and was
demonstrated to exhibit a similar inequivalence between the
conserving and nonconserving phase diagrams.

In this paper we generalize the analysis of [25] and
present a detailed study of the ABC model with particles
nonconserving processes. In the first part of the paper we study
the nonconserving ABC model in the limit where the ratio
between the time scale of the nonconserving dynamics, given
by 1/p, and that of the conserving dynamics, given by τ ∼
L2, vanishes in the thermodynamic limit. We thus consider
p ∼ L−γ with γ > 2. In this limit, we are able to compute
the large deviations function (rate function) of the overall
density of particles, G(r) with r ≡ (NA + NB + NC)/L, and
derive from it the exact phase diagram of the nonconserving
model. This is done by analyzing the dynamics of r , which can
be effectively represented as a one-dimensional random walk
in a potential. The form of the potential is derived from the
coarse-grained density profile of the ABC model, computed
in [30]. The nonconserving phase diagram for nonequal
densities, derived from G(r), is similar to that obtained for
equal densities, excluding several features discussed below.
As in the equal-densities case and similarly to equilibrium
systems with long-range interactions, the conserving and
the nonconserving models undergo the same second order
transition and become inequivalent when the transition in
the nonconserving model turns into first order. This suggests
that a phenomenon similar to ensemble inequivalence, which
characterizes many long-range interacting systems, may be
found in other driven-diffusive systems that exhibit long-range
correlations.

In the second part of the paper we study the nonconserving
ABC model in the limit where the rates of the conserving
and nonconserving dynamics are comparable, namely for
p = φL−2 with φ being an arbitrary parameter. In this
case the conserving and the nonconserving models exhibit
different critical lines and steady-state density profiles. Such
inequivalence is expected to be found only in nonequilibrium
systems. Interestingly, the density profile of the nonconserving
model is found to exhibit a drift velocity in its ordered phase.
The velocity remains finite even in the thermodynamic limit
and can be computed exactly along the critical line. This is
in contrast with the conserving ABC model, where for r = 1
the drift velocity has been shown to vanish as 1/L [31] and
has been excluded in the thermodynamic limit [32]. This can
be shown to be valid also for the conserving model with
r < 1 using the mapping between the r = 1 and r < 1 cases,
discussed below.

The probability of a rare number of particles in the
nonconserving model, P (r) ∼ eLG(r), can be studied for p =
φL−2 using the macroscopic fluctuation theory [33–38]. By
analyzing the instanton path leading to a rare value of r , we
derive an expansion of G(r) in powers of φ for φ � 1. The
lowest order in this expansion is identical to the expression
obtained for p ∼ L−γ and γ > 2. This fact serves as a

proof that γ > 2 is indeed the limit where the conserving
and nonconserving time scales are well separated. In the
homogenous phase the corrections to G(r) vanish for all φ,
yielding the same expression for γ > 2 and γ = 2. This
conclusion is expected to remain valid for a large class of
driven-diffusive systems that exhibit a homogenous phase.

This paper is organized as follows. We first provide a brief
review of the ABC model and previous studies of the equal-
densities regime in Sec. II. We study the phase diagram of the
nonconserving ABC model for nonequal densities and in the
limit of very slow nonconserving dynamics (γ > 2) in Sec. III.
In Sec. IV we study the model in the limit where the conserving
and the nonconserving dynamics occur on comparable time
scales (γ = 2). Concluding remarks and outlook are given in
Sec. V.

II. THE ABC MODEL WITH EQUAL DENSITIES

The standard ABC model is defined by the dynamical rules
in Eq. (1). For q = 1, this dynamics yields a homogeneous
steady state, in which the particles are distributed uniformly on
the lattice. On the other hand, for q �= 1 the model relaxes in the
L → ∞ limit to a state where the particles phase separate into
three domains. The domains are arranged clockwise for q < 1,
i.e., AA, . . . ,ABB, . . . ,BCC, . . . ,C, and counterclockwise
for q > 1. Throughout this paper we assume q < 1. The case
of q > 1 is obtained by considering a system with a driving
field q ′ = 1/q < 1 and exchanging, say, the B and C labels.

As a result of the dynamical asymmetry, the model exhibits
in general nonvanishing steady-state currents of particles. The
current of particles of a given species is proportional to the rate
at which the particles of this species perform a full clockwise
trip minus the rate of the counterclockwise trip, yielding

Jα ∼ qNα+1 − qNα+2 , (4)

where α runs cyclically over A,B,C and Nα denotes the overall
number of particles of species α. In the equal-densities case,
where NA = NB = NC = L/3, the currents vanish and the
dynamics can be shown to obey detailed balance with respect
to an effective long-range Hamiltonian given by

H (ζ ) =
L∑

i=1

L−1∑
k=1

k

L
(AiBi+k + BiCi+k + CiAi+k) . (5)

Here ζ = {ζi}Li=1 denotes a microstate of the system such that
ζi = A, B, or C, and

Xi =
{

1 ζi = X

0 ζi �= X
for X = A,B,C. (6)

The steady-state probability measure is given in terms of the
Hamiltonian by P (ζ ) ∝ qH(ζ ) [26].

The Hamiltonian in Eq. (5) can also be written in a more
instructive form as

H(ζ ) = 1

2

L−1∑
i=1

i−1∑
k=1

[Ai(Bk − Ck) + Bi(Ck − Ak)

+Ci(Ak − Bk)], (7)

where every particle appears to be positioned in a potential well
created by the particles of the two other species, as illustrated
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FIG. 1. Effective potential exerted on the A particles, VA,i =∑i−1
k=1 Bk − Ck , and on the B particles, VB,i = ∑i−1

k=1 Ck − Ak , drawn
for a specific configuration of a system of size L = 15. The
configuration itself is written above the two figures.

in Fig. 1 for a specific configuration. The factor 1/2 corrects for
the double counting of the interactions. Clearly, this potential
picture breaks down for nonequal densities, where the system
relaxes to a nonequilibrium steady state.

We consider in this paper the limit of weak asymmetry,
where q → 1 in the L → ∞ limit as q = exp (−β/L), with β

being a positive parameter [28]. As a result of this scaling, the
energy and the entropy of the system become comparable in
size in the thermodynamic limit. The parameter β which sets
the ratio between the energy and the entropy can be regarded as
the inverse temperature of the system. This rescaling is similar
to the Kac’s prescription often employed in systems with
long-range interactions [39]. For equal densities, the model
exhibits in the L → ∞ limit a second order phase transition at
β = βc = 2π

√
3 between a homogeneous state, where entropy

dominates, and an ordered state which is dominated by the
energy term [28].

Ensemble inequivalence can be studied in the ABC

model by comparing its canonical and grand-canonical phase
diagrams. To this end we consider a generalization of the
original model where sites may also be vacant [24]. In this
case, particles can hop into and out of vacant sites, denoted
by 0, with symmetric rates given by Eq. (2). The number of
vacancies is N0 ≡ L − N , where N ≡ NA + NB + NC � L.
We refer to this model, which consists of rules (1) and (2), as
the conserving ABC model.

The steady-state properties of the conserving model can
be derived by mapping it onto the standard ABC model in
which N = L. This is a many-to-one mapping which consists
of removing the vacancies in a microconfiguration, ζ , of the
generalized model of length L, yielding a configuration of
length N , denoted by f(ζ ). Using the fact that the vacancies
evolve by a simple diffusion (2) and are thus homogenously
distributed in the steady state, it can easily be shown that the
steady-state measure of the generalized model is given by

PL(ζ ; N ) = PN (f(ζ ); N )
/(

L

N

)
, (8)

where PL(ζ ; N ) denotes the steady-state measure of the
ABC model of size L and with N particles. For equal-
densities the latter is given in the standard ABC model (L =
N ) by PN (ζ ; N ) ∝ qH(ζ ). By defining an effective inverse
temperature β ′ as q = exp(β/L) = exp(βr/N) ≡ exp(β ′/N),

where r = N/L, we conclude that the N -size system has an
effective inverse temperature β ′ = βr . Similarly, the average
densities of the N -size system are r ′

α = rα/r for α = A,B,C.
Using this mapping the critical point of the equal-densities
standard ABC model [28], βc = 2π

√
3, is mapped onto a

critical line in the equal-densities conserving model, given by

βc = 2π
√

3/r. (9)

The nonconserving ABC model is defined by allowing for
evaporation and deposition of particles, performed in triplets
of neighboring particles according to Eq. (3). For NA = NB =
NC , this specific type of nonconserving process can be shown
to maintain detailed balance with respect to the Hamiltonian

HGC (ζ ) = H (ζ ) − μNL, (10)

where H (ζ ) is defined in Eq. (7) [40]. This allows one to study
the nonconserving model using equilibrium techniques. It has
been shown in [24] that for equal densities the nonconserving
model also exhibits a second order transition line at βc =
2π

√
3/r for r � rT CP , where rT CP = 1/3 is the tricritical

point. Below this point, for r < rT CP , the nonconserving
model exhibits a first order transition, whereas the transition
in the conserving model remains second order. The resulting
phase diagrams of the conserving and nonconserving models,
which have been derived for equal densities in [29], are plotted
in Fig. 2. The generalization of this phase diagram to arbitrary
densities, where one cannot use the Hamiltonian in Eq. (5), is
discussed in the next section.

In order to compare the two ensembles, the canonical phase
diagram is plotted in Fig. 2 as a function of the chemical
potential, which is defined as

μ(r) = dF(r)/dr, (11)

where F(r) is the free energy of the conserving ABC model.
For equal densities, the latter has been computed in [29] in the
L � 1 limit based on a continuum description of the model as

F(r) = E[ρ
(x,r)] − 1

β
S[ρ
(x,r)].

Here ρ
(x,r) ≡ [ρ

A(x,r),ρ


B(x.r),ρ

C(x,r)] is the steady-state

profile of the conserving model with particle density r ,
whose form is discussed in Sec. III B. The functionals S

and E correspond to the entropy and the energy per particle
for a given density profile, respectively. The former is
derived from combinatorial considerations, yielding S[ρ] =
−∑

α

∫ 1
0 dxρα(x) ln ρα(x) − ∫ 1

0 dxρ0(x) ln ρ0(x), and the lat-
ter is derived from the Hamiltonian in Eq. (7), yielding E[ρ] =
1
2

∑
α

∫ 1
0 dx

∫ x

0 dyρα(x)[ρα+1(y) − ρα+2(y)]. Here and below
α runs cyclically over A, B, and C and ρ0(x) ≡ 1 − ∑

α ρα(x).

III. ABC MODEL WITH NONEQUAL DENSITIES AND
VANISHINGLY SLOW NONCONSERVING DYNAMICS

( p ∼ L−γ , γ > 2)

In this section we study the steady-state properties of the
ABC model for arbitrary densities both under conserving
dynamics and nonconserving dynamics whose rate, p, is
vanishingly slower than the diffusive dynamics for L → ∞.

For arbitrary densities, in the absence of a Hamiltonian
which describes the steady-state measure of the model, the
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FIG. 2. Phase diagram of the conserving (a) and nonconserving
(b) ABC models with equal densities, NA = NB = NC , plotted in
the (μ,1/β) plane. The two diagrams show the same second order
transition line (thin solid line). In the nonconserving model the
transition line turns into a first order (thick solid line) at a tricritical
point (
). The boundaries of the coexistence region, where both the
homogenous and the ordered profiles are locally stable, are denoted
in the nonconserving model by dashed lines.

analysis of the model is based on a continuum description
which is valid, in general, for diffusive systems such as the
weakly asymmetric ABC model. In the continuum limit the
probability of a microconfiguration ζ (t) is approximated by a
smooth density profile defined as

Pr[ζi(t) = α] � ρα(i/L,t/L2) (12)

for α = A,B,C. The evolution of the coarse-grained density
profile, ρα(x,τ ), is given in the conserving model by the
following hydrodynamic equation [28]:

∂τρα = β∂x [ρα (ρα+1 − ρα+2)] + ∂2
xρα. (13)

The density profile is periodic, ρα(x + 1,τ ) = ρα(x,τ ), and
due to exclusion it obeys ρ0(x,τ ) = 1 − ∑

α ρα(x,τ ) � 1.
Equation (13) has been shown to be exact in the L → ∞ limit
for equal densities and r = 1 [28,41] and has been argued to
remain valid even for arbitrary average densities [32,41]. The
mapping discussed in Sec. II between the r = 1 and the r < 1
cases implies that the steady-state properties resulting from
the study of Eq. (13) for r = 1 can be mapped onto the r < 1
case.

Within the hydrodynamic framework, the addition of the
nonconserving dynamics in (3) yields

∂τρα = β∂x [ρα (ρα+1 − ρα+2)] + ∂2
xρα (14)

+ L2p
(
ρ3

0 − e−3βμρAρBρC

)
,

where the L2 factor of the nonconserving term is due to the
rescaling of time, τ = t/L2, and of space, x = i/L. Using the
same reasoning discussed in [32] for the derivation of Eq. (13),
the local-equilibrium approximation can be shown to be valid
when the rate of the nonconserving dynamics is vanishingly
slower than the diffusive dynamics, i.e., for p ∼ L−γ and γ >

2. This implies that Eq. (14) is valid for γ > 2. In Sec. IV B,
Eq. (14) is shown to be valid also for γ = 2, by demonstrating
that it corresponds to the extremum of the large deviation
function of ρ(x,τ ).

In the following sections we analyze the phase diagram
of the nonconserving model for γ > 2, first in Sec. III A by
expanding Eq. (14) around its homogenous solution and then
in Sec. III B by computing G(r) from the steady-state solution
of Eq. (13).

A. Critical expansion of the ABC model

1. Conserving dynamics

We consider first the conserving ABC model, described
by Eq. (13). In order to find the critical point of the model
one can expand its density profile around the homogenous
solution ρα(x) = rα . Following the approach presented in [42]
for the equal-densities case, we expand the profile in terms of
Fourier modes in x space and in terms of the eigenvectors of
the matrix Tα,α′ ≡ δα+1,α′ − δα+2,α′ in the species space. The
density profile can thus be written as

⎛
⎝ρA

ρB

ρC

⎞
⎠ =

∞∑
m=−∞

e2πimx

⎡
⎣am(τ )√

3

⎛
⎝ 1

e−2πi/3

e2πi/3

⎞
⎠ (15)

+ a

−m(τ )√

3

⎛
⎝ 1

e2πi/3

e−2πi/3

⎞
⎠ + bm(τ )

3

⎛
⎝1

1
1

⎞
⎠
⎤
⎦ .

There are several points to note about this expansion. Integrat-
ing Eq. (15) over x yields

⎛
⎝rA

rB

rC

⎞
⎠ = b0

3

⎛
⎝1

1
1

⎞
⎠ + 2√

3
|a0|

⎛
⎜⎝

cos θ

cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)
⎞
⎟⎠ , (16)

where θ = arg(a0). Summing Eq. (16) over α = A,B,C yields
b0 = rA + rB + rC = r , which implies that b0 represents the
average density. On the other hand, a0 sets the deviation of
rA,rB and rC from the equal-densities point. Similarly for
m �= 0, the values of bm set the profile of the vacancies while
am set the local deviation from equal densities. One reason to
choose the eigenvectors of T is because they decompose the
deviations from equal densities in a symmetric way that does
not prefer any specific species.
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Inserting the above expansion (15) into Eq. (13) we find
that the evolution of am and bm is decoupled and given
by

∂τ am = −2πm

3

[
(6πm −

√
3βr)am+3β

∞∑
m′=−∞

a

−m−m′a



m′

]
,

(17)

∂τ bm = −4π2m2bm. (18)

The latter equation reflects the fact that the inert vacancies
perform an unbiased diffusion and hence their steady-state
profile is flat, ρ0(x,∞) = 1 − r , or equivalently bm(∞) = 0
for m �= 0.

In order to find the critical line one has to consider small
perturbations around the homogenous profile by taking am �
1. For nonequal densities, where a0 �= 0, the nonlinear term
in Eq. (17) contributes to the lowest order equation of am. To
lowest order in am one finds a linear dependence between am

and a

−m given by(

∂τ am

∂τ a


−m

)
= −2πm

3
Am

(
am

a

−m

)
+ O

(
a2

m

)
,

where

Am ≡
(

6πm − √
3βr 6βa


0

−6βa0 6πm + √
3βr

)
. (19)

The critical point of the model is obtained when the highest
of the eigenvalues of − 2πm

3 Am vanishes and as a result the
amplitude of the corresponding eigenvector becomes unstable.
Out of all the eigenvalues of − 2πm

3 Am, given by

ε
(m)
± = −2πm

3
[6mπ ∓ β

√
3(r2 − 12|a0|2)], (20)

the highest one is ε
(1)
+ and it vanishes at

β = βc ≡ 2π
√

3√
r2 − 12|a0|2

. (21)

Equation (21) can be written in terms of rα by taking the square
of Eq. (16), yielding

|a0|2 = 1

2

∑
α=A,B,C

(rα − r/3)2. (22)

As expected, the critical line in Eq. (21) coincides with the
result for r = 1 obtained in [28].

For β = βc(1 + δ) with δ � 1, the existence of an ordered
profile whose amplitude vanishes with δ corresponds to a
continuous transition at β = βc. To leading order in δ, only
the eigenvector corresponding to ε

(1)
+ is excited and the other

Fourier modes are driven by it through the nonlinear terms in
Eq. (17). Denoting the amplitude of this eigenvector by ϕ, one
can expand Eq. (17) in powers of ϕ, yielding

∂τϕ = 4π2δϕ + Gc
4(r,a0)ϕ|ϕ|2 + Gc

6(r,a0)ϕ|ϕ|4 + O(ϕ7),

(23)

where the superscript c refers to the conserving dynamics.
In Appendix A, the form of Gc

i (r,a0) is obtained explicitly

for i = 4 and studied numerically for i = 6. The case where
Gc

4(r,a0) > 0 yields an ordered profile whose amplitude
vanishes as δ1/2, whereas for Gc

4(r,a0) < 0 the steady-state
profile has a finite amplitude. One can thus identify the
point where Gc

4(r,a0) = 0 and β = βc as the tricritical point
of the model, below which, for Gc

4(r,a0) < 0, the critical
line is preempted by a first order transition. The condition
of β = βc and Gc

4(r,a0) < 0 is shown in Appendix A to
correspond to

2
(
r3
A + r3

B + r3
C

)
> (rA + rB + rC)

(
r2
A + r2

B + r2
C

)
. (24)

This condition coincides with that obtained for r = 1
in [28].

The critical line in Eq. (21) and the above tricritical point,
where β = βc and Gc

4(r,a0) = 0, are plotted for a specific value
of a0 in Fig. 3(a). For comparison with the nonconserving
model the conserving phase diagram is plotted as a function of
the parameter μ. This parameter is obtained by inverting the
relation between r and μ in the nonconserving model, which
is computed in the next section. In order to draw the first
order transition line in the conserving model, one has to know
the large deviations function of the density profile, which has
been derived only in the limit of a0 � 1 [28] or β � 1 [43].
Without the probability of each stationary profile, one cannot
distinguish between stable and metastable states, as necessary
for locating first order transition points. However, using the
steady-state density profile of the conserving model, discussed
in Sec. III B, one can draw the stability limits around the first
order transition line, denoted by dashed lines in Fig. 3(a).

2. Slow nonconserving dynamics

A similar critical expansion can be carried out in the
nonconserving model. The main difference between the two
expansions is the additional term in the equation of bm due
to the nonconserving dynamics. In the limit of p ∼ L−γ and
γ > 2 this additional term is negligible with respect to the
diffusive term in Eq. (18) for m �= 0. This implies that the
profile of the vacancies remains flat. The nonconserving term
is of leading order only for b0, whose equation can be obtained
by summing Eq. (14) over α = A,B,C and integrating the
result over x, yielding

∂τ b0 = 3pL2
∫ 1

0
dx

(
ρ3

0 − e−3βμρAρBρC

)

= 3pL2

{
(1 − b0)3 − e−3βμ

[
b3

0

27
− b0

3

∑
m1

am1a


m1

+ 1

3
√

3

∑
m1,m2

(am1am2a−m1−m2 + c.c.)

]}
. (25)

In the expansion of b0 around its average value it is useful
to consider fluctuations in the overall density, defined as δr ≡
b0 − r . In the nonconserving model, r denotes the overall
density in the homogenous phase, obtained by setting am = 0
for m �= 0 in Eq. (25), which yields

e−3βμ = 27(1 − r)3

r(r2 − 9|a0|2)
. (26)

012107-5



O. COHEN AND D. MUKAMEL PHYSICAL REVIEW E 90, 012107 (2014)

−0.06 −0.04 −0.02 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

μ

1/β

−0.06 −0.04 −0.02 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

μ

1/β

Ordered

Disordered

Disordered

CEP

TCP (Avoided)

Ordered

(a) Conserving

(b) Nonconserving

TCP

FIG. 3. Phase diagram of the conserving (a) and nonconserv-
ing (b) ABC models for in two-equal-densities case, rA = rB =
r/3 − 0.01 and rC = r/3 + 0.02, or, equivalently, a0 = 0.01

√
3eiπ/3,

plotted in the (μ,1/β) plane. The two diagrams show the same
second order transition line (thin solid line). In the conserving model
the transition line turns at the tricritical point (•) into a first order
transition line, which cannot be computed without knowing the full
large deviations function of the ABC model. In the nonconserving
model the transition line turns into first order (thick solid line) at
a critical end point (�), which appears at a higher value of 1/β

than the tricritical point (
). Both diagrams are supplemented by an
illustration of the region where the first and second order transition
lines meet. The boundaries of the coexistence regions, where both the
homogenous and the ordered profiles are locally stable, are denoted
by dashed lines.

The fluctuations in b0 modify the evolution of am, which is
given by

∂τ am = −2πm

3

[
(6πm −

√
3βr)am −

√
3βδram

+ 3β

∞∑
m′=−∞

a

−m−m′a



m′

]
. (27)

By inserting the definition b0 = r + δr into Eq. (25) and
expanding it in leading order in δr , one obtains that slightly
below the critical line δr ∼ |am|2. This implies that δr does
not affect the linear stability of am in Eq. (27), leading to a
nonconserving critical line that is identical to the conserving
line in Eq. (21). The effect of δr appears only in higher order
critical points. As in the conserving model, equation Eq. (27)

is expanded in Appendix A in powers of the amplitude of the
first excited eigenvector, ϕ, yielding

∂τϕ = 4π2δϕ + Gnc
4 (r,a0)ϕ|ϕ|2 + Gnc

6 (r,a0)ϕ|ϕ|4 + O(ϕ7).

(28)

In this expansion we find that Gnc
4 (r,a0) �= Gc

4(r,a0), leading
to a different tricritical points in the conserving and noncon-
serving models.

In Appendix A we also study numerically Gc
6(r,a0) and

Gnc
6 (r,a0). In general, if this coefficient is positive at the point

where β = βc and G4 = 0, the model exhibits a tricritical
point connecting the second order and first order transition
lines. This is the case in the conserving model, plotted in
Fig. 3(a), and in the nonconserving model only for relatively
high values of |a0|. Figure 3(b) shows the opposite case, where
Gnc

6 < 0, which occurs in the nonconserving model for |a0| �=
0 but relatively small. In this case the point where β = βc and
Gnc

4 = 0 [TCP in Fig. 3(b)] is preempted by a critical end point
[CEP in Fig. 3(b)], which connects the second and the first
order transition lines. The first order transition line continues
into the ordered phase, where it signifies a transition between
a low density and high density ordered phases. The first order
transition line in this figure is derived in the next section.
Remarkably, in the equal-densities case the second and first
order transition lines are connected by a fourth order critical
point where β = βc, Gnc

4 = Gnc
6 = 0, and Gnc

8 > 0 [29]. It is
not yet clear whether this high order criticality is merely a
coincidence or a result of an unidentified symmetry of the
model.

B. Nonperturbative study of the nonconserving phase diagram

In this section we derive the first order transition line of
the ABC model with slow nonconserving dynamics, shown in
Fig. 3(b). The derivation is based on the exact expression for
the steady-state density profile of the conserving ABC model,
ρ
(x,β,r,a0), which has been computed for a0 = 0,r = 1 in
[41], for a0 �= 0,r = 1 in [30], and for a0 �= 0,0 < r � 1 in
[25]. We first discuss the derivation of ρ
 and then use it to
compute the large deviations function of r .

In general, the derivation of ρ
 is done by setting ∂tρα = 0
in Eq. (13) (moving steady-state profiles has been excluded in
[32]) and integrating over x, yielding

Jα = −β [ρα (ρα+1 − ρα+2)] − ∂xρα. (29)

Here J ≡ (JA,JB,JC) are the steady-state currents of particles,
which obey JA + JB + JC = 0 due to the local particle con-
servation. Through several additional algebraic manipulations,
described in [30] for r = 1, the above equation can be reduced
to a single ordinary differential equation, which corresponds
to the motion of a particle in a quartic potential with x playing
the role of time. The stationary trajectories of the particle can
be written in terms of elliptic functions [30]. The stationary
density profiles of Eq. (13) for r = 1, can then be computed
from these trajectories. Using the mapping discussed in the
paragraph below Eq. (9) the profile for arbitrary r can be
written as

ρ
(x,β,r,a0) = rρ
(x,βr,1,a0/r). (30)
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FIG. 4. The m = 1 ordered density profile obtained from the
solution of Eq. (29) for rA = rB = 7/30 and rC = 16/30 and β = 25.

For brevity, we omit from here on the dependence of ρ
 on
β and a0 and denote the steady-state profile in Eq. (30) by
ρ
(x,r).

According to the analysis presented in [30], one finds that
for low values of β the particle has only a constant trajectory
in time which corresponds to a homogenous profile. Whenever
β is increased above mβc for m = 1,2, . . . , with βc defined
in Eq. (21), the equation exhibits an additional stationary
trajectory with m oscillations in the period 0 � x � 1. An
example of the corresponding profile with m = 1 is plotted in
Fig. 4. In the equal-density case, the m = 1 can be shown to
exhibit a lower free energy than all the m > 1 solutions [41].
It is therefore the only stable ordered profile observed in the
thermodynamic limit. This is assumed to remain true also for
arbitrary densities based on numerical evidence from Monte
Carlo simulations. The function ρ
(x,r) therefore denotes here
and below the homogenous profile for β � βc and the m = 1
ordered profile for β > βc.

We now derive the large deviations function of r using
ρ
(x,r) in the limit of very slow nonconserving dynam-
ics, p ∼ L−γ and γ > 2. In this limit the nonconserving
term in Eq. (14) is negligible in comparison to the drift
and diffusion terms. Summing Eq. (14) over α = A,B,C

yields

∂τ r = 3L2p

∫ 1

0

(
ρ3

0 − e−3βμρAρBρC

)
, (31)

where r(τ ) = ∑
α

∫ 1
0 dxρα(x,τ ). This implies that r evolves

on a time scale of order 1/p (recall that τ = t/L2). The
probability to observe a rare value of r can be derived by
noting that on a time scale of 1/p the density profile is given
by

ρ(x,τ ) = ρ
(x,r(τ )) + O(pL2). (32)

This is correct even for r(τ ), which is far from the steady-state
value. Thus, as long as pL2 � 1, one would expect the
density profile to be given by the steady-state profile of the
conserving system with overall density r(τ ). As a result,
the dynamics of the system can be described on this time

scale as a one-dimensional master equation given by

1

p
∂tP (r,t) = w−

(
r + 3

L

)
P

(
r + 3

L
,t

)

+w+
(

r − 3

L

)
P

(
r − 3

L
,t

)

−P (r,t)[w−(r) + w+(r)]. (33)

Here P (r,t) is probability distribution of r , and w−,w+ denote
the average rates of evaporation and deposition, respectively.

The evaporation rate is defined using the conserving
probability measure, PL(ζ ; N ), as

w−(r) ≡ 1

L
e−3βμ

∑
ζ

PL (ζ ; Lr)
L∑

i=1

AiBi+1Ci+2

= e−3βμ

∫ 1

0
dxρ


A (x,r) ρ

B(x,r)ρ


C(x,r) + O

(
1

L

)
,

(34)

where the first index of ζi,α runs cyclically over i ∈ [1,L]. The
fact that the leading order contribution to the local correlation
function, AiBi+1Ci+2, is given by the corresponding product of
the coarse-grained density profiles is a characteristic property
of diffusive systems. It is shown explicitly for the equal-
densities ABC model in [28,41] and argued to be true also
for arbitrary average densities in [32,41]. The deposition rate
is computed in a similar way, yielding

w+(r) =
∫ 1

0
dx

[
ρ


0 (x,r)
]3 + O

(
1

L

)

= (1 − r)3 + O

(
1

L

)
. (35)

Here we used the fact that the inert vacancies have a flat
steady-state profile, ρ


0 (x,r) = 1 − r .
Equation (33) corresponds to a one-dimensional random

walk in r in the presence of a local potential which scales
linearly with L. This implies that its steady-state solution obeys
a large deviations principle of the form

P (r) = eLG(r), (36)

where G is the corresponding large deviations function.
Inserting this form into Eq. (33) and expanding to first order
in L yields

(e−3G ′(r) − 1)w+(r) + (e3G ′(r) − 1)w−(r) = 0. (37)

This solution to the above equation is given by

G(r) = −1

3

∫ r

r0

dr ′ ln[w−(r ′)/w+(r ′)], (38)

where r0 is chosen arbitrarily to be the minimal possible
particle density, r0 = r − 3 minα (rα). The large deviations
function, G(r), which is, in fact, proportional to the potential
felt by the random walker, is plotted in Fig. 5 for a typical
point in parameter space.
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FIG. 5. The large deviations function of the overall density, r ,
for β = 40, rA = rB = r/3 − 0.025, and μ = −0.0515. For this
choice of parameters G(r) has two local minima, corresponding to a
disordered and an ordered phase. The dashed line denotes the critical
value of r , given in Eq. (21).

The large deviations function can be written in a more
physically meaningful way as

G(r) = βμr − β

∫ r

r0

dr ′μ(r ′), (39)

where μ(r) is defined as

μ(r) = 1

3β

{
ln

[∫ 1

0
dxρ


A(x,r)ρ

B(x,r)ρ


C(x,r)

]

− 3 ln(1 − r)

}
. (40)

In [25], it is shown how the function μ(r) can be interpreted as
the chemical potential of the conserving model, by measuring
it using a generalization of Creutz’s algorithm [44]. The
measurement is done using a demon which takes triplets of
ABC particles from the system and condenses them back
onto 000 triplets. The two processes are performed randomly
and slowly with rate p where p ∼ L−γ and γ > 2. This
algorithm results in a microscopic number of particles in the
demon, which therefore does not alter the properties of the
conserving system. The chemical potential is obtained from
the distribution the number of particles in the demon, Nd ,
which is given by P (Nd ) ∝ e−μ(r)Nd , where r is the density of
particles in the conserving system [45]. Unlike the equilibrium
chemical potential, μ(r) is dynamics dependent. Its form
depends on the fact that the demon is chosen to exchange
only triplets of ABC particles with the system. In [25],
it is demonstrated how μ(r) takes a different form when
considering an alternative process that couples the demon to
the system. This interpretation of μ(r) allows one to compare
the phase diagrams of the conserving and nonconserving
models on the same axes, as shown in Fig. 3.

The phase diagram of the conserving and nonconserving
models can be studied by analyzing the behavior of μ(r) for
various values of β and a0. Since μ(r) = −β−1 d

dr
G(r) + μ this

analysis is equivalent to analyzing the properties of the large
deviations of r , G(r). For high values 1/β (which for equal
densities corresponds to the temperature), μ(r) is monotonous
but displays a discontinuity in its first derivative, corresponding
to a second order transition point, as shown in Fig. 6(a).
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−0.06

−0.05
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μ
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−0.018

−0.017

−0.016

−0.015

r

μ

(d)

(c)

(b)

(a)

FIG. 6. Chemical potential calculated in the conserving model for
the case of rA = rB = r/3 − 0.01. Panels (a),(b),(c),(d) correspond to
β = 25,33.15,40,250, respectively. The critical point is denoted by
•. First order transition points, computed via Maxwell’s construction,
are denoted in (b) and (c) by dashed lines. The vertical scale in (b) is
chosen to be extremely small in order to display to the variations in
μ(r) around the first order transition point between the two ordered
phases.

Below the nonconserving tricritical temperature, derived in the
previous section, one finds a region of r where μ(r) can take
three different values, as shown in Fig. 6(c). The intermediate
density solution has negative compressibility and it is thus
stable only in the conserving model. The nonconserving model
exhibits a first order transition between the homogeneous (right
most) and ordered (left most) solutions, which can be located
using Maxwell’s construction (dashed line). As discussed in
the previous section, in the nonconserving model and in the
case where |a0| is relatively small [presented in Fig. 3(b)], the
second order transition line turns into a first order transition
line at a critical end point (CEP). For temperatures slightly
higher than the CEP, shown in the inset of Fig. 3(b), there
is a second order transition between the disordered and the
order phases as well as a first order transition between two
ordered phases. The nature of this first order transition line
can be understood from Fig. 6(b), which displays a first order
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transition between a low density ordered phase and a high
density ordered phase. The corresponding transition point can
also be located using Maxwell’s construction (dashed line).
At very low temperatures, below the conserving tricritical
point (24), μ(r) exhibits a jump at the critical point, as shown
Fig. 3(d). This discontinuity is an indication of a first order
transition, analyzed in [30], between a homogenous profile
and an ordered profile with a finite amplitude. The values of μ

on the two sides of the discontinuity define two stability limits
that are denoted by the dashed lines in Fig. 3(a).

It is interesting to understand whether the inequivalence
of the conserving and nonconserving phase diagrams can be
regarded as ensemble inequivalence. To this end it is useful to
write explicitly the approximation of nonconserving steady-
state measure for γ > 2, given by

PL(ζ ) ≈
∑
N

eLG(N/L)PL(ζ ; N ), (41)

where PL(ζ ; N ) is the conserving steady state. The above
equation implies that the PL(ζ ) is a statistical ensemble
of PL(ζ ; N ). Similar to μ(r), this statistical ensemble is
not uniquely defined and depends on the choice of the
nonconserving processes. This is in contrast to equilibrium
systems, where G(r) is uniquely defined by the Hamiltonian
and is given up to a constant by G(r) = −βF (r) + βμr with
F (r) denoting the Helmholtz free energy density. Based on
this definition the difference between Figs. 3(a) and 3(b) can
be regarded as a nonequilibrium ensemble inequivalence.

The above derivation of G(r) is rather general and can
be applied to any stochastic model which exhibits a fast
conserving dynamics and a slow nonconserving dynamics.
One may consider several types of nonconserving dynamical
steps of the same variable and/or steps of different sizes. In
these cases one can still obtain a general solution for Eq. (33),
independent of the details of w− and w+, that has a more
complicated form than Eq. (38). Another possibility is to
consider several nonconserving quantities. In this case the
large deviations function of the slow variables is given by
the steady-state solution of a higher-dimensional random walk
which does not have a general form such as Eq. (38).

IV. ABC MODEL WITH NONEQUAL DENSITIES AND
COMPARABLY SLOW NONCONSERVING

DYNAMICS ( p ∼ L−2)

In the previous section the nonconserving ABC model was
analyzed in the limit p ∼ L−γ and γ > 2, where the steady-
state profile and the large deviations function of r can be
computed analytically. In this section we study how these result
are modified in the limit where

p = φL−2, (42)

and φ is a parameter that does not scale with L.
In Sec. IV A we demonstrate that the conserving and the

nonconserving models exhibit for any finite φ different ordered
profiles, as well as different critical lines. This additional
inequivalence can be attributed to the sensitivity of nonequi-
librium systems to the details of their dynamics rather than to
the existence of long-range correlations. Remarkably, slightly

below the critical line the nonconserving model exhibits a
steady-state profile with a nonvanishing drift velocity.

In Sec. IV B we derive an expansion in small φ of the large
deviations function of r using the macroscopic fluctuation
theory. The leading order term in the expansion corresponds
to the large deviations function, G(r), obtained for γ > 2
in Eq. (38). This confirms that γ > 2 is indeed the limit
where the conserving and the nonconserving dynamics are
well-separated. In the homogenous phase, the large deviations
function in Eq. (38) is found to be valid for all values of
φ. This conclusion is argued to be correct for a wide class
of driven-diffusive models that exhibit a homogenous density
profile.

A. Density profile, drift velocity, and critical line

For p = φL−2 the dynamics of the density profile in the
nonconserving ABC model (14) can be written as

∂τρα = β∂x [ρα (ρα+1 − ρα+2)] + ∂2
xρα (43)

+φ
(
ρ3

0 − e−3βμρAρBρC

)
.

Although an analytic steady-state solution for the above
equation is not available, it can easily be shown to be different
from ρ
(x,r), obtained in the conserving model (φ = 0). As
mentioned above, this inequivalence between the conserving
and the nonconserving models is not necessarily due to the
existence of long-range correlations in the system.

Equation (43) exhibits a homogenous solution around
which it can be expanded. As demonstrated below, in this
case one has to consider a moving density profile and thus use
an expansion similar to Eq. (15) with x replaced with x − vt ,
yielding⎛

⎝ρA

ρB

ρC

⎞
⎠ =

∞∑
m=−∞

e2πim(x−vτ )

⎡
⎣am(τ )√

3

⎛
⎝ 1

e−2πi/3

e2πi/3

⎞
⎠

+ a

−m(τ )√

3

⎛
⎝ 1

e2πi/3

e−2πi/3

⎞
⎠ + bm(τ )

3

⎛
⎝1

1
1

⎞
⎠
⎤
⎦. (44)

Close to the critical line, we assume that am,bm � 1 for all
m �= 0. It is important to note that the velocity, v, does not,
in general, vanish on the critical line. By contrast, in the
conserving model the existence of a moving density profile
has been excluded for all values of β and a0 in [32].

The main difference between the critical expansions for
γ < 2 and for γ = 2 is that in the latter case the bm amplitudes
have a drift term in addition to the diffusive term. The drift
term, which scales as φ, yields to leading order in am,bm the
following equation:

∂τ bm = (2πimv − 4π2m2)bm + 3φ

{
−3(1 − b0)2bm

− e−3βμ

[
b2

0bm

9
− 2b0

3
(a0a



−m + ama


0) (45)

+ 1√
3

(
a2

0am + a
2
0 a


−m

)]} + O
(
a2

m

)
.
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Assuming a steady state, ∂τ bm = 0, and considering β that are
slightly below the critical line, where bm,am � 1, one obtains
a linear dependence between bm and am, given by

bm = κmam + κ

ma


−m + O
(
a2

m

)
, (46)

where

κm ≡ φ
3e−3βμ

(√
3a2

0 − 2ra

0

)
12π2m2 − 6πimv + 27φ(1 − r)2 + φr2e−3βμ

.

(47)
As expected, κm vanishes in the φ → 0 limit as well as for
equal densities (a0 = 0).

In order to complete the expansion one has to consider the
evolution of am, obtained by the expansion of Eq. (43) in small
am and bm. The nonconserving term in Eq. (43) does not enter
directly into the equation of am since it is proportional to the
vector (1,1,1)T , whereas am is the amplitude of the orthogonal
vector (1,e−2πi/3,e2πi/3)T . The leading order effect of the
nonconserving dynamics comes from the term that couples
bm and a0. Expanding Eq. (43) using the form in Eq. (44) and
the expression for bm in Eq. (46) yields to leading order(

∂τ am

∂τ a


−m

)
= −2πm

3
Am

(
am

a

−m

)
+ O

(
a2

m

)
, (48)

where Am is given by

Am =
(

6πm − √
3βr − 3iv − √

3βa0κm

−6βa0 + √
3βa0κm

(49)

6βa

0 − √

3βa

0κ



m

6πm + √
3βr − 3iv + √

3βa

0κ



m

)
.

It is easy to see that for km = 0 and v = 0 the Am matrices
reduce to those in Eq. (19).

The critical point is defined by the lowest temperature (1/β)
for which det Am = 0 for one of the m’s. The explicit form of
this condition is given by

9(2mπ − iv)2 − 6
√

3β(2imπ + v)Im[a0κm]

− 3β2(r2 − 12|a0|2 + 2rRe[a0κm] + 4
√

3|a0|2Re[κm]) = 0,

(50)

where Re and Im denote the real and imaginary parts, respec-
tively. In general, Im[a0κm] �= 0 and therefore the solution
of Eq. (50) yields v �= 0. The velocity, v, is given by the
solution of a cubic equation and is thus omitted for the sake
of brevity. This solution is studied below in the limit of φ � 1
and plotted for a specific line in parameter space in Fig. 7.
In the special case where a0 = |a0|eπi�/3 for � = 0,1,2, one
finds from Eq. (47) that Im[a0κm] ∝ v, which in turn leads to a
solution of Eq. (50) with v = 0. This condition can be shown to
correspond to the case where at least two of the species have
the same densities. This result conforms with the intuition
that in the two-equal-densities case the system does not have a
preferred drift direction and hence v = 0. The vanishing of the
velocity is evident in Fig. 7 at rA = rB , rA = rC , or rB = rC .

In the two-equal-densities case the fact that Im[a0κm] = 0
simplifies Eq. (50). As in the previous sections the critical β

is obtained when the m = 1 Fourier mode becomes unstable.
The solution of Eq. (50) with m = 1 and Im[a0κm] = 0 yields

−0.05 0 0.05
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−1
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1

2

x 10
−3

(r
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−r
B

)/2

v

FIG. 7. Velocity of the unstable mode on the critical point for
rA = 0.18 + x, rB = 0.18 − x, rC = 0.24, and φ = 1. The horizontal
axis represents the value of x.

the following critical line in the two-equal-densities case:

βc = 2π
√

3√
r2 − 12|a0|2 + 2ra0κ1 + 4

√
3|a0|2Re[κ1]

. (51)

As expected, in the φ → 0 limit, where κ1 → 0, this line
coincides with the critical line in Eq. (21) obtained for γ > 2.

For arbitrary densities, the drift velocity can be studied
analytically in the φ � 1 limit. In this case, one would expect
v to vanish with φ, and therefore Eq. (46) can be written as

κm = φ

√
3a2

0 − 2ra

0

4π2m2
e−3βμ + o(φ). (52)

Similar to the γ > 2 case, the critical transition occurs for φ �
1 when the m = 1 Fourier mode becomes unstable. Inserting
Eq. (52) into Eq. (50) for m = 1 yields

v = − φ√
3

Im[a0κ1]βc + O(φ2), (53)

where βc denotes the critical β of the conserving model,
given in Eq. (21). From Eqs. (52) and (53) one obtains that
v ∝ φIm[a3

0], which implies that the drift velocity vanishes
cubically with the deviation from the equal-density point, |a0|.
Equation (53) can also be expressed in terms of rA, rB , and rC

using the fact that Im[a3
0] = − 1

2 (rA − rB)(rB − rC)(rC − rA)
and e−3βμ = (1 − r)3/rArBrC , which yields

v = φβc

(1 − r)3(rA − rB)(rB − rC)(rC − rA)

8π2rArBrC

+ O(φ2).

(54)

The latter expression indeed vanishes in the two-equal-
densities case.

B. Corrections to the large deviations function of r

In this section we study the large deviations properties of
the nonconserving ABC model in the limit where p = φL−2.
In this limit the probability of a rare density profile can
be expressed using the macroscopic fluctuation theory by
extremizing the action of the model over all the possible
instanton paths leading to the target profile [33–38]. Here we
specifically consider events where a rare number of particles
is observed. We show that in the φ → 0 limit these events are
realized by an instanton that passes only through steady-state
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profiles of the conserving system, i.e., ρ(x,τ ) = ρ
(x,r(τ )),
where r(τ ) can be computed analytically. The large deviations
function of r , obtained using this instanton path, coincides in
the φ → 0 limit with the one computed for p ∼ L−γ with
γ > 2 in Sec. III B. In the homogenous phase we find that
this instanton path and the corresponding large deviations
function remain valid for all φ. In the ordered phase we write an
expansion of the instanton in small φ and derive equations that
describe its first order correction. This expansion is presented
in a relatively general form, which can be easily adapted to
other driven-diffusive models.

The macroscopic fluctuation theory deals with the prob-
ability to observe a trajectory of the macroscopic current
of particles within a given time interval, denoted here by
[0,T ]. In our case we consider three conserving currents,
j(x,τ ) ≡ [jA(x,τ ),jB(x,τ ),jC(x,τ )]T , which result from local
exchanges of particles, and a nonconserving current, k(x,τ ),
which results from evaporation and deposition of triplets
of particles. The density profile is obtained from those two
currents via the continuity equation

∂τρ(x,τ ) = −∂xj(x,τ ) + φuk(x,τ ), (55)

where u = (1,1,1)T . It is important to note that k(x,τ ) is the
nonconserving current of triplets of particles and not of single
particles.

The probability of a trajectory in current space, defined by
j(x,τ ) and k(x,τ ), is given by a large deviations principle,

Pr[j(x,τ ),k(x,τ )|ρ(x,0)] (56)

∼ e−L
∫ T

0 dτ
∫ 1

0 dx[Lc(ρ(x,τ ),j(x,τ ))+φLnc(ρ(x,τ ),k(x,τ ))],

whereLc andLnc denote the conserving and the nonconserving
Lagrangian densities, respectively. These functionals, whose
explicit form is given below, correspond to the “probability
cost” of the conserving and of the nonconserving noises,
respectively. The steady-state probability of a density profile
ρ̄(x) can be obtained from Eq. (56) by integrating it over all the
trajectories for which ρ(x,T ) = ρ̄(x) in the limit of T → ∞,
yielding

Pr[ρ(x) = ρ̄(x)]

= lim
T →∞

∫
Dρ

∣∣∣∣
ρ(x,T )=ρ̄(x)

DjDkPr[j(x,τ ),k(x,τ )|ρ(x,0)]

×
∏
α

δ[∂τρα(x,τ ) + ∂xjα(x,τ ) − φk(x,τ )], (57)

where ρ(x,0) can be chosen arbitrarily.
The conserving Lagrangian density, Lc, has been derived

for the standard ABC model (p = 0,r = 1) in [43]. It is
important to note that this expression cannot be mapped
onto the r < 1 case, as done in Eq. (30) for the steady-
state density profile. This is because for r < 1 one has to
consider fluctuations in ρA(x) + ρB(x) + ρC(x) which were
not allowed for r = 1. We now sketch the derivation of Lc for
r < 1 by following the lines of derivation presented in [43].
First we consider the Langevin equation for the macroscopic
current, j(x,t), given by

jα(x,τ ) = −χα(ρ(x,τ )) − ∂xρ(x,τ ) + 1√
L

ηα, (58)

where χα(ρ) = βρα(x,t)[ρα+1(x,t) + ρα+2(x,t)] denotes the
drift term. The variables ηα denote Gaussian white noise,
whose correlations are given by

〈ηα(x,τ )ηα′ (x ′,τ ′)〉 = δ(x − x ′)δ(τ − τ ′)�α,α′(ρ(x,τ )),
(59)

where �α,α′ (ρ) is the conductivity matrix. The latter can be
obtained by calculating the local covariance of the conserving
currents for β = 0 (see discussion in Appendix B of [32] and
in Sec. 2.3 of [43]), yielding

�αα′ (ρ) =
{

2ρα(1 − ρα) α = α′,
−2ραρα′ α �= α′. (60)

The probability of a current trajectory j(x,τ ) is obtained
by integrating over the probability distribution of the noise
variable and performing the Martin-Siggia-Rose procedure.
This yields a large deviations function given by the integral
over the following Lagrangian density:

Lc(ρ,j) = [j + ∂xρ + χ (ρ)]T �−1(ρ) [j + ∂xρ + χ (ρ)] .

(61)
The nonconserving Lagrangian density, Lnc, was derived

for a general driven-diffusive system in [46–48]. We now
repeat the heuristic derivation of Lnc, presented for a general
driven-diffusive model in [47], in the context of the noncon-
serving ABC model. The local nonconserving current is given
by the combination of two Poisson processes: condensation of
triplets of particles with rate φC(ρ(x,τ )) and annihilation of
triplets of particles, with rate φA(ρ(x,τ )), where

A(ρ) = e−3βμρAρBρC, C(ρ) = (1 − ρA − ρB − ρC)3.

(62)

For a small segment of the system, dx, and a small time
interval, dτ , the probability to observe kφdxdτ triplets of
particles added or removed (depending on the sign of k) due
to the nonconserving processes is given by

Pr

[∫ x+dx

x

∫ τ+φdτ

τ

dxdτk(x,τ ) = kφdxdτ

]

=
∞∑

n=max(0,Lkφdτdx)

P
(Pois.)
φC(ρ)dxdt (n)P (Pois.)

φA(ρ)dxdt (n − Lkφdxdt)

∼ e−φLnc(ρ,k)dτdx, (63)

where P
(Pois.)
λ denotes the Poisson distribution function with

a mean of λ. The nonconserving action is obtained by
performing the saddle point approximation over the above
sum, yielding

Lnc(ρ,k) = C(ρ) + A(ρ) −
√

k2 + 4A(ρ)C(ρ)

+ k ln

[√
k2 + 4A(ρ)C(ρ) + k

2C(ρ)

]
. (64)

This functional form is identical to the one obtained in [47] for
a generalA and C. Since the conserving and the nonconserving
processes occur independently, the corresponding Lagrangian
densities can be added together, yielding Eq. (56).

The integral in Eq. (57) can be evaluated using the saddle
point approximation, whereby the probability of a density
profile is governed by the action over the most probable path

012107-11



O. COHEN AND D. MUKAMEL PHYSICAL REVIEW E 90, 012107 (2014)

to reach ρ̄(x) at time T → ∞. In order to find this path it is
useful to consider two functions, H(x,τ ) and G(x,τ ), defined
as

�(ρ)∂xH = j + ∂xρ + χ (ρ), (65)

k = C(ρ)eG − A(ρ)e−G. (66)

Physically, H(x,τ ) and G(x,τ ) correspond to the fields exerted
by the external baths that drive the conserving and the
nonconserving currents, respectively.

In terms of H(x,τ ) and G(x,τ ), the Lagrangian densities
can be written as

Lc(ρ,H ) = 1
2 (∂xH)T �(ρ) ∂xH, (67)

Lnc(ρ,G) = C(ρ)(1 − eG + GeG) (68)

+A(ρ)(1 − e−G − Ge−G).

By expanding the action,

I(ρ,H,G) ≡
∫ T

0
dτ

∫ 1

0
dx[Lc(ρ,H) + Lnc(ρ,G)], (69)

in small variations in H(x,τ ) and G(x,τ ) around the extrem-
izing trajectory of I, it is shown in Appendix B that this
trajectory obeys the following equations:

G = HA + HB + HC, (70)

∂τHα = −∂2
xHα + ∂xHT ∂ρα

χ(ρ) − 1
2 (∂xH)T ∂ρα

�(ρ) ∂xH

+φ[∂ρα
C(ρ)(1 − eG) + ∂ρα

A(ρ)(1 − e−G)], (71)

where ρ can be written in terms of H and G using the continuity
equation (55), which yields

∂τρα = ∂2
xρα + ∂xχα(ρ) − ∂x[�(ρ)∂xH]α (72)

+φ[C(ρ)eG − A(ρ)e−G].

It is useful to note that the derivation of Eqs. (65)–(72)
can be regarded as a transformation into a Hamiltonian
picture. In this respect, the fields H(x,τ ) and G(x,τ ) are the
momenta conjugate to − ∫ τ

0 dτ ′∂xj(x,τ ′) and
∫ τ

0 dτ ′k(x,τ ′),
respectively, and Eqs. (70)–(72) play the role of Hamilton’s
equations

Another important point is the form of optimal trajectory
obtained if one minimizes I over ρ(x,T ) as well. In this case,
H are allowed to fluctuate freely. The quadratic form of Lc in
H implies that the optimal trajectory is obtained in this case by
considering H(x,τ ) = 0. Inserting this solution into Eqs. (70)
and (72) yields the deterministic dynamics of the profile in
Eq. (14).

As discussed above, the solution to Eqs. (70)–(72) in the
φ � 1 limit is expected to yield a density profile of the
form ρ(x,t) = ρ
(x,r(τ )) + O(φ). Inserting this ansatz into
Eq. (72) yields H(x,τ ) which is constant in space up to
deviations proportional to φ. In addition, it is evident that r(τ )
evolves on a slow time scale defined by φτ . One can therefore

consider the following expansion of the instanton path:

Hα(x,τ ) = 1

3
g(φτ ) +

∞∑
k=1

φkδ
(k)
H,α(x,φτ ), (73)

ρα(x,τ ) = ρ

α(x,r(φτ )) +

∞∑
k=1

φkδ(k)
ρ,α(x,φτ ). (74)

The functions appearing in the above expansion can be
computed by inserting Eqs. (73)–(74) into Eqs. (70)–(72) and
solving them order by order in φ. The leading order terms, g(s)
and r(s) (with s denoting φτ ), are obtained from integrating
over x and summing over α the O(φ) terms in Eqs. (70)–(72).
This integral and sum of Eq. (72) yields

dr

ds
= 3

∫ 1

0
dx[C(ρ


s )eg(s) − A(ρ

s )e−g(s)], (75)

where ρ

s ≡ ρ
(x,r(s)). Similarly, multiplying Eq. (71) by

∂rρ


α(x,r(s)) and integrating over x yields

dg

ds
=
∫ 1

0
dx

∑
α

∂rρ


α(x,r(s))[∂ρα

C(ρ

s )(1 − eg(s))

+ ∂ρα
A(ρ


s )(1 − e−g(s))]. (76)

Here all the terms that contain δ
(1)
H,α were removed using

integration by parts and the fact that ∂2
xρ


α + ∂xχα(ρ
) = 0.
Equation (76) has a solution of the form,

g(s) = ln

[∫ 1

0
dxA(ρ


s )

]
− ln

[∫ 1

0
dxC(ρ


s )

]
, (77)

which when inserted into Eq. (75) yields

dr

ds
= 3

∫ 1

0
dx[A(ρ


s ) − C(ρ

s )]. (78)

In general, since ρ
(x,r) has a rather complicated form,
the solution of Eq. (78) can only be obtained numerically.
Nevertheless, in the following paragraphs we draw some
interesting conclusions from the general form of Eq. (78).

To leading order in φ, Eq. (78) describes the time reversal of
the relaxation trajectory of r from an atypical initial value. The
relaxation trajectory can be obtained by inserting a solution of
the form of Eq. (74) into Eq. (72) with H(x,τ ) = 0 and keeping
the leading order in φ. This time-reversal symmetry conforms
with our intuition that in the limit of very slow nonconserving
dynamics, the dynamics of r can be described as an equilibrium
one-dimensional random walk. Since for γ > 2 we know that
this instanton path is the most probable one that realizes a rare
value of r , it is plausible to assume the expansion around it for
γ = 2 and φ � 1 is also the global minimum of I.

Under this assumption, the probability to observe a rare
value of the overall density is obtained by evaluating the action
(69) over the instanton path in Eqs. (73)–(74). This statement
can be written formally as

P (r̄) = P [ρ(x) = ρ
(x,r̄) + O(φ)]

∼ lim
φT →∞

e−L
∫ φT

0 ds
∫ 1

0 dx[Lc(ρ

s ,

1
3 g(s))+Lnc(ρ


s ,g(s))]+O(φ), (79)
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where g(0) is chosen such that r(φT ) = r̄ . Using Eqs. (77)–
(78) the above exponential can be written as

P (r̄) ∼ e
L
3

∫ r̄
dr ′{ln[

∫ 1
0 dxC(ρ
(x,r ′))]−ln[

∫ 1
0 dxA(ρ
(x,r ′))]}+O(φ).

(80)

As expected, the leading order term of this large deviations
function is identical to G(r) obtained for γ > 2 in Sec. III B.

Corrections to G(r) can be obtained by calculating the O(φ)
corrections to the instanton path. Considering the O(φ) terms
when expanding Eqs. (71)–(72), we find that

0 = ∂2
x δ(1)

ρ,α + ∂x

[
δ(1)
ρ,α∂ρα

χα(ρ

s )
] − ∂x

[
�(ρ
)∂xδ

(1)
H

]
α

+ C(ρ

s )eg(s) − A(ρ


s )e−g(s)

− ∂rρ


s

∫ 1

0
dx[C(ρ


s )eg(s) − A(ρ

s )e−g(s)], (81)

0 = −∂2
x δ

(1)
H,α + ∂xδ

(1),T
H ∂ρα

χ(ρ

s ) + ∂ρα

C(ρ

s )(1 − eg(s))

+ ∂ρα
A(ρ


s )(1 − e−g(s)) −
∫ 1

0
dx∂rρ



s [∂ρα

C(ρ

s )(1 − eg(s))

+ ∂ρα
A(ρ


s )(1 − e−g(s))], (82)

where as before s ≡ φτ . Since r(s) does not have a simple
analytic expression in the ABC model, the above equations
can only be solved numerically.

In the homogenous phase, where ρ

α(x,r) = rα , the source

terms in Eqs. (81)–(82) vanish, yielding a set of homogenous
partial differential equations that exhibit a trivial solution,
δ

(1)
H,α = δ(1)

ρ,α = 0. In fact, in this case the leading order term of
the instanton, Hα(x,τ ) = 1

3 g(φτ ) and ρ(x,τ ) = ρ
(x,r(φτ )),
can be shown to satisfy Eqs. (70)–(72) to all orders in φ. This
conclusion does not depend on the specific form of �(ρ) and
χ(ρ), and can be shown to remain valid also when considering
a density-dependent diffusion coefficient. This implies that
for any homogenous driven-diffusive system with a slow
particle-nonconserving dynamics (p ∼ L−γ with γ � 2) that
is characterized by space-independent functionsA(r) andC(r),
the large deviations principle of the overall particle-density is
given by

P (r̄) ∼ e
L
ω

∫ r̄
dr ′[ln C(r ′)−lnA(r ′)]. (83)

Here ω are the number of particles added and removed in each
condensation and annihilation process. In the nonconserving
ABC model ω = 3.

Another interesting result of the above expansion concerns
the time-reversal symmetry found in the dynamics of r ,
whereby its excitation trajectory to a rare density, r̄ , is equal
to the time-reversal of the relaxation path which starts from
r = r̄ . This symmetry is broken for the local nonconserving
current of particles, k(x,τ ), for systems where C(ρ
) andA(ρ
)
are not homogenous in space. On the one hand, in such cases
the relaxation path of k, obtained by setting G = 0 in Eq. (66),
is given by

k↓(x,τ ) = C(ρ

φτ ) − A(ρ


φτ ). (84)

On the other hand, the excitation path, obtained by inserting
r(s) and g(s) into Eq. (66), is given by

k↑(x,τ ) = C(ρ

φτ )

∫ 1
0 dx ′A(ρ


φτ )∫ 1
0 dx ′C(ρ


φτ )
− A(ρ


φτ )

∫ 1
0 dx ′C(ρ


φτ )∫ 1
0 dx ′A(ρ


φτ )
,

(85)

and therefore, in general, k↑(x,τ ) �= −k↓(x, − τ ). Of course,
the integral over the local current does obey time-reversal
symmetry,

∫ 1
0 dxk↑(x,τ ) = − ∫ 1

0 dxk↓(x, − τ ), leading to the
symmetry observed in the dynamics of r . The breaking of the
time-reversal symmetry of k(x,τ ) occurs in the ordered phase
of the ABC model, where ρ
 is not homogenous [49]. Hence,
the nonequilibrium nature of the system is maintained even in
the φ → 0 limit.

V. CONCLUSIONS

The phase diagram of the ABC model with slow non-
conserving processes is analyzed in the case where the overall
densities of the three species are not equal and the model is thus
out of equilibrium. The phase diagram exhibits features similar
to those characterizing equilibrium systems with long-range
interactions such as ensemble inequivalence and negative
compressibility. It also exhibits features which are specific
to nonequilibrium systems, such as steady states with moving
density profiles.

In the first part of the paper we focused on the case where the
nonconserving processes occur at a vanishingly slow rate, p ∼
L−γ ,γ > 2, compared with rates of the conserving dynamics,
τ−1 ∼ L−2. In this limit, the dynamics of the overall density,
r , is shown to obey detailed balance, although the model itself
does not. This allows one to derive the large deviations function
of r and draw from it the phase diagram of the nonconserving
model using equilibrium concepts such as the definition of a
chemical in the conserving model and the calculation of the
first order transition points using the Maxwell construction. As
is typical in equilibrium systems with long-range interactions
the conserving and nonconserving models are found to exhibit
the same critical lines but different first order lines.

In the second part of the paper we studied the limit where the
conserving and nonconserving processes occur at comparable
time scales, defined as p = φL2. In this case the models are
found to differ not only in their first order lines but also in their
second order ones. In addition, it is found that in the ordered
phase the nonconserving model exhibits a moving density
profile with nonvanishing velocity in the thermodynamic limit.

Using macroscopic fluctuation theory, we derived an
expansion in small φ of the instanton path leading to a rare
value of r . The leading order term of the action over this
instanton is identical to the expression of G(r) obtained for
γ > 2. This implies that γ > 2 is indeed the limit where the
conserving and nonconserving time scale are well separated.
An interesting result of this expansion is that all the correction
terms in φ vanish in the homogenous phase, implying that
the expression of G(r) obtained for γ > 2 is correct in the
homogenous phase for γ = 2 as well. This conclusion is valid
for a large class of driven-diffusive models that exhibit a
homogenous steady-state profile.
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APPENDIX A: CRITICAL EXPANSION OF THE ABC
MODEL WITH NONEQUAL DENSITIES AND

VANISHINGLY SLOW NONCONSERVING
DYNAMICS ( p � L−2)

In this appendix we carry out the critical expansion of the
conserving and the nonconserving ABC models, in the limit
p ∼ L−γ with γ > 2, up to the forth order. The expansion for
the sixth order terms in both cases have been derived but will
not be displayed due to their length. They are used to determine
the nature of the multicritical point which connects the second
and first order transition manifolds.

The starting point of the expansion is the dynamics of the
density profile, given in the conserving model by

∂τρα = β∂x [ρα (ρα+1 − ρα+2)] + ∂2
xρα. (A1)

The nonconserving equation is obtained by adding a term of
the form L2p(ρ3

0 − e−3βμρAρBρC) to the right hand side of
Eq. (A1). As discussed in Sec. III A, in both the conserving and
the nonconserving models the density profile can be expanded
near the critical line in terms of the following Fourier modes:⎛

⎝ρA

ρB

ρC

⎞
⎠ =

∞∑
m=−∞

e2πimx

⎡
⎣am(τ )√

3

⎛
⎝ 1

e−2πi/3

e2πi/3

⎞
⎠

+ a

−m(τ )√

3

⎛
⎝ 1

e2πi/3

e−2πi/3

⎞
⎠ + bm(τ )

3

⎛
⎝1

1
1

⎞
⎠
⎤
⎦ . (A2)

We first analyze the expansion of the conserving ABC

model. Inserting Eq. (A2) into Eq. (A1) yields a set of
decoupled equations of motion, given by

∂τ am = −2πm

3

[
(6πm −

√
3βr)am

+ 3β

∞∑
m′=−∞

a

−m−m′a



m′

]
, (A3)

∂τ bm = −4π2m2bm. (A4)

The latter equation implies that in the steady state bm = 0 for
m �= 0 and b0 = r . This corresponds to a flat profile of the
vacancies which is a result of their unbiased dynamics. It is
useful to rewrite Eq. (A3) in the following vector form:(

∂τ am

∂τ a


−m

)
= −2πm

3

[
Am

(
am

a

−m

)
+3β

∞∑
m′=−∞

(
a


−m−m′a


m′

−am−m′am′

)]
,

(A5)

where

Am =
(

6πm − √
3βr 6βa


0

−6βa0 6πm + √
3βr

)
. (A6)

The eigenvalues of − 2πm
3 Am are

ε
(m)
± (β,r,a0) = 2πm

3
[−6mπ ± β

√
3(r2 − 12|a0|2)], (A7)

and the corresponding left and right eigenvectors are indepen-
dent of m and given by

vR
± = 1

C±

(
r ±

√
r2 − 12|a0|2
2
√

3a0

)
, (A8)

vL
± = 1

C±

(−r ∓
√

r2 − 12|a0|2
2
√

3a

0

)
, (A9)

where C± = 2
√

r2 − 12|a0|2(r ∓
√

r2 − 12|a0|2) is a normal-
ization factor. When the highest eigenvalue vanishes, ε(1)

+ = 0,
the corresponding Fourier mode becomes unstable, leading to
an ordered profile. The critical line is defined as ε

(1)
+ (βc,r,a0) =

0, where βc is given in Eq. (21).
In order to determine whether the conserving model

exhibits a second order phase transition on the critical line one
has to check whether for β = βc(1 + δ) the model exhibits an
order phase whose amplitude vanishes with δ. To this end, it
is useful to denote the first unstable Fourier mode as(

a1

a

−1

)
= ϕvR

+ + O(ϕ2)vL
+, (A10)

where ϕ is given by up to a constant by some positive power of
δ, which will be determined below. Assuming a steady state,
∂tam = 0, and inserting Eq. (A10) into Eq. (A5) for m = 2
yields to leading order(

a2

a

−2

)
= 3βcϕ

2A−1
2

(
−(vR

+,2)2

(vR
+,1)2

)
+ O(ϕ4), (A11)

where vR
+,1 and vR

+,2 denote the two elements of vR
+. Inserting

this back into Eq. (A5) for m = 1, yields the fourth order term
in its expansion in powers of ϕ, given by

0 = 4π2δϕ + Gc
4(r,a0)ϕ|ϕ|2 + O(ϕ|ϕ|4), (A12)

where the 4π2 factor is due to fact that ε
(1)
+ (βc(1 + δ),r,a0) =

4π2δ and

Gc
4(r,a0) = 1

ϕ|ϕ|2 6βcv
L
+

(
a


−2a


1−a2a−1

)

= 32π2(r2 + r
√

r2 − 12|a0|2 − 6|a0|2)

(r2 − 12|a0|2)2(r +
√

r2 − 12|a0|2)

× [r3 − 18r|a0|2 − 12
√

3|a0|3 cos(3θ )], (A13)

with θ ≡ arg(a0).
For Gc

4(r,a0) > 0 one finds that ϕ ∼ δ1/2, which implies
that the model exhibits a second order phase transition on
the critical line. On the other hand, when Gc

4(r,a0) < 0 the
critical line is preempted by a first order phase transition. On
the line where Gc

4(r,a0) = 0, plotted in Figs. 8(a) and 8(c),
a further analysis of the expansion shows that Gc

6(r,a0) > 0,
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FIG. 8. Tricritical lines in the conserving and the nonconserving
models. The dashed and solid thick lines represent points where
G6 < 0 and G6 > 0, respectively. In the latter case the tricritical
points are preempted by a CEP. The thin dashed gray lines
denote the smallest possible values of r . The case of two equal
densities, rA = rB = r/3 − � and rC = r/3 + 2� or, equivalently,
a0 = �

√
3eiπ/3, is shown in (a) and (b). Panels (c) and (d) show

the fully nonequal-densities case, where rA = r/3 − � + 0.007,
rB = r/3 − � + 0.007, and rC = r/3 + 2�.

which implies that the second order and first order transition
lines join in the conserving model at a tricritical point.

In the nonconserving model the additional term in the
dynamics of ρ(x,τ ) affects directly only the equation of bm.
Since this term scales as pL2, it is negligible in comparison
to the diffusive term in Eq. (A4), −4π2m2bm, for m �= 0. For
m = 0 the nonconserving term yields the following equation:

∂τ b0 = 3pL2
∫ 1

0
dx

(
ρ3

0 − e−3βμρAρBρC

)

= 3pL2

{
(1 − b0)3 − e−3βμ

[
b3

0

27
− b0

3

∑
m1

am1a


m1

+ 1

3
√

3

∑
m1,m2

(am1am2a−m1−m2 + c.c.)

]}
. (A14)

It is useful to consider the fluctuations in the overall density,
denoted by δr , such that b0 = r + δr and r is given by Eq. (26).
The parameter δr enters the equation of am in the following
form:

∂τ am = −2πm

3

[
(6πm −

√
3βr)am −

√
3βδram

+ 3β

∞∑
m′=−∞

a

−m−m′a



m′

]
. (A15)

In the steady state, Eq. (A14) is shown below to yield to leading
order δr = O(|am|2,ama−m). As a result, the fluctuation in the
density, δr , do not affect the linear stability of am and thus the
critical line of the nonconserving model is identical to that of
the conserving model.

The type of transition observed on the critical line is
determined by the higher order terms in the expansion.
For convenience the expansion is expressed below in terms
of the steady-state density, r , instead of μ. Inserting the
definition for ϕ in Eq. (A10) into Eq. (A14) yields to leading
order

δr = 6(1 − r)(r2 − 12|a0|2)(r +
√

r2 − 12|a0|2)

r2 − 3(1 + 2r)|a0|2 |ϕ|2.
(A16)

The O(ϕ4) term in the expansion of Eq. (A15) is then obtained
by inserting the leading order term of a2 in Eq. (A11) and of
δr in Eq. (A16) into Eq. (A15), yielding

0 = 4π2δϕ + Gnc
4 (r,a0)ϕ|ϕ|2 + O(ϕ|ϕ|4), (A17)

where

Gnc
4 (r,a0) = Gc

4(r,a0) − 1

ϕ|ϕ|2
√

3βδrvL
+

(
a1

−a

−1

)

= Gc
4(r,a0) − 24π2r(1 − r)(r +

√
r2 − 12|a0|2)

r2 − 3(1 + 2r)|a0|2 .

(A18)

In the equal-densities case the tricritical point is found at
r = 1/3, Gnc

4 (1/3,0) = 0, as previously found in [29]. For
a0 �= 0, by continuing the expansion described above it can
be shown that Gnc

6 (r,0) < 0 on the tricritical line for values
of |a0| that are relatively small. In this case, the tricritical
point is preempted by a CEP, which connects the first and
second order transition line, as demonstrated in Fig. 3(b).
Figures 8(b) and 8(d) show the tricritical line of the non-
conserving model, defined by β = βc and Gnc

4 (r,a0) = 0, in a
specific cross section of parameter space. The dashed and solid
lines denote regions where Gnc

6 (r,a0) < 0 and Gnc
6 (r,a0) > 0

on the tricritical line, respectively.
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APPENDIX B: DERIVATION OF HAMILTON’S
EQUATIONS FOR THE NONCONSERVING

ABC MODEL WITH p = φL−2

In Sec. IV B the nonconserving ABC model is analyzed in
the limit where p = φL−2 using the macroscopic fluctuation
theorem. In this appendix we derive a set of equations for the
instanton trajectory that minimizes the action of the model. The
trajectory is defined in terms of fields that can be regarded as
the momenta conjugate to the conserving and nonconserving
particles currents. In this respect, the equations derived below
play the role of Hamilton’s equations.

In the Lagrangian formulation presented in Sec. IV B, the
instanton path is defined by the currents j(x,τ ) and k(x,τ ) and
the corresponding action is given by

I =
∫ T

0
dτ

∫ 1

0
dx[Lc(ρ(x,τ ),j(x,τ ))

+φLnc(ρ(x,τ ),k(x,τ ))]. (B1)

Here the conserving and the nonconserving Lagrangian den-
sities are given by

Lc(j,ρ) = [j + ∂xρ + χ (ρ)] �−1(ρ) [j + ∂xρ + χ (ρ)] ,

(B2)

and

Lnc(ρ,k) = C(ρ) + A(ρ) −
√

k2 + 4A(ρ)C(ρ)

+ k ln

[√
k2 + 4A(ρ)C(ρ) + k

2C(ρ)

]
, (B3)

respectively. The density profile of the particles along this path
is given by the continuity equation

∂τρ(x,τ ) = −∂xj(x,τ ) + φuk(x,τ ), (B4)

where u = (1,1,1)T . In the derivation below we consider a
general form of χ(ρ),A(ρ), and C(ρ). The specific expressions
of these functionals are discussed in Sec. IV B.

As mentioned in Sec. IV B, it is convenient to express the
instanton path using the fields H(x,τ ) and G(x,τ ), defined by
the following equations:

�(ρ)∂xH = j + ∂xρ + χ (ρ), (B5)

k = C(ρ)eG − A(ρ)e−G. (B6)

In terms of these fields the Lagrangian densities are given by

Lc(ρ,H ) = 1
2 (∂xH)T �(ρ) ∂xH, (B7)

Lnc(ρ,H ) = C(ρ)(1 − eG + GeG)

+ A(ρ)(1 − e−G − Ge−G), (B8)

and the continuity equations are given by

∂τρ = −∂x[�(ρ)∂xH − ∂xρ − χ(ρ)]

+φu[C(ρ)eG − A(ρ)e−G]. (B9)

In Eqs. (B5)–(B9) and in the derivation below the (x,τ )
dependence is omitted in some cases in order to keep the
notation compact.

We denote by H̄ and Ḡ the path that minimizes I and
consider small deviations around this path defined as

H(x,τ ) = H̄(x,τ ) + δH (x,τ ),
(B10)

G(x,τ ) = Ḡ(x,τ ) + δG(x,τ ).

Similarly using the continuity equations one can define the
fluctuation of the density profile around the optimal path, as

ρ(x,τ ) = ρ̄(x,τ ) + δρ(x,τ ), (B11)

where ρ̄ is obtained by inserting H̄ and Ḡ into Eq. (B9).
The bar notation here should not be confused with that used
in Sec. IV B to denote the density profile at the end of the
instanton path.

Below we derive the first order correction to the action due
to δH and δG, defined as

I =
∫ T

0
dτ

∫ 1

0
dx

[
Lc(ρ̄,H̄) + Lnc(ρ̄,Ḡ) + δL(1)

+O
(
δ2
H,α,δ2

G

)]
. (B12)

The optimal trajectory is defined by the equation δL(1) = 0.
As shown below, it is, in fact, more convenient to express this
equation in terms of the fields δρ and δG.

The simpler part in the first order expansion of I is the
expansion of the nonconserving Lagrangian density in terms
of δG and δρ . Inserting Eqs. (B10) and (B11) into the form of
Lnc yields the following expansion:

δLnc(ρ,G) = Lnc(ρ,G) − Lnc(ρ̄,Ḡ)

=
∑

α

δρ,α[∂ρα
C(ρ̄)(1 − eḠ + ḠeḠ)

+ ∂ρα
A(ρ̄)(1 − e−Ḡ − Ḡe−Ḡ)]

+φδG[C(ρ̄)ḠeḠ + A(ρ̄)Ḡe−Ḡ] + O
(
δ2
ρ,α,δ2

G

)
.

(B13)

The conserving Lagrangian density should be expanded
first in terms of δH and δρ , yielding

δLc(ρ,H) = 1

2
(∂xH)T �(ρ) ∂xH − Lc(ρ̄,H̄)

= ∂xH̄T �(ρ̄)∂xδH+1

2

∑
α

δρ,α(∂xH̄)T ∂ρα
�(ρ̄)∂xH̄.

(B14)

The first term in the line above can be further simplified by
employing integration by parts over x of this term, yielding

K ≡
∫ T

0
dτ

∫ 1

0
dx∂xH̄T �(ρ̄)∂xδH

= −
∫ T

0
dτ

∫ 1

0
dxH̄T ∂x[�(ρ̄)∂xδH ]. (B15)

Here and below the boundary terms of the integration by
parts over x vanish due to the periodic boundary condition.
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As mentioned above, it is convenient to express the terms in
δL(1) that involve δH in terms of the fields δρ and δG. This can
be done by inserting Eqs. (B10) and (B11) into the continuity
equation (B9), yielding

∂x[�(ρ̄)∂xδH ]α = −∂τ δρ,α + ∂2
x δρ,α

+
∑
α′

∂x

{
δρ,α′

[
∂ρα′ �(ρ̄)∂x H̄

]
α

+ δρ,α′∂ρα′ χα(ρ̄)
}

+φδG[C(ρ̄)eḠ + A(ρ̄)e−Ḡ]. (B16)

Inserting this expression into Eq. (B15) yields an integral
which involves derivatives of δρ and δG. We wish, however, to
obtain an expression of δL(1) which involves only local terms
of the variational fields. This can be done using the proper
integrations by parts over x and τ , which yield

K =
∫ T

0
dτ

∫ 1

0
dx

∑
α

{
δρ,α

[−∂τ H̄α − ∂xH̄T ∂ρα
�(ρ̄)∂xH̄

− ∂2
x H̄ρ,α − ∂xH̄T ∂ρα

χ(ρ̄)
]

−φδGH̄α[C(ρ̄)eḠ + A(ρ̄)e−Ḡ]
} + O

(
δ2
ρ,α,δ2

G

)
.

(B17)

Finally, by inserting Eqs. (B13)–(B17) into Eq. (B12) one
obtains the following expression for the first order term in the
expansion of the action:

δL(1) =
∑

α

δρ,α

[
−∂τ H̄α − 1

2
∂xH̄T ∂ρα

�(ρ̄)∂xH̄

− ∂2
x H̄ρ,α − ∂xH̄T ∂ρα

χ (ρ̄)

]
− φδG

(
Ḡ −

∑
α

H̄α

)

× [C(ρ̄)eḠ + A(ρ̄)e−Ḡ]. (B18)

The solution for δL(1) = 0 corresponds to the extremum of the
action, which is therefore given by

Ḡ = H̄A + H̄B + H̄C (B19)

∂τ H̄α = −∂2
x H̄T + ∂ρα

χ (ρ̄)∂xH̄α − 1
2 (∂xH̄)T ∂ρα

�(ρ̄) ∂xH̄

+ φ[∂ρα
C(ρ̄)(1 − eḠ) + ∂ρα

A(ρ̄)(1 − e−Ḡ)]. (B20)

The instanton path is fully described by the two equations
above and the definition of ρ̄, given by

∂τ ρ̄ = −∂x[�(ρ̄)∂xH̄ − ∂x ρ̄ − χ (ρ̄)]

+φu[C(ρ̄)eḠ − A(ρ̄)e−Ḡ]. (B21)

In Sec. IV B the bar notation is omitted from the above result
in order to simplify the notation.
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