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Thermodynamic properties and entropy scaling law for diffusivity in soft spheres
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The purely repulsive soft-sphere system, where the interaction potential is inversely proportional to the
pair separation raised to the power n, is considered. The Laplace transform technique is used to derive its
thermodynamic properties in terms of the potential energy and its density derivative obtained from molecular
dynamics simulations. The derived expressions provide an analytic framework with which to explore soft-sphere
thermodynamics across the whole softness-density fluid domain. The trends in the isochoric and isobaric heat
capacity, thermal expansion coefficient, isothermal and adiabatic bulk moduli, Grüneisen parameter, isothermal
pressure, and the Joule-Thomson coefficient as a function of fluid density and potential softness are described
using these formulas supplemented by the simulation-derived equation of state. At low densities a minimum in
the isobaric heat capacity with density is found, which is a new feature for a purely repulsive pair interaction.
The hard-sphere and n = 3 limits are obtained, and the low density limit specified analytically for any n is
discussed. The softness dependence of calculated quantities indicates freezing criteria based on features of the
radial distribution function or derived functions of it are not expected to be universal. A new and accurate formula
linking the self-diffusion coefficient to the excess entropy for the entire fluid softness-density domain is proposed,
which incorporates the kinetic theory solution for the low density limit and an entropy-dependent function in
an exponential form. The thermodynamic properties (or their derivatives), structural quantities, and diffusion
coefficient indicate that three regions specified by a convex, concave, and intermediate density dependence can
be expected as a function of n, with a narrow transition region within the range 5 < n < 8.
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I. INTRODUCTION

There are a number of simple model pair potentials
for molecules in the fluid state which have proved useful
in testing statistical mechanical approaches (e.g., perturba-
tion or integral liquid methods with different closures) and
whose physical properties elucidate the behavior of more
complex molecular fluids. Examples include the hard-sphere
fluid and the Lennard-Jones particle system. This work
is concerned with the physical properties of another key
model system, which is composed of particles interacting
through the repulsive soft-sphere or inverse power (IP)
potential,

φ(r) = ε

(
σ

r

)n

, (1)

where r is the separation between two particles, σ is the
particle diameter, ε sets the energy scale, and n is a parameter
determining the potential hardness (the potential softness,
s = n−1).

This potential form is significant because many nanoscale
particles have a soft repulsive core which can be represented
by a soft sphere and used as a reference system in classical
perturbation theories of liquids [1,2]. For steeply repulsive
spheres, n � 1, and the model provides an alternative route
to the properties of hard-sphere (HS) systems, being the
limiting case when n → ∞ [3–5]. The softer (small n) systems
have been used in studies of the crystal-solid interface [6]
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and some liquid metal properties [7,8]. A soft potential of
simple analytic form can be used to establish the generic
consequences of softness on the physical properties of particle
assemblies. A wide spectrum of practically important systems
from the very soft to the extremely hard can be modeled
by varying, s. The softness of a particle, for example, is an
important characteristic in soft matter research, in particular
for colloidal and polymeric particulate systems such as small
polymerically stabilized colloids, star polymers, dendrimers,
emulsions, and microgels. Indeed, for microgel particles this
potential form has been used to interpret experimentally mea-
sured physical properties [9,10]. In some cases, the particles
interpenetrate much more than in simple molecular fluids,
and the consequences of this for the physical properties are
still not well understood, despite many mean-field statistical
mechanical and computer simulation treatments [11–13].
Although effective interparticle interactions have been derived
for many of the different classes of colloidal and polymeric
systems, they are of variable analytic form [14–16], and it is
useful to consider a generic soft potential that is not linked to
any specific class of particle, to bring out wider ranging issues
and trends.

The self-similar IP potential, possesses some useful (even
unique) properties, in that, for example, excess thermodynamic
properties do not depend on the density and temperature
separately but on a dimensionless combination of the two,
a temperature-scaled density ρ̃ = (βε)

3
n ρσ 3 or the corre-

sponding packing fraction ζ = πρ̃/6, where ρ = N/V is the
number density, N is the number of particles in volume V , and
β = 1/kBT with kB Boltzmann’s constant and T the temper-
ature [17]. Therefore, for a given n, the entire phase behavior
or T -ρ plane can be mapped out by performing computations
along a single isotherm or isochore. Furthermore, several basic
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physical properties of a system of IP particles are related to
each other, e.g., pressure and mechanical properties are directly
related to the interaction energy per particle [18]. Thus, for any
n, a common theoretical treatment for the static properties can
be made, which is not possible for other potentials, such as the
Lennard-Jones form.

The HS limit and intermediate n values (particularly
n = 12) have been studied many times in the literature
(e.g., see [17,19–22]). More recently, the present authors and
co-workers have explored the pressure and n dependence
of the transport coefficients [23,24] and their particle force
distribution functions [25,26]. General features of the radial
distribution functions and their asymptotic behavior have also
been explored [27].

The solid-fluid phase boundary as a function of n has been
determined [28,29] and the virial coefficients of soft-sphere
fluid been calculated up to the eighth for a range of n [30,31].

The IP scaling properties were found by Roland, Bair,
and Casalini [32] to be useful in collapsing experimental
viscosity data onto master curves using, in effect, the IP
scaling parameter, (T/TR)(V/VR)γ , where TR and VR are the
temperature and molar volume, respectively, of a reference
system. The exponent γ is exactly n/3 for an IP fluid but is
used as a fit parameter in treating the experimental data; the
value of γ varies for different classes of molecule to reflect
their different effective softnesses. This density-temperature
scaling procedure [33] was subsequently applied to superpose
self-diffusion coefficients for Lennard-Jones liquids [34] and
relaxation and liquid crystal thermodynamic data [35]. In
addition, Dyre and co-workers, [36–41] developed the concept
of “strongly correlating” or Roskilde fluids, which are liquids
where the equilibrium virial-potential energy correlation co-
efficient is at least 0.9 (this number is always 1 for IP liquids,
which therefore acts as a benchmark fluid). This approach
allows invariant trends in structural, static, and dynamical
properties to be mapped out, and helps to explain the origins
of empirical correlations between these quantities for real or
model systems found in the past [42,43]. Shell has shown
that this scaling follows from a statistical mechanical coarse
graining procedure [44].

The practical usefulness of the IP system relies on having
direct access to properties of the system at any point in the
density-softness plane. This work gives new details of the
physical properties of the soft-sphere system in the density-
softness plane. The main focus is on the thermodynamic
properties and a relationship between entropy and diffusion
coefficient. The study is limited to the softness range n > 3, as
for n � 3 this potential does not lead to a thermodynamically
stable system because the volume integral of the potential
diverges.

The expressions for thermodynamic properties of the soft-
sphere system in the density-softness plane are derived and an-
alyzed in Sec. II. In Sec. III details of the molecular dynamics
(MD) simulations are presented. The behavior of all the main
thermodynamic properties are discussed in Sec. IV along, with
analysis of the softness dependence of structural properties
and related freezing criteria. In Sec. V a relationship between
the self-diffusion coefficient and the excess entropy for the
soft-sphere fluid is discussed. Conclusions are presented in
Sec. VI.

II. THE LTT METHOD AND SOFT SPHERES

In a series of publications by Lustig [45] and then Meier and
Kabelac [46] it was shown that all thermodynamic variables
can be expressed in terms of phase-space quantities, 
mn,
which are functions of MD ensemble averages of the kinetic
energy, the inverse kinetic energy, the volume derivatives of the
potential energy, and combinations of these. Their treatment
is a generalization of a Laplace transform technique (LTT),
introduced by Pearson, Halicioglu, and Tiller [47] for the
derivation of the exact thermodynamic expressions in the
microcanonical ensemble. Recently, the LTT method has been
used to obtain the thermodynamic properties of a Gaussian
core model fluid [48], water [49], and supercritical n − m

Lennard-Jones fluids [50]. Explicit expressions for some of
the low index 
mn are [46]


00 = 2〈K〉
3N − 3

, (2)


01 = N − 1

V
kBT −

〈
∂U

∂V

〉
, (3)


11 = N − 1

V
+

[
1 − 3N − 3

2

] 〈
K−1 ∂U

∂V

〉
, (4)


20 = −
[

1 − 3N − 3

2

]
〈K−1〉, (5)

and


02 = 2

3V

N − 2

V
〈K〉 −

[
1 − 3N − 3

2

]〈
K−1

(
∂U

∂V

)2〉

−
〈
∂2U

∂V 2

〉
− 2

N − 1

V

〈
∂U

∂V

〉
, (6)

where 〈· · · 〉 denotes an ensemble or time average in the
NVEPG ensemble, which maintains both constant total mo-
mentum (P) and a quantity (G) which is related to the
initial position of the center of mass. The total energy,
E, is the sum of the kinetic, K , and potential, U , energy
terms. Knowing 
00, 
01, 
11, 
02, and 
20, several
important thermodynamic quantities can be obtained, such
as temperature, T = (∂E/∂S)V , pressure, P = T (∂S/∂V )E ,
isochoric heat capacity, CV = [(∂2S/∂E2)V ]−1, isothermal
pressure coefficient, γV = (∂P/∂T )V , and the isothermal bulk
modulus, BT = −V (∂P/∂V )T ,

T = 
00/kB, P = 
01, (7)

CV = kB(1 − 
00
20)−1, (8)

γV = kB(
11 − 
01
20)

1 − 
00
20
, (9)

BT = V
[

01(2
11 − 
01
20) − 
00


2
11

]
1 − 
00
20

− V 
02. (10)

Using these quantities, the remaining thermodynamic prop-
erties can be expressed as a combination of the 
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TABLE I. The thermodynamic properties of the soft-sphere system in terms of 〈U〉 and its density derivative derived within the LTT, where
J = N−1

N
and Z′ = ∂Z

∂ζ
.

Z Compressibility factor Z = P

ρkBT
− J = n

3
〈U 〉

NkBT
= n

3 u

CV Isochoric heat capacity CV

NkB
= 3

2 J − ζ 9
n2 Z′ + 3

n
Z

CP Isobaric heat capacity CP

NkB
= 3

2 J − ζ 9
n2 Z′ + 3

n
Z + (J−ζ 3

n Z′+Z)2

J+ζZ′+Z

BT Isothermal bulk modulus BT

ρkBT
= J + ζZ′ + Z

BS Adiabatic bulk modulus BS

ρkBT
= J + ζZ′ + Z + (J−ζ 3

n Z′+Z)2

3
2 J−ζ 9

n2 Z′+ 3
n Z

BV Volume expansion T BV = J−ζ 3
n Z′+Z

J+ζZ′+Z

γV Isothermal pressure coefficient T γV

ρkBT
= J − ζ 3

n
Z′ + Z

γG Grüneisen parameter γG = J−ζ 3
n Z′+Z

3
2 J−ζ 9

n2 Z′+ 3
n Z

μJT Joule-Thompson coefficient μJT = − 1
ρkB

( 3
n +1)Z′ζ

5
2 J 2+( 3

2 − 6
n − 9

n2 )JZ′ζ+( 7
2 + 3

n )JZ−( 3
n + 9

n2 )ZZ′ζ+( 3
n +1)Z2

functions in accordance with the thermodynamic relations
given in Ref. [51]. These include the adiabatic bulk modulus
BS = −V (∂P/∂V )S = BT + NT γV

2/ρCV , the isobaric heat
capacity CP = (∂H/∂T )P = CV BS/BT , the volume expan-
sivity BV = (∂V/∂T )P /V = γV /BT , the Joule-Thomson co-
efficient μJT = (∂T /∂P )H = V (T γV /BT − 1)/CP , and the
Grüneisen parameter γG = V (∂P/∂E)V = V γV /CV , where
H = E + PV is the enthalpy.

Therefore, a complete thermodynamic description of an
equilibrium system can potentially be obtained within the LTT
treatment from several MD averages. The main difficulty in
using the alternative route fluctuation expressions (e.g., see
Chapter 6.2 in Ref. [51]) is that the calculated thermodynamic
property is less accurate than that obtained by the LTT because
it is obtained from the average of the small difference between
large numbers. Also, to improve the accuracy a long simulation
with a large number of particles is required as the relaxation
time for the fluctuations is longer than for average itself.
The 
 functions shown above, apart from 〈K〉, require five
different averages. Typically, for certain potential forms some
of these averages, such as 〈K−1〉 or 〈(∂U/∂V )2/K〉, are not
obtained with sufficient accuracy to allow full exploration of
the LTT scheme. The unique features of the IP system allow
a considerable reduction in the number of averages which are
required. Furthermore, in this case, as shown in the Appendix,
a complete thermodynamic description may be obtained from
the equation of state and its first derivative only. From MD, Z

is obtained directly, and Z′ is obtained from these Z values.
The derived expressions in Table I provide a practical and
reliable means to obtain the thermodynamic properties of the
soft-sphere system.

From the derived expressions and taking into account
the thermodynamic stability conditions CV > 0 and BT > 0,
several general conclusions can already be made. For example,
from the form of CV it follows that Z − 3

n
ζZ′ � 0 in the

IP system. Consequently, for any (n,ζ ), then (Z + J )(1 +
3/n) � T γV /ρkBT � 1, where J is defined in the caption of
Table I. Also because Z′ is positive, which follows from the fact
that n〈U 〉/3NkB is an increasing function of ζ in the IP system,
we have BT � T γV . This implies that the Joule-Thomson
coefficient is always nonpositive μJT (ζ,n) � 0 and the volume
expansivity is not greater than 1/T or 1 � T BV (ζ,n) > 0.

Some limiting cases of the expressions in Table I can
be readily derived. For the HS or n → ∞ limit all terms
containing 3/n and 9/n2 are negligible and can be elim-
inated, which gives directly the following thermodynamic
properties of the HS system, CV /NkB = 3/2, CP /NkB =
3/2 + ρkBT (1 + Z)2/BT , T γV /ρkBT = 1 + Z, BS = BT +
2ρkBT (1 + Z)2/3, γG = 2(1 + Z)/3, T BV = (1 + Z)/(1 +
Z + ζZ′), and μJT kB = −πZ′/(15 + 9Z′ζ + 21Z + 6Z2).
Some of these expressions appear to be new, or at least not
presented in the literature in this form, for example, those for
CP and μJT . Exploiting the analytic equation of state (EoS) for
the HS fluid (e.g., [52], or that proposed by Kolafa and given
in Ref. [53]) it can be shown that, apart from the constant CV

and monotonically decreasing BV , all of the thermodynamic
expressions considered here are monotonically increasing
functions of density for the HS fluid.

The low density limit is also of interest, as some explicit
analytic expressions can be derived in this case using the
virial series representation of the EoS, Z(n,ζ ) = �Bi+1ζ

i .
The number of currently known virial coefficients, Bi(n),
of the IP system varies with n, from more than ten in the
case of the HS fluid up to eight for certain n values for
the soft-sphere case [30,31]. The second virial coefficient is
known for all soft-sphere systems and is B2 = 4(1 − 3/n),
where (x) denotes the gamma function. The radius of
convergence of the virial series is not determined, but a
comparison with simulation data for many different model
systems has shown that it can represent well the low density
region. As some of the lower order virial coefficients of the
softer soft-sphere systems are negative, in those cases, only
the very low density region can reliably be approximated
by the first few terms of the virial series (resummation of
the virial series for the soft-sphere fluids is more difficult
than for the HS fluid [30,31]). The simplest low density
approximation of the thermodynamic expressions is that in
which Z is represented by B2ζ only. This yields, for example,
γG(ζ → 0) = 2/3 + 2ζB2(1 − 3/n)(1 − 2/n)/3 and shows
that the initial slope of γG(ζ ) decreases with softness from
8/3 for the HS to the limiting value 8/9 for n → 3. It may
also be seen that the isochoric heat capacity increases with the
softness and T γV /ρkBT (n,ζ → 0) = 1 + B2(1 − 3/n)ζ . For
given ζ the last quantity has a minimum at n ≈ 5.57 and the
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same maximum value for the most soft (n → 3) and most hard
(n → ∞) IP fluids. In addition, with this approximation, the
isobaric heat capacity is

CP

NkB

(Z = B2ζ )

≡ C0
P = 2.5 + ζB2

[
3 + (

1 − 3
n

)(
2 + 3

n

)] + ζ 2B2
2
(
1 − 9

n2

)
1 + 2B2ζ

.

(11)

The extremum condition, ∂C0
P /∂ζ = 0, yields 2B2

2 (1 −
3/n)ζ 2 + 2B2(1 − 3/n) − 3/n = 0, which has one physi-
cal solution, ζmin(n) = [({n + 3}/{n − 3})1/2 − 1]/2B2. Thus,
this lowest order representation of Z reveals the existence of a
minimum in CP (n,ζ ) which has not been noted before. Also,
any soft-sphere fluid is expected to have such a minimum at a
particular low density. For the HS fluid ζmin(1/n = 0) = 0 and
C0

P (1/n = 0,ζmin) = 2.5 and it can be shown that in this case
this minimum is also the solution of the extremum condition,
∂CP /∂ζ (1/n = 0,ζ ) = 0. Thus, in the limiting case of the
HS system the isobaric heat capacity, CP (1/n = 0,ζ ), is an
increasing function from its minimum value at ζ = 0. To
obtain the opposite limit of extremely soft spheres, ζmin is
first expressed in the equivalent form [(1 − 9/n2)1/2 − (1 −
3/n)]/8(1 − 3/n)(1 − 3/n), where the property of the 

function, limx→0 x(x) = 1 has been used. This expression
gives, ζmin(n → 3) → 0, which means that also in the limit of
very soft-sphere fluids the position of the C0

P minimum shifts
towards zero density, where the minimum value is 1.5. Thus,
for very soft spheres, C0

P in the range 0 < ζ < ζmin is a strongly
decreasing function, from 2.5 to the value C0

P (n,ζmin) > 1.5 at
ζmin. In the limit n → 3, C0

P jumps from 2.5 to 1.5 at ζ = 0.
The main features of CP obtained within the lowest density
approximation in Eq. (11) have been confirmed in simulations
of the soft-sphere systems which are presented in Sec. III.

It is stressed that the minimum in CP in fluids is a relatively
new observation. The first evidence for the existence of such
a minimum was made only recently by Sadus and co-workers,
who showed a locus of CP minima for the n − m Lennard-
Jones (LJ) fluids in the supercritical part of the temperature-
density phase diagram [50,54]. The reason why a CP minimum
has not previously been observed in either the LJ fluid or real
fluids is possibly because the magnitude of the minimum is
much less pronounced than that of the maximum.

Note that in LJ and LJ-like fluids there is also a minimum
in CV and maximum in CV and CP , whose presence may be a
consequence therefore of the attractive part of the potential. An
attractive part in the interparticle potential is necessary for the
appearance of a maximum in CV [50,54,55]. The appearance of
a minimum in the density dependence of CP for the soft-sphere
fluids suggests a nontrivial origin which could extend to other
types of purely repulsive particle fluid. It is noteworthy that
CP is one of the richest potential sources of information
on the detailed processes taking place in molecular systems
and also one of the hardest to understand in physical terms
compared to other major thermodynamic quantities [56–58].
Furthermore, it is commonly measured in macromolecules
such as proteins [59]. Therefore, the discovery of qualitatively
new behavior in this thermodynamic property could have

useful implications from fundamental and practical points of
view.

III. MD SIMULATIONS

As shown in the previous section, to obtain the major ther-
modynamic properties of the soft-sphere system, it is sufficient
to know the compressibility factor Z and its density derivative.
In practice, because Z = nu/3, where u = 〈U 〉/NkBT , the
task reduces to the accurate determination of u(n,ζ ) from
which the derivative of Z can be obtained numerically. The
most accurate values of u in the entire softness-density domain
can be obtained from MD or Monte Carlo simulations. An
extensive series of MD calculations has been performed for
a large number of IP systems covering essentially the whole
range of softness, 0 < s < 1/3 or ∞ > n > 3. Most of the
calculations where performed up to the freezing density, ζf .
The fluid-solid coexistence line for the soft-sphere fluid as a
function of n was determined by Agrawal and Kofke [28] and
the coexistence fluid and solid packing fraction, ζf and ζs were
also obtained from that work.

In the range 0 < ζ < ζf , depending on n, the simulations
were performed for at least 16 and up to 33 equally spaced
densities, and additional calculations were performed for
some n values in the low density and dense fluid regions.
The NVEPG MD simulations were carried out on particles
interacting using the soft-sphere potential of Eq. (1), with
the potential exponent values going down to n = 4. The
simulations were carried out mostly with N = 4000 particles,
but for n � 5 the system consisted of N = 6912, which
was necessary because of the relatively long range of these
particular potentials. In this study the reduced temperature,
T ∗ = kBT /ε = 1, and quantities are given in terms of the
basic units of σ , ε, and m, the mass of a particle, i.e., energy
in ε, time in

√
mσ 2/ε, and the self-diffusion coefficient D in√

σ 2ε/m. The interaction truncation distance, rc, was where
the potential was 0.0001 (for n = 4.5 and 4 it was 0.001 and
0.002, respectively). The long range correction for energy was
calculated from the tail of the radial distribution function g(r)
and for dilute systems g(r > rc) = 1. The equations of motion
were integrated with the leapfrog Verlet algorithm with a time
step of dt = 0.001 for n > 12 and dt = 0.005 for n < 12. The
averages were calculated from well-equilibrated simulations of
length 4 × 105 time steps. The accuracy of the resultant Z is
estimated to be better than �0.2%. For some (n,ζ ) points
calculations of Z were performed with a range of system
sizes, N = 824, 1310, 2048, 4000, and 6912 particles. The
difference between the value of the property for N = 4000
and 6912 was always within the estimated error bar from
which it was concluded that N = 4000 is for practical reasons
representative of the thermodynamic limit.

For an N -particle system,

u = 1

2NkBT

〈
N∑

i=1

N∑
i �=j

φ(rij )

〉
, (12)

where rij is the separation between particles i and j and 〈· · · 〉
denotes the simulation average. For convenience later, note that
the compressibility factor is defined as in Table I without the
usual kinetic component, i.e., Z ≡ P/ρkBT − 1 = nu/3. The
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TABLE II. The coefficients obtained from the 8th-order polynomial fit to the simulation data. The hardness of the potential is n, Ci is the
polynomial coefficient, and ζf is the fluid packing fraction at fluid-solid coexistence. For n = 4,4.5 the 12th-order polynomial was applied and
the coefficients [C9,C10,C11,C12] were [−13.4741,2.896 95,−0.363 64,0.020 22] and [−17.4563,4.496 05,−0.679 67,0.045 71], respectively.
For n ≥ 5 the coefficients C1 and C2 are fixed by the virial coefficients B2 and B3, respectively.

n C1 C2 C3 C4 C5 C6 C7 C8 ζf

4.00 14.6574 28.2509 −48.1149 87.3579 −120.581 119.300 −83.3504 40.6152 2.976 70
4.50 10.7527 26.4590 −32.4275 57.3235 −85.2114 95.2146 −77.1051 44.2369 2.203 00
5.00 8.872 64 24.1805 −14.6300 16.7896 −15.3927 9.124 22 −3.031 88 0.42626 1.729 40
6.00 7.089 82 20.2513 9.604 30 −17.3478 23.1920 −19.9470 9.638 66 −1.972 35 1.218 40
6.70 6.439 49 18.5335 17.5447 −16.2752 16.0200 −11.5328 4.810 37 −0.822 88 1.027 70
8.00 5.738 08 16.5986 22.1669 7.223 71 −22.9436 36.6872 −33.2332 12.5396 0.825 10
12.00 4.901 67 13.8282 24.2072 31.0571 8.131 78 35.6480 −60.0180 34.9080 0.610 20
18.00 4.515 15 12.3269 23.9940 22.2987 97.6522 −92.9930 169.189 −38.8922 0.53140
36.00 4.222 19 11.0585 19.4627 63.7843 −201.561 987.482 −1622.70 1364.72 0.492 40
72.00 4.103 35 10.5017 20.8288 7.772 51 194.470 −347.378 426.670 267.538 0.487 00

self-diffusion coefficient was calculated from the long time
limit of the mean square displacement of particle positions [1].
Additionally, for n = 12 and a few selected densities, the
isothermal heat capacity, CV , was calculated from the energy
fluctuations in the canonical ensemble, NVT. The calculations
of CV were performed with system of N = 4000 particles.
The equations of motion were integrated with the velocity
Verlet algorithm with Nosé-Hoover thermostat [60] using a
time step of dt = 0.001. The averages were calculated from
well-equilibrated runs of length 2 × 106 time steps.

IV. RESULTS AND DISCUSSION

The compressibility factors calculated by MD, ZMD, for
a range of n values were fitted to a polynomial, Zpoly(ζ ) =∑M

i Ciζ
i , where the polynomial coefficients are given in

Table II (M = 12 for n < 5 and M = 8 for n ≥ 5). For all
the soft-sphere fluids considered, the polynomial function
Zpoly(ζ ) was within the error bars of the MD points and
|Zpoly − ZMD| < 0.001.

The density derivative of Z was calculated numerically
from the ZMD data using the standard four-point method
of differentiation and the resultant Z′

num is given along
with ZMD data in the Supplemental Material [61]. Z′

poly =∑M−1
k=1 kCkζ

k−1 represents Z′
num in the density-softness plane

with accuracy better than 0.05. Such accuracy is sufficient
for purposes of this work, and thus in what follows Z,Z′ are
represented by Zpoly and Z′

poly (consequently, in calculations
of the thermodynamic properties the coefficients in Table II
are required only).

A. Thermodynamic properties

The known Z and Z′ can be used to obtain all basic
thermodynamic properties of soft-sphere fluids from the
expressions given in Table I. Formally, any thermodynamic
property, A, of the soft-sphere system can be considered to be
a surface, A(n,ζ ), which in the figures below is shown as the
projection A vs ζ/ζf .

The results for BT and BS for the soft-sphere fluids are
presented in Fig. 1. The ratio, BT /ρkBT is a monotonically
increasing function of both ζ and the softness parameter, s.

It is bounded from below by the result for the HS fluid and
increases unboundedly for n → 3, which can be attributed
to the behavior of the second virial coefficient in this limit, as
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FIG. 1. Thermodynamic properties as a function of ζ/ζf :
(a) isothermal bulk modulus BT (the inverse isothermal com-
pressibility), (b) adiabatic bulk modulus BS (the inverse adiabatic
compressibility), and (c) the ratio BS/BT . The solid lines show
BT /ρkBT , BS/ρkBT , and BS/BT for several representative values
of n = 4, 4.5, 5, 6, 6.7, 8, 12, 18, 36, 72, and ∞. In the figure the
direction of increasing n is indicated by the arrow. The bold solid
line is the HS limit. The maximum value of the ratio, BS/BT is at HS
freezing and is approximately equal to 2.88.
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FIG. 2. Isothermal pressure coefficient γV and Grüneisen param-
eter γG, both as a function of ζ/ζf . The solid lines show T γV /ρkBT

(a) and γG (b) for the same n values as in Fig. 1. The bold solid line
is the HS limit, and the dashed line represents the prediction for the
n → 3 limit. In the insets enlargements of the low and intermediate
density regions are shown.

B2(n → 3) → ∞. The behavior of the adiabatic bulk modulus,
BS/ρkBT , is similar apart from the nonmonotonic softness
dependence close to the fluid-solid boundary.

The ratio BS/BT is shown in Fig. 1(c). This trend follows
from the low density limit, 5

3 − 4
3 ( 5

n
− 6

n2 )B2ζ , in that it has
an initial nonpositive slope which increases in magnitude
with softness. For most soft-sphere fluids BS/BT is a purely
decreasing function of density across the whole fluid region.
Only for steeply repulsive (n � 1) soft-sphere fluids does the
ratio start to increase at higher densities. The ratio for the HS
fluid is a monotonically increasing function of density which
acts as an upper bound of this function for all n. Note that on
increasing softness the ratio decreases markedly towards unity
and the limiting case at low density is BS

BT
(n → 3,ζ > 0) = 1.

Thus, the characteristic feature of very soft-sphere fluids is
BS ≈ BT for all densities apart from in the very dilute region.

The isothermal pressure coefficient and the Grüneisen
parameter are shown in Fig. 2. Both quantities increase with
density and are bounded by their low density limits and the HS
values at freezing densities. The density dependence in both
cases changes from a convex form for the steeply repulsive
fluids to one which is concave and fairly flat for the small
n-value fluids. At lower densities the hardness dependence of
both properties is weak. By “convex” we use the standard
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FIG. 3. The volume expansivity coefficient, BV vs ζ/ζf . The
solid lines show the T BV for different n = 4, 4.5, 5, 6, 6.7, 8, 12, 18,
36, 72, and ∞. The bold solid line is the HS limit.

mathematical definition that the gradient of the function
increases with density, while “concave” means the opposite
trend.

As explained in Sec. II, the values of the volume expan-
sivity, which is defined as the ratio BV = γV /BT , are limited
to the interval (0; 1/T ), so, as may be seen in Fig. 3, the
quantity T BV (n,ζ ) decreases monotonically from unity with
density and softness, as expected. The HS fluid is the upper
limit of this thermodynamic property. For very soft fluids
the product decreases rapidly towards zero with the limit
T BV (n → 3,ζ > 0) = 0. This limit may be deduced from the
fact that BT (n → 3,ζ ) → ∞ and that the isothermal pressure
coefficient hardly changes with density for n → 3, as seen in
Fig. 2(a).

The Joule-Thomson coefficient is shown in Fig. 4. As
explained in Sec. II, it must always be negative for the
soft-sphere system. As may be seen in the figure, for each n

value, this thermodynamic property increases monotonically
with density from its initial value of kBμJT (n,ζ = 0) =
−4π (1 + 3/n)(1 − 3/n)/15 to one greater than ca. −0.25
at the freezing density. At low densities the rate of increase
with density is considerable, particularly for very soft fluids
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FIG. 4. The Joule-Thomson coefficient μJT vs ζ/ζf . The solid
line is μJT kB for the same n values as in Fig. 3. The bold solid line
is the HS limit and the dashed line represents the prediction for the
n → 3 limit. The inset shows μJT kBρ vs ζ/ζf , where the data are
taken from the main graph.
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FIG. 5. Isochoric heat capacity CV vs ζ/ζf . The solid lines show
CV /NkB for different n = 4, 4.5, 5, 6, 6.7, 8, 12, 18, 36, 72, and
∞. The bold solid line is the HS limit, the dot-dashed line represents
the quasilinear trend for n = 6.7, and the dashed line is the predicted
limit for n → 3. The three solid circles with error bars are the NVT
simulation data calculated from energy fluctuations for n = 12.

but at larger densities in the range ζ/ζf � 0.6 the density
dependence of μJT becomes weak for all n. In fact, the HS
fluid (the bold solid line on the figure) has the weakest density
dependence, and in this limit the Joule-Thomson coefficient
can be approximated well by a simple almost flat function
of the empirical form, kBμJT ( 1

n
= 0,ζ ) ≈ −4π/15 + 120ζ +

96ζ 2.
In the inset the product μJT kBρ is shown to indicate the

role of density in the behavior of μJT in the low density region
(see Table I).

The isochoric heat capacity CV (n,ζ ) shown in Fig. 5 is
a monotonically increasing function of density as well as
of softness. On increasing n the functional form goes from
concave to convex, and the limiting form is the constant
ideal gas value for the HS fluid. For very soft spheres it is
observed that CV ∼ ζ α with α → 0.5, which is consistent
with our previous studies on the EoS of soft fluids in this
limit [62], where it was argued that the limiting form is Z(n =
3,ζ ) = B2ζ + cζ α and α ≈ 0.5,c ≈ 1.5. As B2(n → 3) → ∞
both Z and Z′ also tend to ∞. However, a combination
of these two quantities, such as Y = Z − 3ζZ′/n → Cζα ,
where C = (1 − α)c, is finite. This property enables the n → 3
behavior of all of the above thermodynamic properties to be
understood. In particular, the following have a finite limit even
in the n → 3 limit, CV /NkB → 1.5 + Cζα , T γV /ρkBT →
1 + Cζα , γG → (1 + Cζα)/(1.5 + Cζα), and T BV → 0. In
the case of the Joule-Thomson coefficient we first note that in
the n → 3 limit, Z/B2 → ζ , Z′/B2 → 1, and const/B2 → 0
and therefore, μJT (n → 3,ζ ) → −π/3ζ [3 + 2(Z − ζZ′)] =
−π/3ζ [3 + 2Cζα]. The predicted n → 3 limit of the thermo-
dynamic properties is marked in the figures as a solid bold
dashed line.

The excess entropy of the soft-sphere fluid is de-
fined through Sex/NkB = − ∫ ζ

0 Z/ζ ′dζ ′ + Z which tends to
−2Cζα in the n → 3 limit. The excess entropy per particle in
units of kB , hereafter denoted by S, is the total entropy minus
the ideal gas contribution.

The convex or concave form of the heat capacity means that
its second derivative is positive for the steeply repulsive and
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FIG. 6. The function y = Z′/B2 − 1 vs ζ/ζf . The solid line is
the function y for n = 5.0, 5.2, 5.4, 5.6, 5.8, 6.2, 6.6, 7, 8, and 10.
The dashed line shows the quasilinear behavior of y for nt = 5.8.
The bold solid lines separate the convex, intermediate, and concave
domains, where na = 5.6 and nb = 6.2.

negative for very soft fluids or, alternatively, that the expression
(n − 6)Z′′ − 3ζZ′′′ = Y ′′ is positive or negative for all fluid
densities, respectively. Thus, there are three softness intervals
which have qualitatively different behavior in the derivatives
of the major thermodynamic properties (which involve Y ).
Recall that because for the IP system, Z(ζ � ζf ; n) is a
convex (positive and monotonically increasing) function of
density, its first and second derivatives are always positive.
If for a given n, Z′ is convex or concave, then the third
derivative must be positive or negative, respectively. In Fig. 6
the function y = Z′/B2 − 1 is plotted as a function of density,
from which it is concluded that Z′ is concave for n < na ≈ 5.6
and convex for n > nb ≈ 6.2. Therefore, for n < na , the
functions Z, Z′, Z′′ are positive and Z′′′ < 0, and for n > nb

all these functions are positive. Thus, the thermodynamic
properties of soft-sphere fluids are combinations of the convex
Z and Z′, which is convex or concave at all densities or
displays mixed convexity in different density regions. As a
result, qualitatively different behavior in the derivatives of
the major thermodynamic properties can be observed usually
for three different softness intervals defined through the n

values, (na,nb). In the case of the directly linked properties
Y,CV ,T γV /ρkBT these are (6.3,8), and in the case of S it is
(6.2,6.7).

It is noteworthy that if for a given thermodynamic property,
A(n,ζ ), the convex and concave regions exist, then a transition
from one to the other form takes place in an intermediate
n region often through a quasilinear ridge in (n,ζ ) space.
In other words, there exists a particular transitional (t)
softness or n range, nt , where there is na < nt < nb for
which A(n = nt ,ζ ) ∼ ζ . The exact density dependence is
not strictly linear (see Fig. 6), but the nonlinear part seems
to be marginal at this particular softness value or nearby
softness values. The observed near linearity in CV /NkB ∼ ζ

for certain intermediate n values has several consequences.
First of all, this is equivalent to Y = Kζ and to a form
for the compressibility factor, Zlin = B2ζ + Cζn/3, where C

is a constant, and which is the solution of the differential
equation for CV or Y , i.e., −3ζZ′/n + Z − Kζ = 0, where
K = (1 − 3

n
)B2. Next, it follows directly from the definition

012106-7



S. PIEPRZYK, D. M. HEYES, AND A. C. BRAŃKA PHYSICAL REVIEW E 90, 012106 (2014)

of S that if Y = Kζ then also S = Kζ , so that if quasilinear
behavior is observed in CV for nt it will also be present in S

for the same softness.
The value of nt and the constant C can be estimated as

the “coordinates” of the minimum on the surface E(n,C) =∫ |ZMD − Zlin|dζ , from which the most linear density behav-
ior in CV and S was found to be for nt

∼= 6.4 and C = 26.11. As
the mixed convexity region is narrow it can be approximated
by a single value of nt . Thus, A(nt ,ζ ) can be considered
to be an approximate demarcation line, above and below
which the thermodynamic properties (for example, CV and
S) of soft-sphere fluids exhibit a qualitatively different density
dependence, i.e., convex and concave, respectively.

It is notable that the linearity in CV (ζ ) for a given n

means also that, 〈U 〉/NkB = ρ π
2n

B2T
(1−3/n) + (ρ π

6 )n/33C/n,
which comes from a straightforward reformulation of Zlin.
In turn, from this temperature dependence 〈U 〉 ∼ T (1−3/n),
the expression CV ∼ T −3/n can be derived. Rosenfeld and
Tarazona predicted from density functional theory that the en-
ergy on the isochore is of the form U (ρ,T ) = a(ρ) + b(ρ)T 3/5

and consequently CV ∼ T −2/5 [63]. Thus, the Rosenfeld and
Tarazona result, 〈U 〉 ∼ T 0.6, predicts linearity of CV for
n = 7.5, which is reasonably close to the value n ≈ 6.7 for
which a linear behavior in CV is observed. The behavior of CV

in Fig. 5 indicates that the equation, U = a + bT 3/5 is obeyed
well for almost the whole IP fluid range for intermediate
values 6 < n < 8. Also, it may represent reasonably well
the IP fluid data for other n but only in limited ranges of ζ

or (ρ,T ) plane. Thus, from Fig. 5 it may be seen directly
that, apart from intermediate n values and particularly for the
steeply repulsive IP fluids, the relation 〈U 〉 ∼ T (1−3/n) and
consequently CV ∼ T −3/n can be fulfilled only locally or in
a limited range of ζ and its performance should be better for
dense fluids (close to freezing).

B. Minimum in heat capacity, CP

The last thermodynamic property to be considered is the
isobaric heat capacity, CP . Some general features of CP follow
directly from the formula given in Table I, its low density
expansion in Eq. (11) and from the thermodynamic relation
CP = CV BS/BT . The isobaric heat capacity of the HS fluid
is a monotonically increasing function of density from the
minimum value of 2.5 at ζmin = 0. It is the upper limit of the
CP for all n in the whole fluid phase.

For very soft spheres, the ratio BS/BT tends to unity
which means that CP (n → 3,ζ ) → CV (n → 3,ζ ) → 1.5 +
Cζ 0.5. Thus, for very soft fluids CP ≈ CV , apart from in the
very dilute region where CP (ζ → 0) must tend to 2.5. The
discussion in Sec. II on the low density expansion of the
isobaric heat capacity indicates this property should have a
minimum at lower densities.

Figure 7 shows CP (n,ζ ) calculated from the MD results for
Z and Z′. All of the predicted features of this thermodynamic
property mentioned above are clearly evident in the figure. The
low density region is enlarged and the locus of the minima,
i.e., the line CP (n,ζmin), is presented in different projections
in Fig. 8 to make clear different aspects of this particular
region. In all projections the minimum line is qualitatively
similar to that predicted by the analytic expression in Eq. (11)
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FIG. 7. Isobaric heat capacity CP (n,ζ ) vs ζ/ζf . The solid lines
show the CP (n,ζ )/NkB for n = 4, 4.5, 5, 6, 6.7, 8, 12, 18, 36, 72, and
∞. The bold solid line is the HS limit, and the dashed line represents
the predicted limit for n → 3.

where only the lowest level density representation of Z = B2ζ

is used. For the steeply repulsive and very soft-sphere fluids
the minimum shifts towards very small densities, ζmin → 0,
so for these limiting softness values, CP is expected to be
approximated well by Eq. (11), which is what is observed
in Fig. 8. A considerable difference occurs for intermediate
softness values particularly in the range 5 < n < 20, where the
minimum shifts towards higher densities, up to ζ/ζf ≈ 0.15
for n = 10. The use of more terms in Z = ∑M

i=1 Bi+1ζ
i , where

M = 2,3,4, gradually improves the analytic representation of

FIG. 8. The minimum line in the isobaric heat capacity, CP (n,ζ ),
shown from different projections. The top left panel presents the
surface of CP (n,ζ ) for small density. The top right panel shows the
CP − ζ/ζf projection. The bottom left panel shows the CP − 1/n

projection, and the bottom right panel is the ζ/ζf − 1/n projection.
The solid dots represent the position of the minimum (the thin line
is a fit to these data). The bold solid and dashed lines are the
minimum lines obtained for the virial approximation Z = ∑M

1 Bi+1ζ
i

with M = 1, 3, respectively. The open circles are solutions for the
ZMD(ζ � ζf ) represented by a third-order polynomial.
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FIG. 9. The density dependence of the maximum of the first peak
in radial distribution function g(r) for different hardness values, n =
4, 4.5, 5, 5.2, 5.4, 5.8, 6.2, 7, 8, and 10. The dashed line follows the
quasilinear behavior when nt = 5.2. The bold solid lines separate the
three different areas of convex to intermediate to concave behavior,
where na = 5.0 and nb = 5.4.

the minimum line and relatively good agreement is achieved
already even for M = 2. However, for the softness 1/n � 0.2
no solution exists to represent CP by the virial sum which
can probably be attributed to a poor convergence of the virial
series and perhaps a smaller radius of convergence for very
soft-sphere fluids [31]. The known difficulty with resummation
of the virial series for more soft interactions led to the proposal
of alternative resummation methods [30,31] or the idea of
“effective” virial coefficients [22]. Replacing B3 and B4 with
effective coefficients be

2 and be
3 (obtained from fitting the low

density ZMD data), we find for Z = B2ζ + be
2ζ

2 + be
3ζ

3 that
the minimum in CP exists for all softness values in this case.
These minima shown for selected softness in Fig. 8 as open
circles are close to the minima line.

C. Structural properties

The existence of the demarcation line in the Z′ surface
appears to be one of the key factors which determines the
softness dependence of the thermodynamic properties, and
in some cases in a rather direct way. This influence may be
expected as the thermodynamic properties depend explicitly
on Z′ as seen in Table I. Because of the relation Z =

4ζ

kBT

∫
φ′g(r; n,ζ )r3dr , one might expect that the behavior

of Z′(n,ζ ) can to some extent be related to the softness
dependence of the radial distribution function, g(r; n,ζ ) and/or
its density derivative, ∂g/∂ζ .

Figure 9 demonstrates that a basic structural property, the
value of the first peak maximum in the radial distribution
function, gmax, behaves in a way similar to the thermodynamic
properties. Three qualitatively different softness regions may
be distinguished, where in this case na = 5.0 and nb = 5.4.
It had been established previously that at low densities the
character of g(r) changes from being oscillatory to monotonic
in r with decreasing density [27]. This crossover packing
fraction varies approximately as ζc ≈ 0.5/n1.5. For ζ < ζc

there is no maximum in g(r) for any n value, so in Fig. 9
only the smaller density range ζ > 0.25 is considered. Note
also that for this property the demarcation line between convex
and concave behavior extends up to the fluid coexistence
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FIG. 10. Test of (a) the HV freezing rule condition, Smax vs 1/n,
and (b) the RMS freezing rule criterion, gmin/gmax, as functions of
1/n. The solid circles are the MD data and the open circles are the
result of Agrawal and Kofke [28]. The vertical thin lines indicate the
intermediate softness region, 5.6 < n < 6.2.

packing fraction value, ζf . Consequently, this effect should
be present in some freezing criteria, particulary those which
are formulated in terms of gmax or related to g(r) in some other
way.

Two well-known freezing criteria, the Hansen-Verlet (HV)
freezing rule [64] and that of Raveché-Mountain-Street
(RMS) [65], are tested in Fig. 10 for the range of n values.
The HV rule states that the first maximum of the structure
factor Smax ≈ 2.85 at freezing, while according to RMS, the
ratio of the first minimum to the first maximum of the radial
distribution function, RRMS, at freezing is ≈0.2. Figure 10
demonstrates that in the case of the IP fluid both Smax and
RRMS depend markedly on the softness. This dependence
correlates well with the softness dependence observed in gmax;
in particular, three softness zones can be seen and the narrow
intermediate region is located within the range, 5.6 < n < 6.2.

In calculations of Smax, the tail of g(r) was first incorporated
by assuming the contribution from the smallest pole solution
representing the long distance decay is dominant in that
r region [66]. The decay or tail of the radial distribution
function g(r) then has the form A exp(−αr) cos(ωr + δ)/r ,
and the one-pole representation is a good approximation of
g(r � 1) at high densities, particularly close to the freezing
density. The nonlinear procedure of curve fitting was used to
perform fitting of the MD g(r) data to determine A, α, ω,

and δ. The structure factor, S(q), is the Fourier transform of
the radial distribution function g(r) which was calculated in
two parts, numerically for 0 < r < R and from the analytic
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form of the tail for R < r < ∞. The distance, R, was
chosen where the form A exp(−αr) cos(ωr + δ)/r is a good
representation of g(r) for larger radii. This approach allowed
us to calculate accurately the softness dependence of Smax

at freezing, shown in Fig. 10(a), which demonstrates the
existence of the demarcation region in this quantity as well.
A similar softness trend in Smax was noticed previously by
Agrawal and Kofke [28], whose data are marked by open
circles on Fig. 10(a). The HV rule seems to be a useful criterion
for steeply repulsive and very soft interactions but cannot be
considered to be a general freezing criterion. In the case of
the RMS criterion, as may be seen in Fig. 10(b), the softness
dependence of RRMS is also well defined and changes from a
concave to a convex form in the region around n ≈ 6.4. Thus,
this phenomenological criterion is not obeyed very well in
soft-sphere systems either, particularly for steeply repulsive
and very soft fluids, although to some extent it could be useful
for the range 4 < n < 10. The observed softness dependence
of the major thermodynamic and also structural properties
implies that the freezing criterion cannot be formulated simply
in terms of these or directly related properties.

Finally, it is noteworthy that the range of intermediate
softness in the freezing criteria established here corresponds
well with the reported threshold of n ≈ 6 below which the IP
fluid freezes into a bcc solid and above which the fcc solid
is the thermodynamically stable solid structure [17,28]. It is
therefore possible that this threshold could be related to the
convex-concave behavior of the density dependence of some
thermodynamic properties but extensive calculations on IP
solids would be needed to confirm this.

V. DIFFUSIVITY AND EXCESS ENTROPY

In this section the softness dependence of the self-diffusion
coefficient is considered. The self-diffusion coefficient is
problematic to measure experimentally, which has prompted
interest in establishing possible relationships between it
and thermodynamic quantities, A, which are usually more
readily measured. In fact, if such relationships could be
established, we would already have an essentially analytic
route (via Table I) to the self-diffusion coefficient directly
from the EoS, i.e., D(A(Z,Z′)). The choice S is motivated
by a long-standing interest in establishing and exploiting
a simple entropy scaling law for D, which is founded on
the paradigm that a suitably scaled diffusion coefficient is
a universal function of the excess entropy. More than 30 y
ago, Rosenfeld [67] proposed a simple relationship between
a normalized self-diffusion coefficient and the excess entropy
per particle, S, which was based on analysis of data for model
systems. The simple form is D ≈ a exp(bS), where a ≈ 0.6
and b ≈ 0.8. This relationship, which is usually expressed in
the form of ln(D) and S, is supported by many studies on
various model and real fluids, including liquid metals and
alloys [68]) but usually with different values for the constants,
a and b [69–71]. This treatment has been applied to binary
fluid mixtures [69,72,73], used to account for the region of
diffusivity anomalies in waterlike model fluids [74–76] and
to modify the Stokes-Einstein relation for liquid metals [77].
Therefore, this relationship appears to be widely applicable,
even for inhomogeneous fluids and where there is particle

confinement in channels of molecular dimensions [78,79].
Despite its phenomenological origin, this relationship has been
widely used to provide an approximate estimate of D and is
firmly established in the literature (see, e.g., Refs. [71,80]).

However, this formula has two main weaknesses. First, at
low densities it differs from Enskog theory, which is known
to account well for D in this domain, and predicts at low
densities, D ∼ ζ−1, for the HS fluid. For the soft-sphere fluid, a
closed-form solution of the kinetic theory equations also exists
for the ζ → 0 limit, and the first-order solution is D = A01/ζ ,
where

A01 =
√

π

16

(
2

n

)2/n 1

A1(n)(3 − 2/n)
, (13)

and A1 is a slowly varying function of n [70,81].
The next order approximation yields the coefficient, A02 =

A01/(1 − ε), to replace A01 above, where ε is a small correction
term [81].

Second, in the dense fluid region (typically where, S < −3),
ln(D) ceases to be linear in S. The magnitude of the deviation
is less than in the S > −1 domain and, at least partially, could
be explained by the limited accuracy of the experimental
and simulation data. Nevertheless, this second deficiency is
significant as it indicates that a simple exponential dependence
between D and S fails for dense fluids, a point that was
also raised as a possibility by Rosenfeld [70]. Thus, the
relationship appears to be valid only in a limited range of
excess entropies [82–84]. The first problem, the necessity to
include the divergence in D at low densities, has led to the
proposal of improved formulas [85–90]. Rosenfeld [70] argued
that at very low densities the diffusion coefficient should be
represented well (in these reduced units) by the inverse of S. It
should be noted, however, that none of the existing empirical
scaling relations for D in the literature correctly describes
diffusion over the entire fluid range.

A simple and accurate representation of D in terms of S

for the entire softness-density plane of soft-sphere fluids is
proposed and tested here. Taking into account the various
existing entropy scalings and the closed-form solution of the
kinetic theory, a general representation is proposed,

D = A0

S
exp(�), (14)

where � is an unknown function of S with a property
�(S → 0) = 0, and A0 is chosen so that in the infinite dilution
limit the kinetic theory prediction is recovered. The constant,
A0 = 4A02(1 − 3/n)(1 − 3/n) is required to achieve the low
density limit for D of the soft-sphere fluid. Analysis of the
MD data for D revealed that for any softness the function
� in Eq. (14) is only weakly dependent on S and has a
point of inflection which means that it cannot be accurately
represented by a quadratic function. It was verified that it can
be well-represented by a low-order polynomial of the form,
�M

i=1αiS
i . Importantly, our detailed analysis of ln(DS/A0)

against S has shown that an accurate representation of �

requires a fourth-order polynomial. A third-order polynomial
representation of �(S) was insufficient for most of soft fluids,
particularly in the range of −S > 1. Also adding additional
terms (M > 4) does not significantly improve the accuracy
of the polynomial representation of this function. The way
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FIG. 11. Analysis of the diffusion coefficient, D, for n = 6 as a
function of excess entropy using Eq. (14). (a) The polynomial � =
�4

i=1αiS
i with separate contributions, �i = αiS

i ; (b) the separate
contributions of the low density part A0/S and exp(�). The functions
are shown on a ln-lin scale, the dots are the values obtained from MD
simulation and the solid line is obtained from Eq. (14).

in which these four terms contribute to � as a function of S

is demonstrated in Fig. 11(a) for n = 6. Defining �1 = α1S,
�2 = α2S

2, �3 = α3S
3, and �4 = α4S

4, it is clear that the
linear term is quite a good representation of � only because
the higher order terms mutually cancel to a large extent.
However, the contribution, �2 + �3 + �4 is not negligible
[see the dashed line in the Fig. 11(a)] and has to be taken
into account to represent accurately D over the entire fluid
range.

As shown in Fig. 11(b) the simulation values of ln(D)
fall into two well-defined regions, which at low density can
be represented by the ln(A0/S) term and, at higher density,
by the sum of ln(A0/S) and the term produced by �. At
low densities, the � term goes rapidly to zero and the
dominant term is the two-body ln(A0/S) contribution. In the
domain S < −1, the contribution from the � part becomes
increasingly more important with increasing −S, which may
be associated in part with nontrivial many-body contributions.
The curvature of both contributions is similar but in the
opposite sense, a feature which produces the approximate
widely observed “universal” linear relationship. In fact, this is
why the linear relationship seen between ln(D) and S is always
only approximate, as it results from the overlap of two distinct
regimes. The present analysis can therefore be used to interpret
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−0.5
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0.5

α1

α2

α3

α4

α−
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ef
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nt
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FIG. 12. The diffusion coefficient function, �, expansion coeffi-
cients vs 1/n. The symbols are the coefficients calculated with MD
data. The vertical thin line indicates the value n = 6.4 near which the
softness dependence of the parameters changes. The solid and dashed
lines are the functions given in Table III.

both positive and negative deviations from the universal linear
behavior.

The behavior of D(S) shown in Fig. 11 is very similar for all
n values and quite similar to the D vs S correlations reported
in the literature for other types of fluids. This suggests that the
proposed model for D(S) in Eq. (14) with � ∼= α1S + α2S

2 +
α3S

3 + α4S
4 can be considered to be a minimal model which

is able to account for all of the main features of the relationship
between diffusivity and excess entropy.

Thus, in the case of the soft-sphere fluids the relationship
between D and S can be made with four parameters (it requires
at least four parameters). It was found that these parameters
display a quite regular softness or 1/n dependence. Figure 12
shows that there are at least two features of note in the
form of αi(1/n). First, at any softness the magnitude of the
parameter quickly decreases with the index which indicates
the rapid convergence of the power series representation of
the � function. Second, near n = 6.4 the character of the
softness dependence of all four parameters changes, which
coincides with the value of n where the demarcation line
in S occurs. Therefore, as for thermodynamic and structural
properties there are three softness regions. For n > 6.4, the
softness dependence is found to be represented well by αi =
ai(1/n + di)ki + bi and for n < 6.4 the optimal formula is
αi = c0i + c1i/n + c2i/n2 + c3i/n3. In the narrow transition
region around n = 6.4, the parameter values remain almost
unchanged. Despite being the most obvious one to use,
the fitting function adopted for � is probably not unique
and other expressions may match the data just as well.
Having the explicit softness dependence of all α parameters
a closed-form formula for the diffusion coefficient in terms
of S, or D(S(n,ζ )), for soft-sphere fluids has therefore
been obtained. The accuracy of the proposed relationship
[given in Eq. (14)], along with the coefficient values given
in Table III, is demonstrated in Fig. 13 (the agreement between
analytical and MD values for D is within 4%). Figure 13 also
includes the recently proposed entropy-based relation [82],
D VMFS = (a + bx)(1 + cx + dx2)−1ρ−1/3, where x = √−S,
a = 3.7521, b = −8.6910, c = 4.5594, and d = −1.6138.
This function can be seen to reproduce quite well the main
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S. PIEPRZYK, D. M. HEYES, AND A. C. BRAŃKA PHYSICAL REVIEW E 90, 012106 (2014)

TABLE III. The coefficients obtained for the fit function, � = �4
i=1αiS

i to the self-diffusion coefficient simulation data, ln(DS/A0).
For n > 6.4 the function is described by αi = ai(1/n + di)ki + bi , and for n < 6.4 by the polynomial αi = c0i + c1i/n + c2i/n2 + c3i/n3,
i = 1,2,3,4.

ai bi di ki c0i c1i c2i c3i

i = 1 −0.420 552 −0.098 498 0.000 000 0.418 637 −130.4095 49.841 11 −7.068 668 0.089 837
i = 2 −0.037 329 0.334 514 0.038 199 −0.595 241 56.933 95 −13.542 48 0.126 277 0.327 359
i = 3 1.370 355 1.151 654 0.022 647 0.036 688 14.095 61 −13.674 36 3.281 523 −0.364 936
i = 4 −9.591 840 0.019 655 1.471 870 −16.57 378 −6.215 103 4.1743 27 −0.865 069 0.073 335

features of D(S) for soft fluids but for practically all of the
softness values the predicted trend deviates noticeably from
the actual D(S) behavior obtained from the simulations.

An alternative description of the soft-sphere self-diffusion
coefficient using the Adam-Gibbs (AG) formula was proposed
by De Michele et al. [91], who computed the self-diffusion
coefficient of atoms in a binary IP mixture which frustrates
crystallization. They concluded from their calculations that in
an intermediate softness regime the temperature dependence
of the diffusion coefficient and configurational entropy can be
scaled very well onto a single master curve with the adoption
of an n-dependent reference temperature Tn and therefore
with constant fragility. Analysis of our data indicates that,
in general, Tn must be density dependent and that density
and softness do influence the temperature dependence of the
self-diffusion coefficient of the soft spheres and consequently
also their fragility. However, there are regions of T (or density)
where this dependence is weak and hardly detectable and such
a scaling law may work reasonably well (such as the scaling
law by Rosenfeld which approximates well the self-diffusion
coefficient data for a range of density). Furthermore, to be more
definite on the conclusions in Ref. [91], data in the supercooled
region would be required but this region is not considered in
our work.

VI. CONCLUSIONS

The work demonstrates that by applying the LTT [46,47]
all the important thermodynamic properties of the soft-sphere

0 1 2 3 4 5
−4

−3
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0

1
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ln
(D

)

−S

MD
Eq. (14)
ref. [82]

FIG. 13. Diffusion coefficient of the soft-sphere fluid as a
function of the excess entropy. The dots are from the MD simulations
and the solid line is the expression proposed in Eq. (14). The dashed
line is the relation proposed by Vaz et al. [82]. The results are for
n = 5,12 and ∞, from bottom to top, respectively.

system can be expressed in terms of the potential energy
and its density derivative only (or equivalently Z and Z′).
This provides new perspectives on the unique features of
soft-sphere thermodynamics and enables relationships to be
derived between the usual thermodynamic quantities which
are not attainable via the conventional thermodynamic formula
routes without this extra information.

From the relationships listed in Table I some general
conclusions can be made. The Joule-Thomson coefficient of
the soft-sphere fluid is always nonpositive and the volume
expansivity cannot be greater than 1/T . Also, the role of
softness in the hard- and most soft-sphere (n → 3) limiting
cases is revealed clearly. Furthermore, the virial series rep-
resentation of the compressibility factor, Z, can be used to
express soft-sphere thermodynamics at low density fluids in
analytical form.

In practice, the calculation of Z,Z′ reduces simply to
the accurate evaluation of the potential energy per particle
u(ζ ) which can now be achieved accurately and routinely
by molecular simulation. Thus, the proposed approach con-
siderably reduces the complexity involved in determining
thermodynamic properties of this class of fluid and offers a
practical means to explore soft-sphere thermodynamics across
the whole softness-density domain. -

The isochoric and isobaric heat capacity, thermal expansion
coefficient, isothermal and adiabatic bulk moduli, Grüneisen
parameter, isothermal pressure, and Joule-Thomson coeffi-
cient of the soft-sphere fluid across the potential softness
range are examined for new trends. These properties are
monotonically increasing or decreasing functions of density.
The exception is the isobaric heat capacity which displays a
minimum at low densities. The existence of the minimum in
CP was reported only recently for the LJ-like model systems,
and this is the first time it has been shown to be present for a
purely repulsive potential.

For the stiffness parameter within the narrow range 5 <

n < 8 a quasilinear dependence on density is found for
several thermodynamic properties. The quantity Z′ displays a
“transition” from a convex to concave form as the interaction
potential becomes softer, which underpins a number of these
trends. This qualitative difference in the softness dependence
extends practically to the freezing density and was found to be
present also in the height of the main peak, gmax, of the radial
pair distribution function (a key microstructural indicator).
This has the consequence that freezing criteria based on the
radial distribution function derived quantities are not expected
to be universal. In fact, the soft-sphere fluid provides a simple
and demanding test for the formulation of phenomenological
freezing criteria.
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A new and accurate formula has been proposed linking
the self-diffusion coefficient to the excess entropy for the
entire fluid softness-density domain. The widely observed
“universal” linear relationship between ln(D) and S is shown
always to be only approximate. Such a relationship has to take
into account both the considerable increase of diffusivity at
low densities and a non-negligible departure from linearity
in the dense fluid region. To achieve these requirements the
new expression incorporates the kinetic theory solution for
the low density limit and an entropy-dependent function in
exponential form to take account of finite density effects.
It was found that this function depends only weakly on
S and can be well-represented by a low-order polynomial
whose coefficients display a similar softness dependence to
Z′; i.e., three softness regions can be distinguished and the
intermediate narrow region is in the vicinity of n = 6.4.

The results for thermodynamic properties, structural quan-
tities, and diffusion coefficient indicate that three regions
can be expected in the softness dependence of the physical
properties (or their derivatives) of soft-sphere fluids with a
narrow transition region within the range 5 < n < 8.

It has been shown here for the soft-sphere fluid that
the slope of the density dependence of certain properties
increases with density for the stiffer potentials (convexity)
and decreases with density for the softer range of potentials
(concavity), with an almost zero change of slope domain
in between. This observation and characterization could be
useful in helping to interpret the behavior of the physical
properties of various real and model liquids with density
and pressure in diverse experimental fields, especially those
where the soft-sphere scaling has already been applied to
some extent. For example in tribology, the logarithm of the
viscosity with pressure is well known to exhibit convexity,
concavity, and mixed behavior for model lubricating oils at
different temperatures [92–94] (a constant slope is equivalent
to the Barus equation). Also, there are potential applications in
geophysics and planetary science where the mineral equations
of state are dominated by the repulsive part of the pair
potential [95,96].
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APPENDIX: DETAILS OF THE LTT METHOD APPLIED
TO THE SOFT SPHERES

For the IP fluid, φ(r) = 1/rn, there is a unique relation
between the configurational part of the compressibility factor,
Z = Zex = P/kBTρ − J , and the potential energy, U =
�N−1

i �N
j=i+1φ(rij ), through

Z = n〈U 〉/3NkBT = nu/3. (A1)

For this potential all of the volume derivatives can be expressed
in terms of the energy only. For any pairwise additive potential,

the mth volume derivative has the form [46]

V m dmU

dV m
= 1

3m
�N−1

i �N
j=i+1�

m
k=1amkr

k
ij

dkφ

drk
ij

, (A2)

where the coefficients amk of the kth term of the mth volume
derivative of the potential energy can be defined by the
recursion relation as shown in the Meier and Kabelac work [46]
and their first values are a11 = 1, a21 = −2, a22 = 1, a31 =
10, a32 = −6, and a33 = 1.

In the case of the IP potential, the derivatives are propor-
tional to the potential,

dkφ

drk
= (−1)kn(n + 1) · · · (n + k − 1)

rk
φ = Akn

rk
φ, (A3)

which gives

V m dmU

dV m
= 1

3m
�N−1

i �N
j=i+1�

m
k=1[amkAknφ(rij )]

= U
1

3m
�m

k=1amkAkn. (A4)

The first two derivatives are

V
dU

dV
= U

1

3
[a11A1n] = UC1n = U

(−n

3

)
, (A5)

V 2 d2U

dV 2
= U

1

32
[a21A1n + a22A2n]

= UC2n = U [2n + n(n + 1)]/9. (A6)

These relations can be used to simplify the expressions for
the 
 functions. The equality E = 〈E〉 = 〈K + U 〉 = 〈K〉 +
〈U 〉 is used to write in a more basic form the averages 〈U/K〉
and 〈U 2/K〉,


00 = kBT = 2〈K〉
3N − 3

,
〈K〉

NkBT
= 3

2

(
1 − 1

N

)
, (A7)


01 = N − 1

V
kBT − C1n

V
〈U 〉 = N − 1

V
kBT + n

3V
〈U 〉,

(A8)


20 =
[

3N − 3

2
− 1

]
〈K−1〉, (A9)


11 = N − 1

V
+

[
1 − 3N − 3

2

]
〈K−1C1nU 〉/V (A10)

= N − 1

V
−

[
1 − 3N − 3

2

]
n

3V

〈
E − K

K

〉
(A11)

= N − 1

V
−

[
1 − 3N − 3

2

]
n

3V
[〈K〉〈K−1〉

+ 〈U 〉〈K−1〉 − 1] (A12)

= N − 1

V
+

[
1 − 3N − 3

2

]
n

3V
+ 
20

n

3V
(〈K〉 + 〈U 〉)

(A13)

= ρ

[
N − 1

N
− n

3

[
3N − 5

2N

]
+ kBT 
20

n

3

(〈K〉+ 〈U 〉)
NkBT

]
,

(A14)
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02 = 2

3V

N − 2

V
〈K〉 −

[
1 − 3N − 3

2

] 〈
K−1U 2C2

1n

〉 /
V 2

−〈UC2n〉/V 2 − 2
N − 1

V
〈UC1n〉 /V (A15)

= 2

3V

N − 2

V
〈K〉 −

[
1 − 3N − 3

2

]

× C2
1n

V 2

〈
E2 − 2KE + K2

K

〉

− C2n

V 2
〈U 〉 − 2

N − 1

V 2
C1n 〈U 〉 (A16)

= 2

3V

N − 2

V
〈K〉 −

[
1 − 3N − 3

2

]

× C2
1n

V 2
[E2〈K−1〉 − 2〈U 〉 − 〈K〉]

− C2n

V 2
〈U 〉 − 2

N − 1

V 2
C1n 〈U 〉 (A17)

= 2

3V

N − 2

V
〈K〉 + 
20

C2
1n

V 2
(〈K〉 + 〈U 〉)2

+
[

1 − 3N − 3

2

]
C2

1n

V 2
[〈K〉 + 2 〈U 〉]

−
[
C2n

V 2
+ 2

N − 1

V 2
C1n

]
〈U 〉 (A18)

= ρ2kBT

[
2

3

(N − 2)

N

〈K〉
NkBT

− n2

9

(
3N − 5

2N

)

×
( 〈K〉 + 2〈U 〉

NkBT

)
−

[
C2n

N
− 2(N − 1)

3N
n

] 〈U 〉
NkBT

]

+ ρ2kBT kBT 
20
n2

9

( 〈K〉 + 〈U 〉
NkBT

)2

. (A19)

Thus, to calculate the 
 functions of the IP system only
the two averages, 〈U 〉 and 〈K−1〉, are needed (as 〈K〉 can
be replaced by T apart from a constant). Furthermore, 
11 =
C + D
20 and 
02 = A + B
20, where C = ρ(N − 1)/N −
ρ(3N − 5)n/6N , D = ρ(〈U 〉 + 〈K〉)n/3N = ρkBT [Z +
n(N − 1)/2N ], B = D2, and A/ρ2kBT = (N−2)

N

(N−1)
N

−
n2

12
(3N−5)

N

(N−1)
N

+ 〈U〉
NkBT

[ n2

9
(3N−5)

N
− C2n/N + n

3
2(N−1)

N
]. Next,

〈K−1〉 is replaced with d〈U 〉/dζ , which can be achieved
by noting that the IP thermodynamic properties depend on

ζ = π
6 σ 3ρT −3/n because of the unique scaling property of

the soft-sphere system. Consequently, there is a relationship
between the V and T derivatives,

− V

(
∂P

∂V

)
T

= ζ

(
∂P

∂ζ

)
T

= ρkBT

[
ζ

∂Z

∂ζ
+ Z + J

]
,

(A20)

T

(
∂P

∂T

)
V

= kBT

[
(Z + J )ρ − 3

n
ρζ

∂Z

∂ζ

]
, (A21)

which has the form

−V
(

∂P
∂V

)
T

− P

T
(

∂P
∂T

)
V

− P
= −n

3
(A22)

or

BT − P = n

3
(P − T γV ). (A23)

This relation was exploited in Ref. [38] [Eq. (B10)],
where W = nU/3 and, thus, ∂〈W 〉/∂V = n

3 ∂〈U 〉/∂V , and
can be derived from the general thermodynamic relation
between the pressure and internal energy, (∂〈U 〉/∂V )T =
−P + T (∂P/∂T )V .

If this relation is rewritten in terms of the 
mn functions,

V

[

01(2
11 − 
01
20) − kBT 
2

11

1 − kBT 
20
− 
02

]

= −n

3
kBT

(

11 − 
01
20

1 − kBT 
20

)
+

(
n

3
+ 1

)

01, (A24)

and uses 
11 = C + D
20 and 
02 = A + B
20, the follow-
ing expression for 
20 can be derived:

1

1 − kBT 
20
=

3
n
P − 3

n
BT + D

kBT C + D − P
. (A25)

An important identity is N (kBT C + D − P ) = kBTρn/3
which allows 〈K−1〉 or equivalently 
20 and CV to be obtained
only from Z and its first density derivative,

1

N (1 − kBT 
20)
= 2

N (2 − kBT (3N − 5)〈K−1〉)

= CV

NkB

= 3

2

(
1 − 1

N

)
+ 3

n
Z − 9

n2
ζ

∂Z

∂ζ
.

(A26)

The thermodynamic properties of the IP system in terms of
〈U 〉 and its derivative derived within the LTT are summarized
in Table I.
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[26] G. Rickayzen, A. C. Brańka, S. Pieprzyk, and D. M. Heyes,

J. Chem. Phys. 137, 094505 (2012).
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