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Topological phase transition in a discrete quasicrystal
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We investigate a two-dimensional tiling model. Even though the degrees of freedom in this model are discrete,
it has a hidden continuous global symmetry in the infinite lattice limit, whose corresponding Goldstone modes
are the quasicrystalline phasonic degrees of freedom. We show that due to this continuous symmetry and despite
the apparent discrete nature of the model, a topological phase transition from a quasi-long-range ordered to a
disordered phase occurs at a finite temperature, driven by vortex proliferation. We argue that some of the results
are universal properties of two-dimensional systems whose ground state is a quasicrystalline state.
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I. INTRODUCTION

While the existence of quasicrystals [1,2] in nature is no
longer debatable, it remains an open question if materials
can have a quasicrystalline ground state, and what the finite-
temperature properties of this phase are [3]. In addition, the
characteristics of the phasonic degrees of freedom in qua-
sicrystals are still the focus of much interest [4,5]. It is therefore
of great value to investigate the finite-temperature physical
properties of simple models with a quasicrystalline ground
state. Such models can easily be constructed using the math-
ematical theory of tilings [6], and have been extensively used
for the study of quasicrystallinity [7–10]. In particular, some
finite-temperature properties were studied using tiling models.
For example, the elastic properties of a three-dimensional
model were shown to change upon a finite-temperature phase
transition [11,12], and a two-dimensional (2D) tiling model
was recently shown to undergo a series of phase transitions
leading from the quasicrystalline phase to the liquid phase
through a number of intermediate periodic phases [13].

The model studied here is based on the 16 Ammann tiles,
each of which is decorated with one label (out of a possible
six) on each of its four edges (Fig. 1). Ammann [6] showed that
these tiles can perfectly tile the plane such that adjacent edges
have matching labels. All such domino-like tiling configura-
tions are nonperiodic and share a quasicrystalline order: well-
defined Bragg peaks are observed in the Fourier transform of
the densities of each given tile type at frequencies incommen-
surate with the reciprocal lattice vectors. For an infinite system,
there is an uncountable number of different perfect tiling con-
figurations, parameterized by two continuous phases, χ1,χ2 ∈
[0,1) (see Appendix A). These phases [14,15] are related to
the amplitudes of the Bragg peaks [see Eq. (2) below]. For any
finite patch of a perfect tiling, these phases are not well defined
and can be described by fuzzy angles, whose uncertainty is
inversely proportional to the linear size L [16]. The number of
different tilings of a finite system scales linearly with N = L2.
Accordingly, a finite change of χ1 and χ2 is required in order
to induce any change in a finite patch tiling. However, a
continuous change of χ1 and χ2 induces a continuous change
in the infinite configuration: the fraction of tiles modified by
an infinitesimal change of these phases is linear in this change
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(Fig. 2). This hidden continuous symmetry of the perfect tilings
is therefore manifestly nonlocal. In what follows, we show that
this global continuous symmetry has a major impact on the
finite-temperature behavior of the model studied here. Namely,
like a truly local continuous symmetry, it does not allow the
system to be ordered at any positive temperature.

In order to study the model at a finite temperature, one
needs to define the Hamiltonian. A natural choice, introduced
by Leuzzi and Parisi [17], is to identify the energy of a
configuration with the number of mismatching edges. Thus, the
(uncountably degenerate) ground states of the model are the
perfect tilings exhibiting quasicrystalline order. We wish to
study the stability of this order to thermal fluctuations. In
order to write the Hamiltonian in a convenient form, we define
the 16-dimensional density vector −→ρ , containing the 16 tile
densities ρi(r), each of which is a unity if the tile at r is of
type i, and zero otherwise. In terms of these, the Hamiltonian
takes the form

H =
∑

r

[−→ρ †(r)Y−→ρ (r + ŷ) + −→ρ †(r)X−→ρ (r + x̂)], (1)

where X and Y are known interaction matrices, dictated by
the above edge-matching rule, whose explicit form can be
found in Appendix B. The unit vectors x̂ and ŷ connect each
site to (two of) its nearest neighbors. Note that the lattice
constant is chosen as the length unit.

Note that in a general quasicrystalline system, two kinds
of gapless collective excitations exist: phonons and phasons
[15,18]. Phonons describe locally uniform translations, while
phasons describe correlated rearrangements of atoms. Our
model is defined on a fixed lattice and therefore the low-energy
excitations described by this model are the phasonic degrees
of freedom.

Previous works [16,17,19] have provided numerical evi-
dence that the model undergoes a symmetry breaking phase
transition from a quasicrystalline low-temperature phase into
a high-temperature disordered phase. This seems to contradict
the well-known Mermin-Wagner theorem, stating that con-
tinuous symmetries cannot be spontaneously broken in 2D
(or one-dimensional) systems [20–22]. However, the theorem
relies on the existence of a local order parameter field that can
be changed continuously. In our case, each tile, and even the
ground state of each finite patch, has a finite degeneracy and
cannot be changed continuously. A slow gradient of χ1 and χ2

will not make any change in most finite patches of the system,
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FIG. 1. (Color online) The 16 Ammann tiles.

and will be manifested by a discrete jump in the energy for
some isolated patches. It is therefore not clear whether the
Mermin-Wagner theorem applies here.

II. ABSENCE OF QUASICRYSTALLINE ORDER

We first provide an argument that quasicrystallinity is
broken at any finite temperature, in a fashion similar to the
case of a truly continuous local symmetry. For this purpose,
we assume that the system is ordered at low temperatures, and
self-consistently calculate its finite-temperature properties. It
is then shown that thermal excitations destroy the order.

The global symmetry is reflected in the Fourier transform
of the tile densities. At a ground state characterized by the
two phases χ1,χ2, the Fourier transform of −→ρ (r),

−→
ψ (q) takes

the form
−→
ψ (q) = N

∑
m,n,i,j

δ[q − 2π (nτ x̂ + mτ ŷ + ix̂ + j ŷ)]

× e2πi(nχ1+mχ2)−→ψ0(n,m), (2)

where χ1 and χ2 are the continuous phases discussed above,
τ =

√
5−1
2 is the inverse golden ratio, and

−→
ψ0(n,m) are

analytically calculated constant amplitudes (see Appendix C).
Note that q is defined modulo reciprocal lattice vectors
G = 2π (ix̂ + j ŷ). Bragg peaks are thus spanned by four
independent basis reciprocal vectors (like the closely
related square Fibonacci tiling [23]), consistent with the
quasicrystalline nature of the model.

Assuming low-temperature quasicrystalline order, only
long wavelength excitations should be considered. At scales
smaller than the typical wavelength of the contributing
excitations, the system appears ordered, slowly passing from
one local ground state to another. To express this idea formally,
we define the local Fourier transform of a function f (x) as

f (x,k) = 1

A

∑
x′

f (x′)e−ik·x′
wσ (x − x′), (3)

where wσ is a weight function with a finite length scale σ and
A = ∑

x wσ (x). This weight function makes sure that we take
only contributions around the point x. In order to simplify the
analysis, we take wσ to be unity in some region with a length
scale σ � 1 around the origin, and zero otherwise. As long as
σ is large enough, the shape of this region is not important.

We now consider long wavelength excitations where χ1(r)
and χ2(r) change slowly with r, being approximately constant
on length scale σ . As the system appears locally ordered, its
local Fourier transform is

−→
ψ (q) = N

∑
m,n,i,j

δ[q − 2π (nτ x̂ + mτ ŷ + ix̂ + j ŷ)]

× e2πi(nχ1(r)+mχ2(r))−→ψ0(n,m), (4)

where χ1(r) and χ2(r) are the phases corresponding to the
local ground state. In terms of the local Fourier transform, the
Hamiltonian [Eq. (1)] then takes the form

H =
∑
r,k

[
−→
ψ †(r,k)Y

−→
ψ (r + ŷ,k)eiky

+−→
ψ †(r,k)X

−→
ψ (r + x̂,k)eikx ]. (5)

For a locally ordered configuration, one can plug in the local
ground state approximation, given by Eq. (4), and get the
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FIG. 2. (Color online) (a) A perfect tiling configuration on a 5 × 5 lattice generated with χ1 = 0.35 and χ2 = 0.6. (b) The minimal change
of χ2 required to change the 5 × 5 configuration shown in (a) is ∼0.037 leading to this tiling. The black dots at the center of the tiles denote
tiles that are changed in comparison with the configuration shown in (a). (c) 	N , the fraction of changed tiles as a function of the change 	χ

of χ2, with respect to the configuration χ1 = 0.35,χ2 = 0.3.
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effective long wavelength Hamiltonian, E[χ1(r),χ2(r)],

E =
∑

r

∑
m,n

[e2πi(n∂xχ1+m∂xχ2)
−→
ψ

†
0(n,m)X

−→
ψ0(n,m)ei2πnτ

+ e2πi(n∂yχ1+m∂yχ2)
−→
ψ

†
0(n,m)Y

−→
ψ0(n,m)ei2πmτ ], (6)

where ∂xχi = χi(r + x̂) − χi(r) and ∂yχi = χi(r + ŷ) − χi(r)
are the discrete derivatives of χi . The sums over m and n can
be performed numerically, and the final result, to lowest order
in the derivatives, is

E =
∑

r

A(|∂xχ1| + |∂yχ2|) + B(|∂xχ2| + |∂yχ1|)

+C(|∂xχ1 + τ∂xχ2| + |∂yχ2 + τ∂yχ1|)
+D(|∂yχ1 + τ∂yχ2| + |∂xχ2 + τ∂xχ1|), (7)

where A ≈ 1.00, B ≈ 1.94, C ≈ 1.57, and D ≈ 0.61.
We now investigate this effective Hamiltonian at finite

temperatures. Once we rephrase the low-T physics of the
model in terms of truly continuous fields, it is rather obvi-
ous that the Mermin-Wagner theorem applies, and thermal
excitations must destroy the order in any finite temperature.
However, three notes are in order. First, note that the Mermin-
Wagner theorem holds even though the effective field theory is
nonanalytic, as long as it is continuous [24]. Second, the trans-
formation from the tiles degrees of freedom to the continuous
phases involves a nontrivial, singular Jacobian, which at finite
temperature translates into a complicated entropic term. While
this entropic term remains unspecified, it must preserve the
continuous symmetry in the local ground state approximation,
and therefore should not affect our argument. Third, as dis-
cussed above, the local phases are never truly continuous. Each
finite patch of the system has a finite ground state degeneracy,
and thus the number of distinct values that any of the phases
can take is finite and scales like the patch size σ , which can
be taken to be the largest scale over which the system is in an
approximate ground state. However, here one can invoke the
discrete tile picture of the system: as any mismatch in a tiling
costs at least one unit of energy, the density of mismatches at
low temperatures is, at most, O[exp(−	/T )], with 	 of order
unity. Thus, σ , i.e., the scale upon which the system is at a local
ground state, can be made exponentially large as temperature
decreases, and the system can be effectively described by
continuous phases. The assumption of low-temperature order
leads to a contradiction, and the system is therefore not ordered
at any finite temperature.

The transition found in [16,17,19] is therefore not a
symmetry breaking transition. We now turn to investigate its
true nature.

III. FINITE-TEMPERATURE BEHAVIOR OF THE MODEL

A natural choice for the order parameters of the model,
closely related to the one defined in [19], is the Fourier
coefficients of the tile densities at the basis reciprocal vectors:

qx
i = 1

N

∑
r

e−i2πτxρi(r), q
y

i = 1

N

∑
r

e−i2πτyρi(r), (8)

where i is one of the 16 tile types, and its choice is arbitrary.
Note the need for two order parameters, as the ground state

manifold is parameterized by two phases. While this form
is correct, a more symmetric and numerically preferable
generalization is

Qx = 1

N

∑
i,r

e−i2πτxeiγ x
i ρi(r), Qy = 1

N

∑
i,r

e−i2πτyeiγ
y

i ρi(r),

(9)

which sums the contribution from all tile types i. The
phases γ x

i and γ
y

i are the relative phases between the Bragg
peaks amplitudes observed for each tile type (see Appendix C).
We measured these order parameters in the vicinity of the
transition (Tc 	 0.418) and below it, using Monte Carlo
simulations of the original tiling model. Ground state
configurations are nearly periodic with periodicities that
are Fibonacci numbers (see Appendix A). We found that finite
size effects are minimized using periodic boundary conditions,
provided linear system size is a Fibonacci number.

Well below the transition, |Q|2 ∝ L−η(T ) (Fig. 3), implying
a power-law decay of the correlation function with the same
exponent η(T ). Above the transition, |Q|2 falls exponentially,
indicating short-range correlations. This resembles the situa-
tion in the XY model, for example, which exhibits a quasi-long-
range order (QLRO) at low-T and a topological Kosterlitz-
Thouless (KT) transition [25,26] to a disordered phase.

The KT transition is associated with vortex unbinding. It is
therefore natural to ask whether single vortices become stable
at high temperatures in our system. A vortex in the field χ1,
for example, is given by a configuration associated with

χ1 = 1

2π
arctan

y

x
, χ2 = 0. (10)

Using Eq. (7), it is easy to see that the energy of the vortex
diverges, Hvortex ∝ L. The positional entropy of the vortex, on
the other hand, grows with the system’s size only as log L. A
naive application of the standard KT argument, explaining the
onset of vortex unbinding as a consequence of the positional
entropy overcoming the energy, would lead to the conclusion
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FIG. 3. (Color online) |Q|2 = 1
2 (|Qx |2 + |Qy |2) as a function of

the system’s size at different temperatures (top to bottom: T =
0.34,0.36,0.38,0.4,0.41,0.415,0.43). Note the log-log scale. For T

very close but higher than Tc ∼ 0.42, an exponential decay is evident.
Inset: η as a function of T below the critical temperature.
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FIG. 4. A typical configuration above the transition. The arrows
represent the complex numbers ψ1(r,2πτ x̂) with wσ = exp(−r2/σ 2)
and σ = 5. We note that vortices similar to those shown in the figure
were observed in all of the configurations above Tc. Below Tc, no
vortices were observed.

that in our case energy always wins and vortices are never
stable. This conclusion is clearly wrong—our transition is
associated with proliferation of vortices; see Fig. 4. Upon
integrating out the fast degrees of freedom, the field theory
(7) is likely to be renormalized into an effective Gaussian free-
energy functional, which results in a logarithmically diverging
vortex effective energy. This was shown to be the case for a
similar tiling model at any finite temperature [27]. The standard
KT argument for positional entropy overcoming the effective
free energy of the vortex at high temperatures does hold, and
vortex unbinding will drive a topological phase transition.

In the usual KT scenario, where the energy itself is
quadratic to lowest order, η ∝ T at low temperatures. In
contrast, in our case, η shows a highly nonlinear behavior
(Fig. 3, inset). This too signals that the effective coupling
constant is strongly renormalized and becomes temperature
dependent. The very steep decay of η as one moves away from
the transition implies that in finite lattices at low temperatures,
the system appears to be ordered, and the identification
of the algebraic correlations is very difficult in reasonably
sized systems. This explains why previous works [16,17,19]
identified the low-temperature phase as an ordered one.

However, one feature of our transition deviates from the KT
scenario. At the KT transition, the heat capacity Cv exhibits
a weak (numerically undetectable) C∞ essential singularity.
As shown in [16,17,19], the tiling model exhibits a distinctive
sharp peak in Cv at Tc. In particular, we observed (for L up
to 89) a clear power-law divergence, . dCV

dT
|TC

∝ L−ε, with ε

(very roughly) ∼0.5(3), indicating a finite-order transition with
ν 	 1.25(20). Bearing in mind the large uncertainties in these
numerical estimates and the limited system sizes, this seems to
suggest our transition may be of a different universality class
than the standard KT transition. A qualitative change in critical
behavior due to interaction between two XY fields was pointed
out in the context of a double-layer XY model [28].

It is worth saying a few words about the form of the
long wavelength Hamiltonian, given by Eq. (7). Usually,
only analytic terms are considered when one constructs an
effective field theory. The tiling model provides an example
where nonanalytic terms arise naturally from first principles.

In fact, it was already suggested that terms of the form ∼|∂χ |
describe the energy of phasons in general systems with a
quasicrystalline ground state [18]. A phase in which the free
energy is characterized by such a nonanalytic form is usually
referred to as a locked phase [8]. In 3D, one expects to find a
finite-temperature transition from this phase to an unlocked
phase, characterized by a quadratic free energy [11,12].
However, in 2D systems, such as the one studied in this work,
the transition occurs at zero temperature, as was shown in [27].
A similar derivation of the energy can be made for an analog
three-dimensional system, where we expect that the equivalent
of (7) would be the relevant low-temperature effective theory.

IV. CONCLUSIONS

We described here a topological phase transition in a system
with discrete degrees of freedom. It is constructive to juxtapose
this behavior with a similar scenario. The clock model, where
each spin can take one of q possible planar directions [29–31],
exhibits a KT transition for q > 4. In this case, as long as
kBT exceeds the energy of rotating a single spin between
two neighboring directions, thermal fluctuations restore the
continuous U(1) symmetry and one effectively gets back an
XY model with algebraically decaying correlations. Indeed,
as temperature decreases, the discrete nature is revealed and
a second phase transition occurs below which the system
is ordered. In comparison, in our tiling model, the hidden
continuous U(1) symmetry is restored not by temperature
but rather by going into larger and larger finite-ordered
patches. The lower the temperature, the larger are the ordered
patches in the system, and thus the QLRO phase survives
for arbitrarily low temperatures. Given that the continuous
symmetry discussed here is a general property of quasicrystals,
similar arguments may lead to the conclusion that any 2D
model with a quasicrystalline ground state (with either discrete
or continuous degrees of freedom) cannot be ordered at any
positive temperature. Indeed, algebraic correlations (but not a
KT transition) were observed in a Penrose tiling model [27]
and various random tiling models [8], and we expect the tiling
model recently studied by Nikola et al. [13] to exhibit QLRO at
low temperatures as well. Furthermore, in our model, rotational
symmetry is explicitly broken by the underlying real-space
lattice. However, the above formulation of the configuration
in terms of the local phases enables one to study, in off-lattice
models, the orientational QLRO of these fields. One expects
a two-step melting of the QLRO quasicrystal through an
intermediate “hexatic” (or, rather, “pentatic” for a fivefold
symmetric quasicrystal) phase, as was predicted in [32].
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APPENDIX A: GENERATING GROUND STATE
CONFIGURATIONS AND EXCITATIONS

For many purposes (some of which will be mentioned
soon), it is necessary to generate a configuration with given
χ1 and χ2. In what follows, we show how this can be done.
Motivated by the connection between our model and the square
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FIG. 5. (Color online) The mapping between the β1 − β2 torus
and the 16 tile types.

Fibonacci sequence [16], we define the two functions

β1(r) = {χ1 + τx}, β2(r) = {χ2 + τy}, (A1)

where {· · · } is the fractional part of · · · , i.e., (· · · )mod1.
In a perfect tiling, each tile type is associated with a
given region on the β1 − β2 torus (Fig. 5). Together with
Eq. (A1), this mapping allows for generating a perfect tiling

for an arbitrary choice of χ1 and χ2. In order to study the
excitations within the local ground state approximation, one
may now construct nonperfect configurations with slowly
varying phases: β1(r) = {χ1(r) + τx},β2(r) = {χ2(r) + τy}.
Looking at the associated nonperfect tiling configuration, it
is possible to verify numerically that their energy follows the
relation

E =
∑

r

A(|∂xχ1| + |∂yχ2|) + B(|∂xχ2| + |∂yχ1|)

+C(|∂xχ1 + τ∂xχ2| + |∂yχ2 + τ∂yχ1|)
+D(|∂yχ1 + τ∂yχ2| + |∂xχ2 + τ∂xχ1|), (A2)

which was derived in the main text (to lowest order in
derivatives).

Using this explicit tiling construction, it is easy to see the
near periodicities of the perfect tiling configurations. Fibonacci
numbers satisfy τFn 	 Fn−1 (for large n), and thus β1(x,y) �
β1(x + Fn,y) and β2(x,y) � β2(x,y + Fn).

APPENDIX B: EXPLICIT FORM OF X AND Y

The matrices X and Y used to define the Hamiltonian (1)
are derived directly from the matching rules and the definition
of the 16 tiles found in Fig. 1. Their explicit form is

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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TABLE I. The phases needed to define the order parameters Qx and Qy .

m 1 2 3 4 5 6 7 8

γ y
m/2π 0.8090 0.8756 0.8756 0.7424 0.7424 0.5400 0.3368 0.2812

γ x
m/2π 0.8090 0.5400 0.3368 0.2812 0.0780 0.8756 0.8756 0.7424

m 9 10 11 12 13 14 15 16

γ y
m/2π 0.0780 0.1403 0.0780 0.4113 0.3090 0.5400 0.20968 0.4778

γ x
m/2π 0.7424 0.1403 0.4113 0.0780 0.3090 0.2068 0.5400 0.4778

APPENDIX C: FOURIER COMPONENTS

Here we show how to calculate the Fourier components of
the tile densities in a ground state configuration. The discrete
Fourier transform of tile number l at the reciprocal vector
G = 2πτ (nx̂ + mŷ) is

ψl(n,m) = 1

N

∑
r

ρl(r)e−i2πτnxe−i2πτmy. (C1)

Using the definitions of β1 and β2, we can write

ψl(n,m) = e2πinχ1e2πimχ2
1

N

∑
r

ρl(r)e−i2πnβ1e−i2πmβ2 .

(C2)

We define �l as the region associated with tile number l in the
β1 − β2 torus, defined in Fig. 5. As τ is irrational, the functions
β1 and β2 cover the region �l densely and uniformly, and the
infinite sum in (C2) can be turned into an integral:

ψl(n,m) = e2πinχ1e2πimχ2

∫∫
�l

dβ1dβ2e
−i2πnβ1e−i2πmβ2 .

(C3)

This integral can be performed analytically, and we can now
find the Fourier components. As an example, let us calculate

the Fourier transform of tile number 2:

ψ2(n,m) = e2πinχ1e2πimχ2

∫∫
�2

dβ1dβ2e
−i2πnβ1e−i2πmβ2

= e2πinχ1e2πimχ2

∫ 1

τ

dβ1

∫ τ

1−τβ1

dβ2e
−i2πnβ1e−i2πmβ2

= −e2πinχ1e2πimχ2

× im sin 2πnτ + inτe2πiτ (n+ m
2 ) sin πmτ

2mnπ2(m − τn)
. (C4)

Using Parseval’s theorem, one can now check that, indeed,
the components corresponding to the reciprocal vectors G =
2πτ (nx̂ + mŷ) are the only nonvanishing components. The
diffraction pattern is therefore composed of δ peaks, which
confirms the quasicrystalline nature of each perfect tiling.

Having found a general way to calculate the Fourier
components of the ground state, we now define the phases
γ x

m and γ
y
m (used for the definition of the order parameters

Qx and Qy in the main text). We chose the phases such that
contributions of all tile types to the Bragg peak amplitudes
will add coherently in a ground state. The Fourier components
at G =2πτ x̂ can be found using Eq. (C3). Writing them in the
form ψm(1,0) = |ψm(1,0)| eiζm , it is easy to see that the order
parameter will have the largest possible length if the phases
γm are chosen to be −ζm. The same procedure can be used
to find the phases corresponding to G =2πτ ŷ. The phases ζ x

m

and ζ
y
m correspond to the center of mass of the region �m on

the β1 − β2 torus. Table I gives the phases γm of the two order
parameters.
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