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Anomalous diffusion induced by enhancement of memory
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We introduced simple microscopic non-Markovian walk models which describe the underlying mechanism
of anomalous diffusions. In the models, we considered the competitions between randomness and memory
effects of previous history by introducing the probability parameters. The memory effects were considered in
two aspects: one is the perfect memory of whole history and the other is the latest memory enhanced with
time. In the perfect memory model superdiffusion was induced with the relation of the Hurst exponent H to the
controlling parameter p as H = p for p > 1/2, while in the latest memory enhancement models, anomalous
diffusions involving both superdiffusion and subdiffusion were induced with the relations H = (1 + α)/2 and
H = (1 − α)/2 for 0 � α � 1, where α is the parameter controlling the degree of the latest memory enhancement.
Also we found that, although the latest memory was only considered, the memory improved with time results
in the long-range correlations between steps and the correlations increase as time goes on. Thus we suggest the
memory enhancement as a key origin describing anomalous diffusions.
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I. INTRODUCTION

Random walks [1] have played a key role in statis-
tical physics for over a century. They were proposed to
stochastically formulate transport phenomena and macro-
scopic diffusion observables were calculated in long-time and
short-distance limits of them [2]. It is well known that the
key quantity characterizing the random walks or diffusion
phenomena, the mean-squared displacement (MSD) 〈x2(t)〉,
grows linearly with time. However, Hurst found the persistence
of hydrologic time series indicating that the MSD behaves
in a nonlinear way [3–5] and, recently, such phenomena
have been observed in many different systems such as
chaotic [6], biophysical [7–11], economic systems [12,13], etc.
The nonlinear behavior is recognized as anomalous diffusions
compared with the linear behavior that is regarded as normal
diffusion, and is characterized in terms of the MSD,

〈x2(t)〉 ∼ t2H . (1)

Here 〈· · · 〉 means average over independent realizations, i.e.,
ensemble average, in general, in nonequilibrium. H is called
the anomalous diffusion or the Hurst exponent which classifies
superdiffusion (H > 1/2), in which the past and future random
variables are positively correlated and thus persistence is
exhibited, and subdiffusion (0 < H < 1/2), which behaves
in the opposite way, showing antipersistence.

The Hurst exponent, however, does not provide any in-
formation on the underlying physical mechanism of anoma-
lous diffusion, and so a variety of models to describe the
mechanism have been proposed [14–18] but they do not
give any a universal mechanism but rather suggest very
distinct origins, separately. The representative models among
them are the fractional Brownian motion (fBM) [14], the
Lévy flights [16,19,20,22], and the continuous-time random
walks (CTRW) [15,21,22]. In the fBM, long-ranged temporal
correlations between steps is given so that MSD scales
like Eq. (1) within the range of 0 < H < 1, and thus fBM
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describes both subdiffusion and superdiffusion; however, its
correlation is mathematically constructed and it shows station-
ary behaviors unlike the nonstationary nature shown in real
experiments and systems. Meanwhile, the other two models
mimic further specific systems and describe only one region of
anomalous diffusions, respectively. In Lévy flights, step-length
distribution follows the power-law asymptotic behavior, so
that the average distance per a step is infinite, which invokes
superdiffusions. In the CTRW model a time interval between
two consecutive steps is a continuous random variable which
is drawn according to the waiting time distribution (WTD).
For the WTD possessing the finite average of waiting time the
MSD is linearly dependent on time, that is, the normal diffusive
behavior is shown, while for the cases where the WTD behaves
asymptotically as power laws and thus possesses an infinite
average of waiting time, subdiffusive behaviors are induced.
Also CTRW and Lévy walks have been generalized to reflect
more physical realities by considering coupled space-time
memory or various correlations between steps [23–28].

In recent years, a microscopic non-Markovian model with
perfect memory of previous history was proposed, in which
a walker jumps persistently or antipersistently according to
prior steps with a probability parameter [29]. Below the
critical value of the control parameter, the model shows normal
diffusive behaviors while, above it, superdiffusive behaviors.
Due to its simpleness, the microscopic memory effect, the
key origin of anomalous diffusion, was easily applied to
other models, among which Cressoni et al. suggested that
the loss of recent memory rather than the distant past can
induce persistence, which is related to the repetitive behaviors
and psychological symptoms of Alzheimer’s disease [30].
In [31], it was shown that, by adding a possibility that a
walker does not move at all in the model of [29], diffusive,
superdiffusive, and subdiffusive behaviors can exhibit in
different parameter regimes. It has the advantage to describe
the anomalous diffusion within a single model just by changing
the parameters; however, in this case, the subdiffusive property
may be caused by the staying behavior rather than the memory
effect and thus superdiffusion and subdiffusion are not induced
by a single origin.
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Thus, although anomalous diffusions have been described
by various origins separately, more general origins which can
describe the nonstationary mechanisms in both superdiffusions
and subdiffusions are still questionable. To answer this, we
focus on two features: microscopic memory effect varying
with time and the competition between Markovian and non-
Markovian processes which are realized by simple stochastic
models. In the first model, non-Markovian processes induced
by the full memory of the entire history and Markovian
processes constructed by the original random walk compete by
a probability parameter. In the second model, non-Markovian
processes are induced by the latest memory rather than full
memory and its realizations vary with time. From these
models we find that, in the regime where non-Markovian
nature prevails, superdiffusion is induced by the perfect
memory, while the latest memory enhanced with time causes
subdiffusions as well as superdiffusions.

II. MODEL WITH PERFECT MEMORY

First, we define a simple microscopic non-Markovian
model in which a walker moves depending on full memory
of its entire history with probability p and at random with
probability 1 − p. The random walker starts at origin and
randomly moves either one step to the right or left at time
t = 1, so the position of the walker becomes x1 = σ1 with
σ1 = 1 or −1. Then the random variable σ1 is preserved in the
set {σ } to memory the entire history of the walking process.
At time t , the stochastic evolution equation becomes

xt+1 = xt + σt+1, (2)

with

σt+1 =
{
σt ′ , with probability p,

+1 or − 1, with probability 1-p. (3)

Here t ′ � t and the random variable σt+1 is chosen from the
set {σ ′

t } with equal probability 1/t . For the case of probability
1 − p, σt+1 is chosen in 1 or −1 with equal probability 1/2
at random. It differentiates this model from that of [29] where
σt+1 = −σt ′ , which makes for competition between positive
correlation of random variables and negative correlation rather
than randomness in the process.

In order to compute the mean displacement 〈xt 〉, we first
note that for a given previous history {σt }, the conditional
probability that σt+1 = σ can be written as

P [σt+1 = σ |{σt }] = 1 − p

2
+ p

tσ

t
= 1

2t

t∑
k=1

(pσkσ + 1),

(4)

where tσ is the total number of steps having σ in the past. For
t � 1 the conditional mean value of σt+1 in a given realization
is given by

〈σt+1|{σt }〉 =
∑

σ=±1

σP [σt+1 = σ |{σt }] = p

t
xt , (5)

where the displacement from the origin becomes xt =∑t
k=1 σk if the walker starts at x = 0. On averaging Eq. (5)

over all realizations of the process, the conventional mean

value of σ is given by

〈σt+1〉 = p

t
〈xt 〉 (6)

and by using the average of Eq. (2) the recursion relation is
obtained as

〈xt+1〉 =
(

1 + p

t

)
〈xt 〉. (7)

The solution of Eq. (7) is given as

〈xt 〉 = 〈σ1〉 �(t + p)

�(1 + p)�(t)
∼ tp for t � 1. (8)

When 〈σ1〉 �= 0 the mean displacement increases monotoni-
cally following the power law. It is the same behavior as that
of [29] although the exponent is different, which indicates that
the persistence due to the full memory makes the walker move
away from the origin with time on average.

The recursion relation of the MSD also can be computed
from Eq. (4) and Eq. (2) as follows:

〈
x2

t+1

〉 = 1 +
(

1 + 2p

t

) 〈
x2

t

〉
, (9)

and its solution [29] is asymptotically obtained as

〈
x2

t

〉 = t

1 − 2p
for p < 1/2, (10)

〈
x2

t

〉 = t lnt for p = 1/2, (11)

〈
x2

t

〉 = t2p

(2p − 1)�(2p)
for p > 1/2. (12)

For p < 1/2, the MSD depends linearly on time and the mean
displacement follows the power law 〈xt 〉 ∼ tp with the expo-
nent smaller than 1/2, so that the variance �(t) = 〈x2

t 〉 − 〈xt 〉2

remains normally diffusive for large t . Specially when at t = 1
a walker moves to the right or left with equal probability 1/2
so that 〈σ1〉 = 0, the variance increases asymptotically linearly
with time having the diffusion coefficient D = 1/2(1 − 2p).
While for p > 1/2 the MSD follows the power law 〈x2

t 〉 ∼ t2p,
which is of the same order as the square of the mean, but with a
different prefactor. Hence it results in the superdiffusion with
the relation between the Hurst exponent and the parameter
H = p. The marginal superdiffusive phenomena is shown
for p = 1/2. These results have been confirmed by computer
simulations as shown in Fig. 1. The critical parameter pc =
1/2 means that the superdiffusive phenomena occur when the
persistence induced by full memory prevails in the process
against the randomness. It can be compared to the results
of [29] in which the critical value of the parameter (pc = 3/4)
is larger than that of this model, which indicates that the
antipersistent rule invokes more randomness in the process
than just random choices used in this model. The steps made
by anticorrelation with previous steps do not continuously
retain an antipersistent nature but rather bring about random
nature changing the directions of steps. Therefore, it is difficult
to embody subdiffusion phenomena from the perfect memory
effect and thus we need to consider an another approach to
describe anomalous diffusions comprising subdiffusions.
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FIG. 1. (Color online) Inset (a) shows the plots of the variance
〈x2

t 〉 − 〈xt 〉2 for p = 0.4, 0.6, 0.8, and 1 from the bottom to the
top. For p = 1, the data are in excellent agreement with the solid
line indicating H = 1, while for p = 0.4, the data are in a good
agreement with the dashed line H = 0.5. The data were measured
with the initial condition where a walker moves to the right or left
with equal probability 1/2 and 104 independent realizations. The main
plot shows the Hurst exponent H versus the parameter p. The solid
line is H = 0.5 for p < 0.5 and H = p for p > 0.5. It confirms the
analytic results of Eqs. (10) and (12), which show that the persistence
vanished in the regimes p < 0.5 and there are the persistence with
the relation H = p for p > 0.5. The case of p = 0.5 is shown in
the inset (b) which shows the marginal behavior, 〈x2

t 〉/t , increases
logarithmically.

III. MODELS WITH MEMORY ENHANCEMENT

We suggest the following non-Markovian stochastic model
where, for t > 1, σt+1 is given by

σt+1 =
{
σt , with probability 1 − 1/tα,

1 or − 1, with probability 1/tα (13)

and the walker starts at origin and moves to the right or left with
equal probability at time t = 1. Over time, the probability of
taking the same direction with the latest step increases and the
larger value of parameter α is, the much faster the probability
grows with time. That is, in this model only the latest step
is remembered unlike the above perfect memory model, and
the persistence with the previous step is enhanced with time,
the degree of which is controlled by the parameter α. When
α = 0 it reduced to the original random walk. We shall refer to
this model as the positive latest memory enhancement model
(pLMEM). Meanwhile, in Eq. (13), if the rule σt+1 = −σt is
taken, the correlation between two successive steps is negative
and thus let’s call this the negative latest memory enhancement
model (nLMEM).

The computer simulations were run for these two LMEMs.
Figure 2 shows the Hurst exponent H versus the parameter
α for the pLMEM (circles) and for the nLMEM (squares).
The solid line represents that the Hurst exponent H relates
to the parameter α as H = (1 + α)/2 for 0 � α � 1 for
the pLMEM. For the case of α > 1, the probability p(t) =
1 − 1/tα approaches one faster than the case of α = 1 as

FIG. 2. (Color online) Inset (a) shows the plots of 〈x2
t 〉 − 〈xt 〉2

with α = 0.2, 0.4, 0.6, 0.8, and 1 for the pLMEM (star symbols) and
with α = 0, 0.2, 0.4, 0.6, and 0.8 for the nLMEM (plus symbols).
For the models, the mean displacement is nearly zero numerically
so that the variance is equal to the MSD. The solid and dashed
lines represent the case of H = 1 and H = 0.5, respectively. The
plot shows the Hurst exponent H as a function of the parameter p

measured with 5 × 105 independent realizations. The circle symbols
and the square symbols represent the data for the pLMEM and
the nLMEM, respectively. The solid line is H = (1 + α)/2 and the
dashed line is H = (1 − α)/2. It is shown that the data are in a
good agreement with the lines, which indicates the LMEMs can well
describe the all anomalous diffusions including superdiffusion and
subdiffusions. The case of α = 1 for the nLEME is shown in the
inset (b) which shows the marginal behavior, 〈x2

t 〉 − 〈xt 〉2, increases
logarithmically.

time becomes large, so that it also shows ballistic motions
resulting in H = 1. While the dashed line represents that H =
(1 − α)/2 for the nLMEM. For the case α = 1 of the nLMEM
it shows the marginal behavior showing 〈x2

t 〉 − 〈xt 〉2 ∼ lnt

[the inset (b) in Fig. 2]. Thus the LMEMs well brought
about both superdiffusions and subdiffusions with a single
origin, although considering only for the latest memory.
It is comparable that a walk process just depending on
short-term memory at each time is reduced into the original
random process. Therefore, it can be regarded as a different
nonstationary microscopic mechanism describing anomalous
diffusions.

IV. TIME-VARYING CORRELATIONS

In order to study in detail how the memory enhancement
affects to the correlations between steps we consider the
correlation function C(t,�) defined as

C(t,�) = 〈σtσt+�〉 − 〈σt 〉〈σt+�〉, (14)

where, when � = 1, C(t,1) ∼ 1 − t−α may be given by
Eq. (13) and 〈· · · 〉 is the average for independent realizations.
For convenience, we considered a function g(t,�) ≡ 1 −
C(t,�) and measured it for different values of �. Figure 3(a)
shows the function g(t,�) versus time t for various values of
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FIG. 3. (Color online) (a) Function g(t,�) is shown as a function
of time t for various intervals � = 1, 10, 102, 103, and 104 for α = 1.
The solid line represents g(t,1) ∼ t−α . (b) The functions g(t,�) fall
into a single curve by scaling time as t/�1/α . The solid line represents
g(t,�) ∼ �/tα . (c) The function g(t,�) for α = 0.6. (d) The data
are well collapsed with the critical time tc = t/�1/α for α = 0.6.

� for α = 1. The solid line represents that g(t,1) ∼ t−α for
t > 1 with α = 1 as expected. Meanwhile, it shows that, for
� > 1, the function g becomes 1 for t 	 tc and g(t) ∼ t−α

for t � tc. The data collapse into a single curve very well with
tc = �1/α as shown in Fig. 3(b). Figures 3(c) and 3(d) show
the same results for α = 0.6. Thus the correlation function
C(t,�) scales as

C(t,�) ∼
{

0, for t 	 �1/α,

1 − �/tα, for t � �1/α.
(15)

At the critical time after which the correlations appear, the per-
sistent probability to follow the last step is p(tc) = 1 − 1/�.
Although the present step just depends on only one preceding
step, it generates the correlations between steps far away from
each other when the persistent probability is larger than the
critical probability p(tc). That is, the shortest-term memory
increasing with time can induce the long-range correlations in
enough long-time limits. Also it has to be addressed that unlike
the stationary series of the fBM in which the correlation does
not change with time and only depends on a time interval
such as C(�) ∼ �−2(1−H ), this process is nonstationary and
the correlations depend on the time interval as well as time t .
In the fBM the correlations decrease as the interval increases
depending on the Hurst exponent H , while the correlation in
the pLMEM decreases linearly with the interval regardless of
H and increases over time. The larger the value of α, the much
faster the correlation increase and so the more superdiffusive
behaviors appear.

These properties of the correlation function are distin-
guished from those of the perfect memory model in which the
correlation function decreases when time goes on. As shown
in Fig. 4(a), for p = 0.2 the correlation function C(t,�) does
not depend on time t as well as interval � and their averages
for time become zero, which represents the normal diffusion.
For p = 0.8 [Fig. 4(b)] the steps are positively correlated

FIG. 4. (Color online) (a) Correlation function C(t,�) as a func-
tion of time t for various intervals � = 1, 10, 102, 103,and104 for
p = 0.2 of the perfect memory model. In this case, the normal
diffusion is shown and thus there are no correlations between steps.
(b) The correlation function C(t,�) for p = 0.8 of the perfect
memory model. The correlations between steps are positive for
all measured times and intervals as expected in superdiffusions.
However, they show the dependence on the time as well as the interval
unlike the stationary process like the fBM.

as expected to make the superdiffusions. The correlation
functions decrease when the time interval � becomes large
at the same time and the difference lessens with time. That is,
the process is also a nonstationary process and the correlation
function depends on the time; however, it decreases with time
unlike the pLMEM. Thus the perfect memory of whole history

FIG. 5. Semilog plot of the correlation functions C(t×,�) as a
function of interval � at different times t = 1, 10, 102, 103, and 104

for α = 0.8 of the nLMEM.
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and the latest memory increasing with time are two different
origins resulting in superdiffusive behaviors.

For the nLMEM, the time dependency of the absolute
correlation function is the same as the pLEME, because
the probability following the latest step is same for two
LMEMs irrespective of the given sign, positive or negative
correlation. For the nLMEM the correlation function as a
function of interval � may be negative or oscillatory due to the
subdiffusive nature. Considering nonstationary behaviors of
the process, we measured the correlation function at fixed time
t× given by C(t×,�) = 〈σt×σt×+�〉 − 〈σt×〉〈σt×+�〉. Figure 5
shows the correlation function as a function of interval �

at different times. C(t×,�) oscillates totally in the nonzero
regimes, which is distinguished from the subdiffusions of the
fBM with negative correlation such as C(�) ∼ −�−2(1−H ).
Also, when t× becomes large, the oscillatory range is more
longer. That is, like Eq. (15), C(t×,�) becomes

|C(t×,�)| ∼
{

1 − �/tα×, for � 	 tα×,

0, for � � tα×.
(16)

It indicates that the longer time, the more anticorrelation is
persistent.

V. CONCLUSION

In conclusion, the microscopic nonstationary mechanisms
of anomalous diffusions have been studied through the simple
models with memory effects of previous walk processes.
In the models, Markovian and non-Markovian processes
were controlled by the probability parameter, and anomalous
diffusions were induced with the Hurst exponent related

to the parameter. The perfect memory of whole history
invokes superdiffusive behaviors with H = p for p > 0.5
in which the regime of the non-Markovian nature prevails,
while subdiffusions are not invoked. The anomalous diffusive
behaviors involving both superdiffusions and subdiffusions
could be described in the mechanism where the latest memory
increases with time. The persistent behaviors with the latest
memory enhancement induced the superdiffusions with H =
(1 + α)/2, while taking the opposite direction to the latest step
brought about the subdiffusive behaviors with H = (1 − α)/2.
The perfect memory resulted in the long-range step correlation
decreasing with time, while even though the memory is
restricted to the latest step, the memory enhancement resulted
in the long-range correlations increasing with time above
the critical time which increases with the interval. Thus the
enhancement of memory may be a key origin describing all
anomalous diffusions and we expect that these time-varying
features will be measured in various real systems showing
anomalous diffusions and these simple models can serve as
basic models in studying other various aspects of anomalous
diffusive phenomena.

Meanwhile, we need to consider the ergodicity breaking in
the processes. It is known that nonstationary stochastic pro-
cesses are generally not ergodic, that is, the means as ensemble
averages are different from those as time averages [32–36].
These processes are nonstationary due to the memory effect
and all the analysis in this study was made on the basis of
nonequilibrium ensemble averages, so that it does not mean
that when time average is run it gives the same Hurst exponent
as the above provided. We are going to deal with the ergodicity
breaking in these models elsewhere.
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