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Kinetic and fluid equations are derived for the dynamics of classical inhomogeneous trapped plasmas in
the strong coupling regime. The starting point is an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz
for the dynamic correlation function, which is allowed to depend on time and both particle coordinates
separately. The time evolution of the correlation function is determined from the second equation of the
Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. We study the equations in the linear limit and derive a
nonlocal equation for the fluid displacement field. Comparisons to first-principles molecular dynamics simulations
reveal an excellent quality of our approach thereby overcoming the limitations of the broadly used STLS
scheme.
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Strongly correlated plasmas (SCPs) [1] constitute an impor-
tant field of current research due to their relevance for shock-
compressed matter [2], planetary and stellar interiors [3], or
even the exotic quark-gluon plasma [4]. In these systems,
the mean interaction energy (often by orders of magnitude)
exceeds the kinetic energy (� = 〈v〉/〈Ekin〉 � 1), giving rise
to a variety of effects such as the emergence of liquidlike
properties, crystallization, or anomalous transport, which are
well established experimentally [1,3]. At the same time, strong
correlations make a theoretical description very challenging
since standard microscopic approaches from high-temperature
plasmas fail. Nevertheless, in recent decades a number of
concepts have been put forward that have been successful
in describing selected properties of SCPs. In particular, their
linear response behavior is—in part—well reproduced by
the Singwi-Tosi-Land-Sjölander (STLS) scheme [5,6], the
quasilocalized charge approximation (QLCA) [7], approxima-
tions for the dynamic local field corrections [8], or generalized
hydrodynamics [9] and kinetic theories [10] that are based on
the memory function approach.

While these approaches often yield excellent results for
spatially uniform plasmas, they are not applicable to systems
with strong density gradients. However, in recent years an
increasing number of experimental systems, including dusty
plasmas [1,11], confined ions [12], ultracold neutral [13],
or laser-produced and inertial confinement fusion plasmas
[14], are faced with strong density inhomogeneities caused by
interfaces, boundaries, and finite system sizes. Of particular
interest is their collective excitation spectrum [15], which
is a sensitive diagnostics of the microscopic structure and
thermodynamic properties [16], just as the familiar optical
line spectrum reflects the properties of the correlated electrons
in atoms and molecules. In spherically confined systems, a
prominent role is played by the breathing mode—the radial
expansion and contraction of all particles—which is sensitive
to the interparticle potential and the coupling strength and eas-
ily excited and probed experimentally in such diverse systems
as dusty plasmas, trapped ions or cold atoms, and quantum
dots. In this Rapid Communication, we will, therefore, use
the breathing frequency as a stringent test for the accuracy
of theoretical models for strongly coupled, inhomogeneous

classical plasmas using new molecular dynamics (MD) data
as a reference.

While there has been extensive work on particular collective
modes and interactions [17], various approximation schemes1,
or limiting cases2 presently no theory that is broadly applicable
to the dynamic properties of strongly correlated and strongly
inhomogeneous plasmas is available. It is the purpose of this
Rapid Communication to fill this gap. We present a systematic
microscopic theory based on the fundamental Bogolyubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the re-
duced nonequilibrium distribution functions. We decouple the
hierarchy by modifying the principle of weakening of initial
correlations of Bogolyubov [26], which he derived for the case
� < 1 such that it is applicable at strong coupling, � � 1.
From this we obtain a general kinetic theory, fluid equations,
and equations for the collective mode spectrum. Finally, a
rigorous test is performed for the breathing frequency of
Yukawa clusters at finite temperature. The excellent agreement
with MD simulations demonstrates that our theory overcomes
the limitations of the broadly used STLS approach.

Kinetic theory. We consider N identical particles with
mass m interacting via a pair potential v(r) in a confinement
potential V (r) (d dimensions). Their dynamics is completely
described by the BBGKY hierarchy for the reduced s-particle
distribution functions f,f (2),f (3), . . . . The first two equations

1MD simulations showed that mean-field theories [19,20] yield
reasonable results for the low-order modes in Coulomb systems
[21,22]. However, they cannot describe torsional modes [22,23] and
become increasingly inaccurate for short-ranged Yukawa systems
and modes of higher order [24]. The QLCA has been extended to
inhomogeneous systems by Lee and Kalman [25].

2The approaches above are restricted to particular excitations
(scaling ansatz), weak coupling (cold and warm fluid), low-order
modes (viscoelastic), or they do not account for the thermal particle
motion (QLCA, harmonic approximation). More advanced methods
for uniform systems exist [18] (generalized hydrodynamics, method
of moments) but do not account for strong density gradients or finite
system sizes.
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of the hierarchy are [27]

[∂t + Q̂1]f (1,t) = −
∫∫

F12 · ∇ p1f
(2)(1,2,t) d2, (1a)

[∂t + Q̂1 + Q̂2 + F12 · (∇ p1 − ∇ p2 )]f (2)(1,2,t)

= −
2∑

i=1

∫∫
Fi3 · ∇ pi

f (3)(1,2,3,t) d3, (1b)

where Q̂i = ( pi/m) · ∇i + Fext · ∇ pi
, Fij = −∇i v(rij ), and

rij = |r i − rj |, and the external force Fext(r i ,t) includes
the confinement potential V . The numbers 1, 2, 3 comprise
positions and momenta, s = {rs , ps}.

To derive a closed kinetic equation for f , Bogolyubov
introduced the concept of a time-scale hierarchy [26],

τcor � trel � thyd, (2)

indicating that macroscopic processes (hydrodynamics, time
scale thyd) are slow compared to the momentum relaxation
of f (trel), which, in turn, is much slower than the equili-
bration of the higher-order distributions (τcor). This allowed
him to simplify the time dependence of f (2) according to
f (2)[f (t); t] → f (2),EQ[f (t)], i.e., f (2) has already relaxed to
its equilibrium functional form but is still time dependent via
the nonequilibrium distribution f (t). This directly leads to
kinetic equations for weakly nonideal systems such as the
Boltzmann equation, valid for t > τcor.

However, in a strongly correlated system, the inequality
(2) is violated; in particular, f and f (2) relax on similar time
scales, e.g., [28,29]. The solution to this problem is offered by
the nature of the dynamics of an SCP, which comprises two
main time scales. First, a fast time of small-scale momentum
relaxation processes, τ s

cor, during which the particles settle
close to the minima of the total potential created by external
fields and all other particles. Since � � 1 (low T ), the
subsequent dynamics in the second stage resembles that of
an elastic medium, which is probed in experiments measuring
the collective mode spectrum and which is, therefore, in the
focus of our paper.

Although this dynamics is much slower than that of the
first stage, it is very complicated since one- and two-particle
quantities are strongly coupled and require a self-consistent
treatment. Our modified functional hypothesis for a strongly
correlated system [extended STLS (ESTLS)] therefore reads

f (2)(t) = f (2),EQ[f (t),h(t)], (3)

f (2)(1,2,t) = f (1,t)f (2,t) [1 + h(r1,r2,t)] , (4)

where we have introduced the pair correlation function
(PCF) h(r1,r2,t). The only approximation made is that of
momentum independence of h. This is justified for t � τ s

cor
when f (2) has already undergone the relaxation towards the
equilibrium functional form. At the same time f (2) is still time
dependent via the two nonequilibrium functions f (t) and h(t),3

3For weak coupling, Guernsey [30] avoided the assumption of
spatial homogeneity and the time-scale separation by considering
small perturbations from equilibrium. His theory was applied to the
plasma conductivity and dielectric function [31].

and correlations related to the collective oscillations
persist.4

Note that Eq. (4) reduces to the commonly used STLS
scheme [5] if h(r1,r2,t) is replaced by hb(|r1 − r2|)—the
equilibrium PCF of a uniform bulk plasma, e.g., [6]. An
extension to inhomogeneous systems was considered in Ref.
[33]; the time dependence has been taken into account by
various approximations, e.g., [34,35]. Golden and Kalman
replaced the velocity dependence of the correlation function
by its average [36]. We also mention the cluster expansion
of Liboff [37] that applies to moderately coupled fluids. Our
ESTLS ansatz (4) contains two improvements over the stan-
dard STLS: First, we allow for an explicit dependence of h on
the coordinates of both particles, which is a straightforward but
crucial improvement for inhomogeneous systems. Second, and
even more importantly, we replace hb by the nonequilibrium
PCF and allow for its time evolution, h = h(t). As we will see
below, this allows us to correct the STLS ansatz when applied
to the dynamics of a SCP.

The BBKGY hierarchy offers a direct microscopic ap-
proach to determining the dynamics of a confined SCP. Using
our ansatz, Eq. (4), the first equation of the BBGKY hierarchy
[27] can be written as

∂tf + p
m

· ∇f + (Fext − ∇V mf + Fcor) · ∇ p f = 0, (5)

where interactions enter via the mean-field potential,
V mf(r,t) = ∫

v(|r − r̄|)n(r̄,t)d r̄ , and a correlation force,

Fcor(r,t) = − ∫ ∇v(|r − r̄|) n(r̄,t)h(r,r̄,t)d r̄. (6)

To proceed we derive an equation for the dynamics of
h(r1,r2,t). This is achieved by using Eq. (4) in Eq. (1b)
and integrating over p1 and p2, which yields a continuity
equation for n(2)(r1,r2,t) = n(r1,t)n(r2,t)[1 + h(r1,r2,t)],
where n(r,t) is the particle density. It can be further
simplified with the continuity equation for n(r,t), and we
obtain

∂th + ∇1h · u(r1,t) + ∇2h · u(r2,t) = 0, (7)

where the fluid velocity field is defined via the nonequilibrium
distribution function, u(r,t) = 1

n

∫ p
m

f (r, p,t)d p.
Equation (7) can be expressed via the convective time

derivative as Dt h = 0, which yields the time evolution of the
PCF in nonequilibrium: h(t) instantaneously responds to any
currents induced in the plasma and adjusts its form according to
Eq. (7). The dynamics of h is entirely driven by the one-particle
distribution f (t), which, in turn, is coupled to the PCF via
Eqs. (5) and (6).

Equations (5)–(7) are our first main result and provide the
basis for a very general, yet complicated, kinetic description
of trapped SCP in nonequilibrium. A simpler description
still retaining correlations follows by eliminating the mo-
mentum dependence also for f (t), i.e., by turning to a fluid
approach.

4A similar concept has been used for long-living correlations related
to bound states in Ref. [32]
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Fluid equations are obtained as usual by taking moments
of Eq. (5):

Dt n = −n∇ · u, (8a)

mnDt u = −∇ · π + n(Fext − ∇V mf + Fcor), (8b)

Dt παβ = −παβ∇δuδ − παδ∇δuβ − πδβ∇δuα, (8c)

where π(r,t) = m
∫

[pα

m
− uα][pβ

m
− uβ]f (r, p,t) d p is the

pressure tensor [38,39], which contains only kinetic contribu-
tions. We close the hierarchy by neglecting the heat flux term as
this leads to the correct plasmon dispersion in a weakly coupled
uniform system [38,39] and appears to be consistent with
the high-frequency treatment of the correlation function. This
system presents an important extension of standard fluid theory
to strongly correlated (� � 1) and strongly inhomogeneous
systems via the additional force Fcor. It involves the full
pair correlation function h(r1,r2,t), which, however, makes
its solution complicated. In the case of weak excitations from
equilibrium, which is of relevance for the collective modes
of trapped systems, further progress can be made,5 as we
demonstrate now.

The equations are linearized around an equilibrium
state with temperature T according to: n(r,t) ≈ n0(r) +
δn(r,t), u(r,t) ≈ δu(r,t), παβ(r,t) ≈ pid

0 (r) δαβ + δπαβ(r,t),
where the ideal gas pressure is pid

0 (r) = n0(r)kBT . The
fluid perturbations are conveniently characterized by the
displacement field q(r,t), defined by ∂t q = δu. They di-
rectly couple to perturbations of the PCF, δh(r1,r2,t) ≡
h(r1,r2,t) − h0(r1,r2), which follow straightforwardly from
Eq. (7),

δh ≈ −∇1h0 · q(r1,t) − ∇2h0 · q(r2,t). (9)

This dependence of δh on the displacement q becomes
important at strong coupling since there h0 rapidly varies
as a function of r1 and r2. Therefore, neglect of δh

(as in the original STLS scheme [5]) is the source of
dramatic errors in the description of SCP which is over-
come in the present ESTLS approach, as will be shown
below.6

Linearization of the system (8) allows one to derive a closed
equation for the displacement field,

mn0 ∂2
t qα = −δn∇α

[
V + V mf

0

] − n0∇αδV mf + n0 δF ext
α

− ∇β

[
δπαβ + n0F

cor
0,αqβ

] + n0F
cor	
α , (10)

where we introduced

F cor	
α (r,t) =

∫
∇α∇βv(|r − r̄|)n0(r̄)h0(r,r̄)

× [qβ(r̄,t) − qβ(r,t)]d r̄, (11)

δπαβ = −[∇pid
0 · q δαβ + pid

0 (2 εαβ + εδδ δαβ)
]
, (12)

and the strain tensor, εαβ = 1
2 (∇β qα + ∇α qβ) [39].

5Strictly speaking, the ansatz (4) requires that the strong coupling
condition is not violated at any time.

6Compared to STLS or its improvements, where δh is constructed
from the derivative of h0 with respect to the density [35], we have
inferred Eq. (9) directly from the BBGKY hierarchy and Eq. (4).

Equations (10) and (11) are our second main result. They
describe the linear response of a strongly inhomogeneous
SCP to external fields based on its equilibrium PCF h0(r,r̄),
which is required to solve Eq. (10) self-consistently. It can
be obtained, e.g., from simulations or thermodynamic strong
coupling theories [40]. Equations (10) and (11) provide a
generalization of existing fluid theories. In particular, when
the confinement potential V , F cor

0,α , and the kinetic pressure are
neglected, we recover the (linear) nonuniform QLCA [25]. If,
further, the system is homogeneous, F cor	

α leads to the QLCA
dynamic matrix while F cor

0,α vanishes. Finally, if F cor	
α and

F cor
0,α are neglected, we recover the warm-fluid equations for

a (classical) weakly coupled plasma. Naturally, the cold-fluid
limit is obtained if we further discard the kinetic pressure
tensor.

Discussion. Our ESTLS ansatz incorporates the dominant
dynamics of pair correlations through Dt h = 0, Eq. (7). The
physical meaning is that the correlations between two particles
are frozen as they move along with the fluid. This is valid
as long as relaxation processes are negligible, and the PCF
instantly responds to the fluid displacements [see Eq. (9)], i.e.,
at high frequencies ω (elastic behavior, see also Ref. [41]).
The omission of the heat flux term to the fluid equations is also
known to be a high-frequency approximation [39], valid for
ω � vth/l, where vth = √

kBT/m is the thermal velocity and l

the length scale of interest [38]. This is well justified at strong
coupling (low temperature, with the de Broglie wavelength
much smaller than the interparticle spacing so a classical
approach is valid).

Let us now test our theory on the important case of the
breathing mode in a harmonic trap, V (r) = m

2 ω2
0r

2. Although
accurate results for the breathing frequency (BF, ωbr) were
recently obtained for systems with power-law interaction [17],
the case of general interactions is still open. The displacement
vector is chosen radial and uniform, q(r,t) ∼ re−iωbrt , which
was shown to be accurate (i) at infinite coupling (crystals)
[42] and (ii) when the system size significantly exceeds the
screening length [20]. The result for the BF within our ESTLS

2.0

2.1

2.2

2.3

0.1 1 10

ω
b
r
/
ω

0

Γ

(a) a/λ = 3

0.1 1 10
Γ

(b) a/λ = 1.5

1.74

1.77

1 10

(c) Coulomb
a/λ = 0

√√
3

cold-fluid
ESTLS
STLS
MD

FIG. 1. (Color online) Breathing frequency of three-dimensional
(3D) Yukawa clusters with (a) 100 and (b), (c) 200 particles.
Comparison of MD simulations, STLS theory, the present ESTLS
[Eq. (13)], and a cold-fluid approach [20].
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FIG. 2. (Color online) Breathing frequency of (a) 3D and (b) 2D
Yukawa clusters with 200 particles and various screening parameters
vs coupling parameter. MD simulations (solid lines, filled symbols)
vs ESTLS, Eq. (13) (dashed lines, open symbols). The frequencies
are scaled to ω∞—the frequency at the largest � measured in the
simulation.

theory reads [43]

ω2
br

ω2
0

= 1 + 3
Ekin

Epot
+ 1

2

〈v2〉2

Epot
, (13)

where Ekin = d
2 NkBT is the average kinetic and Epot =

1
2mω2

0〈r2〉1 the potential energy. The one- and two-particle
averages are 〈r2〉1 = ∫

r2 n0(r) d r and

〈vi〉2 = 1

2

∫∫
vi(r12)n0(r1)n0(r2)[1 + h0(r1,r2)] d r1d r2,

respectively (i = 1,2), where v1(r) = v′(r) r and v2(r) =
v′′(r) r2. This generalizes the result of Ref. [17] to arbitrary
interaction. Similar expressions were found for confined quan-
tum gases [44]. Using the Virial theorem, 〈v1〉2 = 2(Ekin −
Epot), we also recover the result of the harmonic approximation
[44,45] if we neglect Ekin at strong coupling.

In Fig. 1 we present MD simulation results for Yukawa
interaction, v(r) = Q2 e−r/λ/r , where Q is the particle charge
and λ the screening length [24], covering long (plasmas) and
short (neutral systems) interaction ranges. The Yukawa BF has
been studied at zero temperature [46,47] but its temperature
dependence is not well understood [24]. The MD results are
used to benchmark the theoretical results of STLS [using its
inhomogeneous extension] and the present ESTLS.

The first observation is that ESTLS shows excellent
agreement with MD over the whole range of the parameter
� = Q2/(a kBT ), where a = (Q2/mω2

0)1/3 is a characteristic
length scale.7 In contrast, while STLS improves upon the
cold-fluid theory of Ref. [24], see Figs. 1(a) and 1(b), the
deviations from the MD result rapidly increase with �, for
� > 1. The origin of this poor performance is clearly traced
to the neglect of δh, i.e., the spatial derivatives of the PCF [cf.
Eq. (9)], which increase with �. In the Coulomb limit [Fig.
1(c)], STLS slightly drops below ωbr/ω0 = √

3, which is the
exact limit for � → ∞ [47].

A detailed comparison between ESTLS and MD is shown
in Fig. 2. Besides the excellent quantitative agreement, we note
that ESTLS reproduces the nontrivial dependence of dωbr/d�

on the interaction range a/λ [24]. The reason for the change in
slope is that in the ideal gas limit, � → 0, ωbr is independent
of the interaction and given by ωbr/ω0 = 2, whereas it depends
on a/λ in the infinite coupling limit, � → ∞. Thus, ωbr(�)
increases (decreases) if the latter lies above (below) the former.

In summary, we have presented a kinetic approach to the
dynamics of strongly correlated confined plasmas. The simple
ansatz, Eq. (4), and the BBGKY hierarchy directly determine
the dynamics of the PCF [Eq. (7)]. The theory was applied to
the breathing mode in a harmonic trap and showed excellent
agreement with MD simulations. If accurate equilibrium PCFs
are available, our theory provides a direct route to determining
the collective modes self-consistently by solving Eq. (10). If,
on the other hand, strong excitations are of interest, the nonlin-
ear fluid equations [Eq. (8)] or the kinetic equation [Eq. (5)] are
available. The presented ESTLS theory should be useful for
the study of high-frequency processes in inhomogeneous SCP,
in particular dusty, non-neutral, and ultracold neutral plasmas.
Furthermore, the basic idea of partial weakening of initial
correlations and the ansatz (4) should also be of relevance to
strongly correlated confined quantum systems.
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7Note that �, despite being similar to the coupling parameter for
a homogeneous plasma, does not describe the effective coupling
strength since the length scale a does not take the density variation
in the trapped system into account. In addition, the screening effect
is not included. The parameter can be interpreted as a dimensionless
inverse temperature. For a discussion of coupling in Yukawa systems,
we refer to Ref. [48].
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