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Front propagation in cellular flows for fast reaction and small diffusivity
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We investigate the influence of fluid flows on the propagation of chemical fronts arising in Fisher-Kolmogorov-
Petrovsky-Piskunov (FKPP) type models. We develop an asymptotic theory for the front speed in a cellular flow in
the limit of small molecular diffusivity and fast reaction, i.e., large Péclet (Pe) and Damköhler (Da) numbers. The
front speed is expressed in terms of a periodic path—an instanton—that minimizes a certain functional. This leads
to an efficient procedure to calculate the front speed, and to closed-form expressions for (log Pe)−1 � Da � Pe
and for Da � Pe. Our theoretical predictions are compared with (i) numerical solutions of an eigenvalue problem
and (ii) simulations of the advection-diffusion-reaction equation.
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The spreading of chemical or biological populations in fluid
flows is a fundamental problem in many areas of science and
engineering with applications ranging from plankton blooms
to combustion [1,2]. In the absence of flow, this spreading
results from the competition between spatial diffusion, local
growth, and saturation, and leads to the formation of wave
fronts that travel undeformed at constant speed [3]. A number
of theoretical results describe the influence that divergence-
free, spatially smooth flows have on such fronts (see Refs. [4,5]
for comprehensive reviews). These have stimulated experi-
ments using a variety of reactions and flow configurations
[6–8], with much effort devoted to steady spatially periodic
cellular flows [9–12].

Using the classic Fisher-Kolomogorov-Petrovsky-
Piskunov (FKPP) model [13,14] based on logistic type
growth, Gärtner and Freidlin [15] showed that the speed of
the pulsating front that arises in such periodic flows can be
obtained by solving an eigenvalue problem (see below). In
practice, this procedure requires rather involved numerical
computations; there is therefore a need for simplified results
that provide scaling predictions or closed-form expressions in
asymptotic regimes. Results of this type have been derived in
the limit of slow reactions and small diffusivity [16,17]. Here
we consider the opposite limit of fast reaction (e.g., Ref. [18])
relevant, for instance, to premixed flame propagation [19].
In this limit, we obtain a compact expression for the speed
in terms of a single periodic path that minimizes an action
functional. This brings physical insight, in particular, into the
role of the flow’s stagnation points, and yields closed-form
results valid for a remarkably large range of reaction rates.
It also provides an efficient way to compute the speed in
a regime where direct numerical computations are most
challenging because of the widely disparate spatial scales
(see, e.g., Fig. 1).

Model. The effect of a background flow u is incorporated
in the FKPP advection-diffusion-reaction equation

∂tθ + u · ∇θ = Pe−1�θ + Da r(θ ), (1)

for the population concentration θ . Here, the reaction term
is r(θ ) = θ (1 − θ ) or, more generally, any function r(θ )
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that satisfies r(0) = r(1) = 0 with r(θ ) > 0 for θ ∈ (0,1),
r(θ ) < 0 for θ /∈ [0,1], and r ′(0) = sup0<θ<1 r(θ )/θ = 1. The
nondimensional parameters are the Péclet and Damköhler
numbers Pe = U�/κ and Da = �/(Uτ ), where U and � are
the characteristic amplitude and length scale of the flow, κ the
molecular diffusivity, and τ the reaction time. We consider the
two-dimensional cellular flow u = (u1,u2) = (−∂yψ,∂xψ)
with stream function

ψ(x,y) = − sin x sin y. (2)

We take the domain to be the strip D = (−∞,∞) × [0,π ]
along which an infinite array of identical cells are arranged,
each of which is composed of two half cells of opposite
circulation with hyperbolic stagnation points at each corner
(streamlines are shown for a single cell in Fig. 2). As the
initial condition we take θ (x,y,0) = 
(−x), where 
 is
the Heaviside step function. The boundary conditions are
θ (∞,y,t) = 0 and θ (−∞,y,t) = 1, so that the front advances
rightwards, and no flux, ∂yθ = 0 at y = 0, π . The front
characteristics change drastically with Da. When Da is small,
the front’s leading edge is confined near the cell boundaries
(see left column in Fig. 1). As Da increases, the front sharpens
and the imprint of the flow, the boundary-layer structure in
particular, is less prominent (see middle and right columns in
Fig. 1).

The long-time speed of propagation of the front is deter-
mined by the behavior of the solution near the front’s leading
edge, where 0 < θ � 1 and r(θ ) ≈ r ′(0)θ = θ . For steady
periodic flows such as (2), this is given by

c = inf
q>0

f (q) + Da

q
, (3)

where f (q) is the largest eigenvalue of

Lv = f (q)v, (4a)

with the operator L defined by

L = Pe−1 � − u · ∇ − 2 Pe−1 q∂x + (u1q + Pe−1 q2),

(4b)

and periodic and no-flux boundary conditions in x and y,
respectively (see Refs. [15,20 (Chap. 7),21]). This result is
intimately connected with the long-time large-deviation rate
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FIG. 1. (Color online) Successive snapshots of the concentration θ for Pe = 50 and Da = 0.5 (left), Da = 5 (middle), and Da = 20 (right),
with time increasing from the top to the bottom rows. The corresponding front speeds are c ≈ 0.5, c ≈ 1, and c ≈ 1.6.

function associated with the concentration of the nonreacting
passive scalar (i.e., Da = 0); specifically, f (q) is the Legendre
transform of this rate function [15,20,22,23].

In the absence of a background flow, f (q) = q2/Pe,
recovering the classical formula for the bare speed c0 =
2
√

Da/Pe = 2
√

κ/τ (see Refs. [13,14,24,25] and references
therein). For general u 	= 0, the eigenvalue problem (4) cannot
be solved explicitly.

Small diffusivity, fast reaction. Our purpose is to use
asymptotic analysis to obtain the speed of the front in the
large-Péclet limit with

γ = Da/Pe = O(1),

corresponding to the geometric optics regime defined by
κ,τ → 0 with κ/τ = O(1) [26]. This can be achieved by
analyzing the large-Pe limit of the eigenvalue problem (4),
or by considering the large-t limit of the geometric optics
theory treatment of [20 (Chap. 6)] (see also Refs. [18,27]). It
is, however, convenient to start with the basic result exploited
by Refs. [15,20], namely, that the front speed is controlled by
the point at which the solution to the linearization of Eq. (1)
neither grows nor decays.
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FIG. 2. (Color online) Streamlines of the cellular flow with
stream function (2) (thin solid black lines) and trajectories of the
instantons minimizing (9) (thick red lines). The instantons are
calculated numerically for c = 0.5 (corresponding to γ ≈ 0.002),
c = 1 (γ ≈ 0.09), and c = 5 (γ ≈ 5.9), and become closer to the
straight line y = π/2 as c increases. The dashed lines show the
small-c and large-c asymptotic approximations obtained using (10)
for c = 0.5 and (15) for c = 5, respectively.

We seek a solution to this equation in the WKB form

θ (x,y,t) ∼ exp{−Pe[I (x,y,t) − γ t]}, for Pe � 1, (5)

where I (x,y,t) can be recognized as the small-noise
large-deviation rate function [28]. At leading order, ∂t I +
H (∇I,x,y) = 0, where H = ‖∇I‖2 + u(x,y) · ∇I is the
Hamiltonian and ‖·‖ the usual norm. Its solution is well
known from Hamilton-Jacobi theory (e.g., Refs. [28,29]) and is
given by

I (x,y,t) = 1

4
inf
φ(·)

∫ t

0
‖φ̇(s) − u(φ(s))‖2ds, (6)

subject to φ(t) = (x,y) and φ(0) = (0,·). Thus, the behavior
of (5) is controlled by a single path φ∗(s) that minimizes
this integral. This optimal path is often called instanton [30].
Expression (5) then indicates that for t � 1, the front speed
satisfies

γ = lim
t→∞

I (ct,y,t)

t
≡ G (c), (7)

where the limit t → ∞ eliminates the dependence on y. This
leads to

c = G −1(γ ). (8)

The front speed is therefore obtained by calculating G (c). This
calculation is significantly simplified by observing that the
limit in (7) is determined in terms of periodic trajectories, an
observation justified rigorously in Ref. [31]. We take solutions
φ(s) to be periodic in the sense that φ(τ ) = φ(0) + (2π,0),
where the period is τ = 2π/c. Letting σ = cs, we obtain the
simplified expression

G (c) = 1

8π
inf
φ(·)

∫ 2π

0
‖cφ′(σ ) − u(φ(σ ))‖2dσ, (9)

subject to φ(2π ) = φ(0) + (2π,0). Expressions (8) and (9) are
the main result of this Rapid Communication. They provide
a direct way of computing the instantons and thus the front
speed. Note that G (c) may be interpreted as the Legendre
transform of H , the effective Hamiltonian of the homogenized
Hamilton-Jacobi equation ∂t I + H (∇I ) = 0 [18,32]. In order
to derive (8), we have formally assumed that γ = O(1).
However, the asymptotic results apply over a broad range of
values of γ , specifically γ � (Pe log Pe)−1, as we show below.

The solution to the minimization problem (9) is easy to
obtain numerically. We first discretize (9) and use MATLAB
to minimize the action. We iterate over c, starting with large
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FIG. 3. Front speed c for Pe � 1 as a function of γ . Prediction
(8) derived from the numerical minimization of (9) (solid black line)
is compared with its small-c approximation (12) (lower dashed line),
its large-c approximation (16) (upper dashed line), and the bare speed
c0 = 2

√
γ (dotted line). The inset focuses on smaller values of γ .

values for which the straight line φ∗(σ ) = (σ,π/2) is a good
initial guess. Characteristic examples of instantons obtained
for different values of c are shown in Fig. 2 (the two cases
with c = 0.5 and c = 1 correspond to the first two columns in
Fig. 1). For large values of c, the instanton is close to a straight
line. For small values of c, it follows closely a streamline near
the cell boundaries. Figure 3 shows the behavior of c as a
function of γ deduced from (8).

Asymptotic limits. We now obtain closed-form expressions
for the speed c in two asymptotic limits. The first one
corresponds to γ � 1 and hence c � 1. Numerical results
(see Fig. 2 for c = 0.5) suggest that the instanton departs from
the streamline only for y ≈ π/2 when it crosses the separatrix
between adjacent cells. It is also clear that (9) is minimized
when φ∗(σ ) = (x(σ ),y(σ )) satisfies cy ′ ≈ − cos x sin y (so
that the instanton and flow speeds differ only in the x direction).
Exploiting symmetry to consider 0 � σ � π/2 only, with
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FIG. 4. (Color online) Front speed c as a function of Da for
different values of Pe. The large-Pe prediction (8) derived from the
numerical minimization of (9) (dashed lines) is compared with the
exact expression (3) estimated by solving the eigenvalue problem (4)
numerically (solid lines) and with direct numerical simulations of (1)
(symbols).

x(0) = 0, y(0) = x(π/2) = π/2, and y ′(π/2) = 0, we divide
the instanton into two regions (see Fig. 2). In region 1, where
x � 1, the integrand in (9) is approximately (cx ′ − x cos y)2,
leading to the Euler-Lagrange equation c2x ′′ = x (since cy ′ ≈
− sin y). In region 2, y � 1, cx ′ = sin x cos y ≈ − sin x, and
cy ′ = − cos x sin y ≈ −y cos x. Matching the solutions for
x,y � 1 (the cell corner) gives the approximation

φ∗(σ ) ∼
{

(C1(σ ),C2(σ )) for σ � π/2,

(C2(π/2 − σ ),C3(π/2 − σ )) for σ � c,

(10)

where

C1(σ ) = 4 exp

(
− π

2c

)
sinh

(
σ

c

)
,

C2(σ ) = 2 tan−1

[
exp

(
− σ

c

)]
,

C3(σ ) = 4 exp

(
− π

2c

)
cosh

(
σ

c

)
.

Expression (10) is in very good agreement with our numerical
solution (see Fig. 2 for c = 0.5).

Using (10) gives the integrand in (9) as (cx ′ − x cos y)2 ≈
16 exp(−π/c) cosh−2(σ/c), leading to

G (c) ∼ 4 × (2/π )ce−π/c, where c � 1, (11)

and the factor 4 appears because, for σ ∈ [0 2π ], there are four
regions that are similar to region 1. Inverting (11) and using
(8) finally gives

c ∼ π

Wp(8γ −1)
, for γ � 1, (12)

where Wp denotes the principal real branch of the Lambert
W function [33]. This approximation holds for (log Pe)−1 �
Da � Pe: the lower bound follows from requiring that the
argument of the exponential in (5) be large, Pe I ∼ Da τ � 1,
where the period is roughly estimated as τ = 2π/c ∼ log Pe/2
(see (13) below and Ref. [23] for a complete argument).
Figure 3 shows that this approximation is excellent within its
range of validity. Since γ � 1, it is consistent to approximate
Wp(8γ −1) to reduce (12) to

c ≈ π

log Pe
. (13)

A qualitatively similar expression was obtained in
Refs. [34,35] using a heuristic approach based on the so-called
G equation. Note that the logarithmic dependence of the speed
on Pe and its slow growth with Da [captured by (12) but not
(13)] is associated with the holdup of the instanton near the
hyperbolic stagnation points at the cell corners.

The second limit leading to closed-form results corresponds
to γ � 1, hence c � 1. In this case, we seek an instanton
as a power series φ∗(σ ) = (σ,y0) + c−1(x1(σ ),y1(σ )) + · · · ,
where x1, y1 are functions of period 2π that satisfy x1(0) =
y1(0) = 0. Substituting into (9), we find that at O(c−1),

G (c) = c2

4
+ 1

8π
inf

x1,y0,y1

∫ 2π

0

(
x ′2

1 +y ′2
1 + 4y1 sin σ sin y0

)
dσ,

(14)
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after some manipulations. Minimizing this integral leads to the
instanton

φ∗(σ ) =
(
σ,

π

2

)
+ c−1(0, − 2 sin σ ) + · · · , for c � 1,

(15)

in excellent agreement with our numerical solution (see Fig. 2
for c = 5). Combining (14) and (15) yields G (c) = c2/4 −
3/8 + O(c−2). We now use (8) to find that

c ∼ 2
√

γ

(
1 + 3

16γ
+ · · ·

)
, for γ � 1, (16)

which corresponds to Da � Pe. The leading-order term in
(16) is the bare speed c0. As Fig. 3 shows, the second term
in the expansion is necessary for a good agreement between
asymptotic and full results.

Comparison with numerical results. We now compare our
predictions for c derived from (8)–(9) with values obtained
from (i) a numerical evaluation of the principal eigenvalue in
(4), and (ii) direct numerical simulations of (1) with r(θ ) =
θ (1 − θ ). For (i) we use a standard second-order discretization
to approximate (4) and choose the spatial resolution � to
satisfy π/� = 750. The resulting matrix eigenvalue problem
is solved for a range of values of q using MATLAB. For (ii) we
discretize (1) using a fractional-step method with a Godunov
splitting which alternates between advection (using a first-
order upwind method with a minmod limiter—see Ref. [36]
for details), diffusion (using an alternating direction implicit
method), and reaction (solved exactly). We choose the same
spatial resolution � as for (4). The computational domain is
made finite using artificial boundaries at x = ±Nπ , with N =
5, so that boundary effects are negligible. The front is tracked
for long times by modifying the computational domain: When
the solution at x = (N − 1)π exceeds δ = 10−6, we eliminate

the nodes with −Nπ ≤ x ≤ (−N + 1)π and add new nodes
with Nπ ≤ x ≤ (N + 1)π where we set θ = 0. We calculate
the front speed using a linear fit of the right endpoint of the
front, x+

ε (t) = max{x : θ (x,t) = ε} where ε = 10−3. Results
are insensitive to the exact values of ε and δ.

The three sets of numerical results are shown in Fig. 4.
The speeds derived from the eigenvalue equation (4) are in
excellent agreement with the corresponding values obtained
from the full numerical simulations of Eq. (1). With increasing
values of Pe, the asymptotic expression (9) becomes increas-
ingly accurate, with excellent agreement for Pe = 250,500 and
satisfactory agreement for the moderate values Pe = 50,125.
As expected, (8)–(9) is valid for a broad range of values of Da,
restricted only by Da � (log Pe)−1. Note that the use of both
the eigenvalue equation and the full numerical simulations is
restricted: as Pe increases, the solutions to (1) and (4) become
progressively localized, with O(1/

√
Da Pe) length scales that

are challenging to resolve when Da,Pe � 1.
Conclusion. We have derived a compact expression for the

front speed based on the minimization of the large-deviation
action (9) over periodic instantons. This leads to the efficient
computation of the speed for a large range of values of Da. For
the particular case of cellular flows, this expression provides
the closed-form results (12) and (16) valid for (log Pe)−1 �
Da � Pe and Da � Pe. In the first regime, the passage of
the front near the stagnation points at the cell corners is
shown to control the front speed; as a result this is almost
insensitive to the reaction rate and depends logarithmically
on the Péclet number. For Da = O(log Pe)−1 and smaller, the
front speed is not controlled by a single minimizing trajectory,
and asymptotic solutions to the eigenvalue problem (4) must
be sought by other means; this will be the subject of future
work [23].
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