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Derivation of a neural field model from a network of theta neurons
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Neural field models are used to study macroscopic spatiotemporal patterns in the cortex. Their derivation from
networks of model neurons normally involves a number of assumptions, which may not be correct. Here we
present an exact derivation of a neural field model from an infinite network of theta neurons, the canonical form
of a type I neuron. We demonstrate the existence of a “bump” solution in both a discrete network of neurons and
in the corresponding neural field model.
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Large-scale coherent activity in the brain is associated
with a variety of behavior such as an epileptic seizure or
remembering something in short term memory [1,2]. A number
of “neural field” models have been proposed to explain such
activity, and these models have been studied intensively over
a number of decades [3–10]. While such models have been
successful in helping to understand phenomena as diverse
as visual hallucinations [5], binocular rivalry [6], and the
head direction system [11], a significant issue with neural
field models is their relationship to—and derivation from—
networks of individual neurons. Neural field models normally
take the form of nonlocal partial differential equations in
space and time for a variable that is interpreted as “synaptic
drive” or the average voltage difference between the inside
of a neuron and the outside. In deriving such models from
networks of neurons a number of assumptions are made, such
as a separation of time scales between neuron and synaptic
dynamics [3,5]. These assumptions may not necessarily hold.

In this Rapid Communication we derive exactly a neural
field model from an infinite network of “theta neurons.” The
theta neuron is the normal form of a type I neuron, for which
the onset of firing occurs through a saddle-node-on-a-circle
bifurcation as the input current is increased [12]. While the
derivation is only exact for an infinite network, we find that
it predicts well the behavior of a large finite network. The
derivation requires the form of communication between two
neurons to be of a particular form, but the coupling architecture
can be arbitrary. Our work builds on previous results for a
network with no spatial structure [13,14].

The discrete model we consider consists of a network of N

theta neurons on a one-dimensional domain of length L. The
state of neuron j at time t is θj (t) ∈ [0,2π ] and the dynamics
of the network is

dθj

dt
= 1− cos θj + (1 + cos θj )(ηj + kIj ); j = 1, . . . N,

(1)

where the input to neuron j from other neurons in the
network is

Ij = L

N

N∑
i=1

KjiPn(θi). (2)
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The parameter k is an overall coupling strength, and Pn(θ ) =
an(1 − cos θ )n, n ∈ N+, is a “pulselike” function, where an is
chosen so that

∫ 2π

0 Pn(θ )dθ = 2π . Pn has a maximum at θ =
π , and increasing n increases the “sharpness” of this function.
In the limit as n → ∞, i.e., for impulsive synapses, we have
P∞(θ ) = 2πδ(θ − π ). The coupling from neuron i to neuron
j depends on only the difference |j − i| (i.e., the distance
between neurons) and is given by

Kji = K(|j − i|�x), (3)

where �x = L/N and the function K will be specified below.
The neurons are assumed to be heterogeneous, and we model
this by randomly and independently choosing the ηj from the
Lorentzian distribution with mean η0 and width �:

g(η) = �/π

(η − η0)2 + �2
. (4)

The value of ηj governs neuron j ’s behavior in the absence
of input: If ηj < 0 the neuron is excitable, whereas if ηj > 0,
the neuron fires periodically. Thus ηj = 0 is the threshold for
firing.

We consider the “Mexican-hat” coupling function K(x) =
0.1 + 0.3 cos x on the spatial domain [0,2π ], with periodic
boundary conditions. This type of coupling function means
that nearby neurons excite one another but inhibit more distant
ones, and is commonly used in modeling studies [3]. A periodic
domain is appropriate if x represents an angular variable such
as head direction.

A typical example of the dynamics of (1) and (2) with
N = 600 is shown in Fig. 1. This state is a “bump” state,
as observed in a number of other simulations of discrete
networks of neurons [15,16]. Neurons in part of the domain are
quiescent, while others are firing approximately periodically.
The firing frequency is a maximum in the center of the
bump, falling continuously to zero at its edges. Such states
are thought to play a role in short term memory [17], since
for these parameter values the network is bistable; the “all
off” state, where most neurons are quiescent, is also stable
(not shown). The position of the bump in the network is
determined by the transient stimulus that moved the network
into the bump state (the transient contains the information to be
“remembered”), and this information can be retrieved at a later
time by determining the position of the fastest firing neuron.
Similar bump states exist in this network at these parameter
values for N as small as 40, although finite size effects, in the
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FIG. 1. (Color online) A simulation of (1)–(4) with coupling
function K(x) = 0.1 + 0.3 cos x. (a) sin θ , color-coded. (b) Snap-
shot of the network at t = 100. (c) Average firing frequency over
0 � t � 100. Parameters: L = 2π, k = 2, N = 600, n = 2, η0 =
−0.4, � = 0.02.

form of “wandering” of the bump, do become more prominent
as N decreases.

We now take the continuum limit, N → ∞, of the discrete
network and exactly derive the corresponding neural field
model. In this limit, the system is described by the probability
density function F (x,η,θ,t), such that F (x,η,θ,t)dx dη dθ is
the probability that a neuron in (x,x + dx) has a value of η

in (η,η + dη) and phase in (θ,θ + dθ ) at time t [18,19]. This
function satisfies the continuity equation

∂F

∂t
+ ∂

∂θ
(Fv) = 0, (5)

where v is the continuum limit of the right-hand side (RHS)
of (1):

v(x,θ,η,t) ≡ 1 − cos θ + (1 + cos θ )[η + kI (x,t)], (6)

where

I (x,t) =
∫ L

0
K(x − y)

∫ ∞

−∞

∫ 2π

0
F (y,η,θ,t)

× an(1 − cos θ )ndθ dη dy. (7)

We also introduce the complex, space-dependent, order pa-
rameter (the expected value of eiθ )

z(x,t) =
∫ ∞

−∞

∫ 2π

0
F (x,η,θ,t)eiθdθ dη, (8)

and below we derive a closed equation for the evolution of z;
this is the neural field model. To simplify (5)–(7) we use the
Ott-Antonsen ansatz [20,21], i.e., we write

F (x,η,θ,t) = g(η)

2π

⎧⎨
⎩1 +

∞∑
q=1

[α(x,η,t)]q eiqθ + c.c.

⎫⎬
⎭ , (9)

where “c.c.” is the complex conjugate of the preceding term
and α is a complex-valued function. Substituting (9) into (8)
we obtain

z(x,t) =
∫ ∞

−∞
g(η)ᾱ(x,η,t)dη, (10)

and using standard properties of the Lorentzian to perform the
integration over η [13,18] we obtain z(x,t) = ᾱ(x,η0 − i�,t),
where an overbar indicates complex conjugation. Now So et al.
[13] showed that

(1 − cos θ )n =
n∑

k=0

k∑
m=0

Qkmei(k−2m)θ , (11)

where

Qkm = n!(−1)k

2k(n − k)!m!(k − m)!
, (12)

and thus using (9) we obtain∫ 2π

0
F (y,η,θ,t)an(1 − cos θ )ndθ

= ang(η)

⎛
⎝C0 +

n∑
q=1

Cq{[α(y,η,t)]q + [ᾱ(y,η,t)]q}
⎞
⎠ ,

(13)

where

Cq =
n∑

k=0

k∑
m=0

δk−2m,qQkm, (14)

where δi,j is the Kronecker delta. Using this result and the
properties of the Lorentzian g(η) one can show that

∫ ∞

−∞
g(η)

⎛
⎝C0 +

n∑
q=1

Cq{[α(y,η,t)]q + [ᾱ(y,η,t)]q}
⎞
⎠ dη

= C0 +
n∑

q=1

Cq{[z(y,t)]q + [z̄(y,t)]q}. (15)

Thus

I (x,t) =
∫ L

0
K(x − y)H (z(y,t); n)dy, (16)
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where

H (z; n) = an

⎡
⎣C0 +

n∑
q=1

Cq(zq + z̄q)

⎤
⎦ . (17)

[It can be shown that for impulsive coupling, H (z; ∞) = (1 −
|z|2)/(1 + z + z̄ + |z|2).]

Now from the form of v we know that α satisfies [22]

∂α

∂t
= − i

[
η + kI − 1

2
+ (1 + η + kI )α

+
(

η + kI − 1

2

)
α2

]
, (18)

and evaluating this at η = η0 − i� and simplifying we obtain

∂z

∂t
= (iη0 − �)(1 + z)2 − i(1 − z)2

2
+ k

i(1 + z)2

2
I. (19)

This is our neural field equation, a nonlocal partial differential
equation. The first term on the RHS of (19) governs the local
dynamics in the absence of input from the rest of the network,
and the second term describes the contributions of the rest of
the network to the dynamics at position x through the integral
(16).

Equation (19) is not in the usual form of a neural field
equation, since it is not immediately clear what the physical
interpretation of z is, and quantities such as the firing rate of
neurons (that normally appear in neural field models) do not
appear explicitly in (19). For the physical interpretation, write
z in polar form as z(x,t) = r(x,t)eiψ(x,t), then marginalize (9)
over η to obtain the probability density function

p(θ,x,t) = 1 − r2(x,t)

2π{1 − 2r(x,t) cos [θ − ψ(x,t)] + r2(x,t)} .
(20)

At fixed x and t this is a unimodal function of θ with a
maximum at θ = ψ , and whose sharpness is governed by the
value of r [18], i.e., the magnitude and phase of z describe
the distribution of phases, θ . As for the firing rate, in the
discrete network the total input to neuron j is ηj + kIj and its
frequency is

√
ηj + kIj /π [12]. Thus in the continuum limit

the frequency of neurons at position x and time t is

f (x,t) = 1

π

∫ ∞

−kI (x,t)
g(η)

√
η + kI (x,t)dη (21)

=
√

η0 + kI (x,t) +
√

[η0 + kI (x,t)]2 + �2

2π2
. (22)

A steady state of (19) is shown in Fig. 2, together with the
frequency profile.1 Note that the system is invariant with
respect to translations in x, so this is one of a continuous
family of solutions, each related to one another by a shift in x.
We see that away from the center of the domain, the magnitude
of z is close to 1, indicating near synchrony. The neurons are
synchronized in the sense of having similar phases, but they are

1The spatial domain was discretized with 100 equally spaced points,
and the trapezoidal rule used to evaluate the integral (16).
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FIG. 2. (Color online) Steady state of (19). Compare with Fig. 1.
(a) Magnitude of z. (b) Argument of z. (c) Frequency, as given by
(22). Parameters: L = 2π, k = 2, n = 2, η0 = −0.4, � = 0.02.

quiescent, not firing. The most likely phase of these quiescent
neurons is given by the phase of z, as plotted in panel (b). The
neurons near the center of the domain are firing, but at different
rates, as shown by panel (c). We have repeated the simulations
shown in Figs. 1 and 2 with n = 3,5,10,∞ and found no
qualitative differences between these cases, indicating that the
precise value of n is not important.

The behavior in the center of the domain in Fig. 2 is worth
commenting on. Consider a theta neuron with total input s:
dθ/dt = 1 − cos θ + (1 + cos θ )s ≡ h(θ,s). For 0 < s < 1,
h has a maximum at θ = π and minimum at 0, and thus the
angular density (which is inversely proportional to velocity)
has a maximum at 0 and minimum at π . The situation is
reversed for s > 1, and the fact that the total input to neurons
in the center of the bump is greater than 1 is responsible for
the two transitions of r through 0 and the corresponding jump
of approximately π in ψ .

We can follow steady states of (19) as parameters are varied
by spatially discretizing and using standard algorithms [23].
An example is shown in Fig. 3 where we vary η0, the average
input to the network, ignoring coupling. We see that as η0 is
decreased, making it harder for neurons to fire, a stable bump is
destroyed in a saddle-node bifurcation with an unstable bump.
Profiles at two points on the curve are shown in panel (b).

We have presented only a bump state, to demonstrate the
correspondence between a discrete network of theta neurons
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FIG. 3. (Color online) (a) Maximum firing frequency in the
network as a function of η0. Solid: stable. Dashed: unstable.
(b) Frequency profiles at the two points marked in (a) (solid blue
curve, blue circle; dashed red curve, red square). Parameters: L =
2π, k = 2, n = 2, � = 0.02.

and the associated neural field model. However, a variety of
other spatiotemporal patterns are of interest and have been

studied elsewhere, including traveling fronts and bumps in one
spatial dimension [3] and traveling waves [7], spiral waves [8],
and target patterns [9] in two spatial dimensions. It would be
of interest to investigate such patterns in a model like (19),
knowing that there is a direct correspondence between this
model and the corresponding network of theta neurons.

Several other generalizations of the results here can be
mentioned. One involves including some kinetics in the
synaptic coupling. As presented, the input to a neuron through
the term I involves only the current state of neurons coupled to
it. A simple modification would involve replacing kIj in (1) by
kbj , where each bj satisfies dbj/dt = (Ij − bj )/τ . Altering
the time constant τ would allow one to consider fast (τ � 1)
and slow (τ � 1) synapses.

One could also include spike frequency adaptation, nor-
mally modeled by including a subtractive current proportional
to the firing rate [3,24], which is given by (22). More realistic
neural field models include two populations, one excitatory
and one inhibitory, with purely positive coupling between and
within populations [10], and the network presented here is
easily generalized to two such populations.

We finish by mentioning related work [25] in which these
authors show that a particular form of the Winfree model of
coupled oscillators, with coupling equivalent to the Pn that
we use, can also be analyzed exactly in the continuum limit
using the Ott-Antonsen ansatz. The Winfree model includes a
function referred to as the “phase response curve” which can be
measured experimentally for an individual neuron [26], and the
analysis of Pazó and Montbrió [25] relies on this being well
approximated by a sinusoidal function. While these authors
did not consider spatially extended networks, it would be
straightforward to generalize their results to derive a spatially
extended model of a network of neurons, as we did here.
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