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We note that extreme multistability of the type described in the referenced paper can be achieved in virtually
any dynamical system by adding extraneous variables and using their initial conditions in place of the existing
parameters or as additional parameters. We show several simple examples of this and show how the referenced
examples are similar.
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In a recent paper, Hens et al. [1] described two examples
of coupled oscillators in which the initial conditions appear to
play the role of bifurcation parameters. We contend that the
reason for this behavior is that the resulting system collapses
to one of lower dimension in which the initial conditions of
the extraneous equations become parameters in the remaining
equations.

It is well known that certain nonautonomous dynamical
systems can be made autonomous by introducing additional
variables. For example, the damped, driven Ueda oscillator [2]
given by

ẋ = y, ẏ = −y − x3 + A cos ωt (1)

can be transformed to a four-dimensional autonomous system
by setting u = A cos ωt to give

ẋ = y, ẏ = −y − x3 + u, u̇ = v, v̇ = −ω2u, (2)

where the parameter A now appears in the initial conditions of
u0 = A and v0 = 0. The last two equations in (2) are simply a
harmonic oscillator that generates a sine wave of amplitude A

and frequency ω.
An even more trivial example is the diffusionless Lorenz

system [3]

ẋ = y − x, ẏ = −xz, ż = xy − R, (3)

in which the substitution u = R gives

ẋ = y − x, ẏ = −xz, ż = xy − u, u̇ = 0, (4)

with the initial condition u0 = R. Such a simple transformation
can be used to remove any parameter from a dynamical system
and replace it by the initial condition of an added variable
whose derivative is zero.

This example can be made slightly less trivial using a
substitution such as u = R + x in (3) to give

ẋ = y − x, ẏ = −xz, ż = xy − u + x, u̇ = y − x,

(5)

with the initial condition u0 = x0 + R. Here it is obvious that
u̇ = ẋ and thus u(t) tracks x(t) to within a constant given by
the difference in the initial conditions u0 and x0.

More complicated substitutions can lead to systems where
the nonuniqueness of the equations is much less apparent. For
example, take u = xy − R in (3) to give

ẋ = y − x, ẏ = −xz, ż = u, u̇ = y2 − xy − x2z,

(6)

with the initial condition u0 = x0y0 − R. The parameter R

has been absorbed into the initial conditions, and it is nearly
impossible to tell that the apparent four-dimensional system
is really a three-dimensional system in disguise with an
extraneous fourth equation nonlinearly related to the other
three.

As a final example, consider a variant of Eq. (3) given by

ẋ = y − x, ẏ = −xz, ż = xy − u, u̇ = v, v̇ = −v.

(7)

This system is four dimensional as one can verify by
calculating the rank of its Jacobian matrix or by counting the
number of nonidentical Lyapunov exponents, but it collapses
to a three-dimensional system after the initial transient has
decayed because v asymptotically approaches zero and u

approaches a constant given by R = u0 + v0.
In the referenced paper [1], the authors consider two

coupled Rössler systems [4] that are synchronized such that all
three of their variables track one another to within a constant
that depends on the initial conditions. In simplified form, their
equations can be written as

ẋ1 = −x2 − x3, ẋ2 = x1 + a(x2 − e2),

ẋ3 = b − cx3 + x1x3, ė1 = −e1, (8)

ė2 = e1, ė3 = −ce3,

where e1 = x1 − y1, e2 = x2 − y2, and e3 = x3 − y3. The yi

variables refer to the second Rössler system that becomes
synchronized to the corresponding xi variables after the
initial transient has decayed and thus no longer needs to be
considered. From the ė1 equation of (8), it is clear that e1 = 0
after the initial transient has decayed, and thus ė2 = 0 and e2 is
a constant. Therefore, what the authors have effectively done
is to introduce into the Rössler system an additional constant
term ae2 in the ẋ2 equation and used the initial conditions of
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the extraneous ė2 equation to determine its value. Note that
system (8) is a master-slave system similar to system (2) in
which the first half of the equations depends on the second
half, but the second half is independent of the first half.

The authors’ second autocatalator [5] example can be
written as

ẋ1 = μ(κ + x3) − x1
(
1 + x2

2

)
,

σ ẋ2 = (x1 − e1)
(
1 + x2

2

) − x2, (9)

δẋ3 = x2 − x3, ė1 = μe3, ė2 = −e2, δė3 = −e3,

where e1 = x1 − y1, e2 = x2 − y2, and e3 = x3 − y3. The yi

variables refer to the second autocatalator model that becomes
synchronized to the corresponding xi variables after the
initial transient has decayed and thus no longer needs to be
considered. From the ė2 and ė3 equations of (8), it is clear that
e2 = 0 and e3 = 0 after the initial transient has decayed. Thus
ė1 is zero, which means that e1 is a constant that depends on
the initial conditions. Therefore, the extraneous ė1 equation is
being used simply to determine the value of the parameter e1

in the ẋ2 equation. System (9) is also a master-slave system
similar to system (2) in which the first half of the equations
depends on the second half, but the second half is independent
of the first half.

Thus we contend that any dynamical system with an
attractor can be made to exhibit extreme multistability by
replacing one of its bifurcation parameters by an additional
variable whose value is constant or that approaches a constant
in the asymptotic limit t → ∞ and whose value is determined
by the initial conditions. However, the converse is not true.
Most high-dimensional systems cannot be reduced to a lower-
dimensional system with parameters determined by the initial
conditions except in special situations such as two identical
systems with carefully chosen coupling for which several
examples have now been provided [1,6–8]. This leaves the false
impression that extreme multistability is unusual and difficult
to achieve, and that it is somehow special or surprising.

In studying dynamical systems, it is important to verify
that all the equations are independent and contribute to the
dynamics. The presence of extraneous equations and their
apparent additional dimensions can lead to false conclusions
such as the claim that the initial conditions are bifurcation
parameters or that a system has infinitely many equilibria
[9]. However, what might be viewed as a flaw in Ref. [1]
may actually be a virtue since it suggests that plotting
bifurcation diagrams versus initial conditions is a useful means
for identifying extraneous equations in models of dynamical
systems.
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