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Catalytic reactions are of great interest in many applications related to power generation, fuel reforming and
pollutant abatement, as well as in various biochemical processes. A recently proposed lattice Boltzmann model for
thermal binary-mixture gas flows [J. Kang, N. I. Prasianakis, and J. Mantzaras, Phys. Rev. E. 87, 053304 (2013)]
is revisited and extended for the simulation of multispecies flows with catalytic reactions. The resulting model can
handle flows with large temperature and concentration gradients. The developed model is presented in detail and
validated against a finite volume Navier-Stokes solver in the case of channel-flow methane catalytic combustion.
The surface chemistry is treated with a one-step global reaction for the catalytic total oxidation of methane on
platinum. In order to take into account thermal effects, the catalytic boundary condition of S. Arcidiacono, J.
Mantzaras, and I. V. Karlin [Phys. Rev. E 78, 046711 (2008)] is adapted to account for temperature variations.
Speed of sound simulations further demonstrate the physical integrity and unique features of the model.
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I. INTRODUCTION

The lattice Boltzmann (LB) method has become a very
popular platform for the simulation of complex flow physics
that range from laminar and turbulent flows to multiphase and
particle or porous media flows [1–9]. For the construction of a
mixture model, it is required to control the viscous dynamics
as well as the molecular diffusion of each species through
the collision process in an efficient way. This usually leads to
two or more relaxation parameter collision submodels, such
that different approaches have produced many nonthermal
multicomponent LB models [10–17]. Regarding the modeling
that takes into account temperature dynamics (thermal LB),
a thermal binary mixture model has recently been proposed
on standard lattices [18], while theoretical aspects dealing
with thermal multicomponent flows on extended lattices were
reported in Ref. [19].

Catalytic reactions are of key importance in many appli-
cations related to power generation, fuel reforming, pollutant
abatement, and various biochemical processes [20]. However,
the LB-relevant catalytic studies presented in the literature
are mainly focused on isothermal flows [21–24]. In energy
conversion systems, such as catalytic combustion reactors
or solid oxide fuel cells, the reactive flows are subject to
large temperature and concentration variations. Consequently
modeling of such flows requires the correct description of
mass, momentum, and heat (thermal energy) transport.

In this paper the lattice Boltzmann model for ther-
mal binary-mixture gaseous nonreactive flows presented in
Ref. [18] is extended to simulate multicomponent (three or
more species) flows with catalytic reactions. In contrast to
the thermal binary-mixture model, each species has its own
characteristic relaxation time. This allows direct control of the
transport properties of each species (viscosity, diffusivity, con-
ductivity), resulting in a realistic description of mixture flows.
During the theoretical derivation, all existing deviation terms
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are identified and neutralized in order to guarantee the correct
thermo-hydrodynamic limits. The theoretical derivation is
followed by numerical validations. An interesting feature of
this model is highlighted by studying the speed of sound, which
reveals the potential of the model to describe acoustics. The
speed of sound of the gaseous mixture is computed at different
temperatures and compositions, and the results are validated
against theoretical values.

The proposed model is further validated in thermal reactive
flows in a catalytic channel. For this application, a thermal
surface reactive boundary condition is required to describe
the catalytic reaction mechanism, which takes into account
the temperature information. The catalytic diffusive boundary
condition [21,25] is hence adapted to include temperature
description. The flow under consideration is the catalytic
oxidation of methane, whereby the surface chemistry is treated
by using a one-step global reaction mechanism for the total oxi-
dation of methane on platinum [26]. The incoming methane-air
mixture is fully premixed, while the channel wall temperature
is kept constant. For different flow conditions, i.e., inlet
velocity and inlet temperature, the LB simulation results are
compared against a finite volume Navier-Stokes solver [27].

This article is organized as follows. In Sec. II the kinetic
model for thermal multicomponent flows is introduced. In
Sec. III, asymptotic analysis of the model behavior is exam-
ined, and the introduction of correction terms leads to the
recovery of the correct macroscopic limit and full control
of the transport properties. In Sec. IV the physical integrity
of the model is tested by measuring the speed of sound for
different mixture conditions. In Sec. V the catalytic diffusive
boundary condition of Ref. [21,25] is extended to include
temperature information in addition to surface chemistry.
Simulation results and comparison with a well-established
Navier-Stokes solver are presented for the flow in a catalytic
channel with large temperature variations.

II. KINETIC MODEL FOR THERMAL
MULTICOMPONENT FLOWS

The thermal multicomponent model kinetic equation is
extended from the thermal binary-mixture model of Ref. [18].
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For a multicomponent mixture flow composed of N species,
each species is assigned with a one-particle distribution
function, evolving with its own kinetic equation and carrying
its density, momentum, and energy information in a consistent
way. The kinetic equation for each species is

∂tfji + cjiα∂αfji = − 1

τj1

(
fji − f ∗

ji

) − 1

τj2

(
f ∗

ji − f
eq
ji

)
+ψji + φji, j = 1,2, . . . ,N, (1)

where i = 0, . . . ,8 is the index of discrete velocities cjiα ,
with α being the coordinate index ({α = x,y,z}). The current
model employs a standard two-dimensional nine-velocity
lattice (D2Q9) for the spatial and velocity discretization, with
discrete velocities written as

cjix = cj {0,1,0,−1,0,1,−1,−1,1} ,
(2)

cjiy = cj {0,0,1,0,−1,1,1,−1,−1} ,

with cj = √
1/Mj and Mj the lattice speed and the molar mass

of species j , respectively. All species are solved on the same
grid system by setting the lightest species to propagate on-
lattice and all other heavier off-lattice species are interpolated
to the common grid. Extension of the current model to three-
dimensional 27 velocity lattice (D3Q27) is straightforward.

The BGK relaxation process is split in two parts [18,28–
31]. The first part is characterized by a relaxation toward an
auxiliary state, represented by f ∗

ji , with characteristic time τj1;
the second part describes relaxation toward the thermodynamic
equilibrium f

eq
ji , with characteristic time τj2 [see Eq. (1)]. Note

that for the thermal binary-mixture model of Ref. [18] both
species A and B have equal characteristic times τA1 = τB1 and
τA2 = τB2, which results in common transport properties. The
introduction of variable characteristic times τj1 and τj2 allows
every component j to have its own transport properties.

The relevant moments of each species, which are necessary
in the following analysis, are the density, momentum, energy,
pressure tensor, third-order moment, third-order contracted
moment, and fourth-order contracted moment,

ρj =
8∑

i=0

fji, Jjα =
8∑

i=0

fjicjiα, Ej =
8∑

i=0

fjic
2
ji ,

Pjαβ =
8∑

i=0

fjicjiαcjiβ, Qjαβγ =
8∑

i=0

fjicjiαcjiβcjiγ , (3)

qjα =
8∑

i=0

fjicjiαc2
ji , Rjαβ =

8∑
i=0

fjicjiαcjiβc2
ji .

The equilibrium distribution function f
eq
ji is found by min-

imizing the H function under specific constraints given as
[18,32–34]

f
eq
ji (ρj ,u,T ) = ρj

∏
α=x,y

(
1 − 2c2

0iα

)
(2)C

2
0iα

[(
c2

0iα − 1
)

+√
Mjc0iαuα + Mju

2
α + T

]
, (4)

where c0i is defined via Eq. (2) by setting c0 = 1; uα is the
mixture velocity, which is related to the mixture momentum via
uα = Jα/ρ, with ρ the mixture density; C is the concentration

of the mixture, defined as C = ∑N
j Cj = ∑N

j ρj/Mj ; and T

is the temperature of the mixture and is related with the total
energy of the mixture E. The total mixture momentum and
energy can be calculated by

Jα =
N∑
j

Jjα =
N∑
j

8∑
i=0

fjicjiα,

(5)

E = 2CT + J 2

ρ
=

N∑
j

Ej =
N∑
j

8∑
i=0

fjic
2
ji .

The moments of the equilibrium distribution function are
in agreement to those predicted by the kinetic theory of gases
[Maxwell-Boltzmann form (MB)] [35] up to second order.
Deviations appear in the higher order moments due to the sim-
plicity of the employed lattice in the discretization and are indi-
cated as Q′

jαβγ , q ′
jα and R′

jαβ , respectively (see Appendix A).
These deviations will influence the macroscopic limit of the ki-
netic model. Nevertheless, proper counterterms ψji and φji can
be introduced at the level of the lattice BGK equation, in a way
presented in Refs. [34,36,37] and similar to the thermal binary-
mixing model [18]. Their purpose is to neutralize the inherent
deviation in the macroscopic limits and to ensure the recovery
of the correct thermohydrodynamics. The term ψji is used to
reproduce the correct momentum equation, while φji is used
for reproducing the energy equation. The exact forms of these
two terms are identified through the Chapman-Enskog analysis
of the kinetic equation, and are given in the next section.

The auxiliary state population f ∗
ji has a similar form as

f
eq
ji but with the mixture velocity replaced by the individual

species velocity and reads as

f ∗
ji(ρj ,uj ,T ) = ρj

∏
α=x,y

(
1 − 2c2

0iα

)
(2)C

2
0iα

[(
c2

0iα − 1
)

+√
Mjc0iαujα + Mju

2
jα + T

]
, (6)

where ujα is the velocity of species j defined as ujα = Jjα/ρj .
The final discretized kinetic expression of Eq. (1) can be

obtained by applying the trapezoidal rule and is reformulated
with the help of the transformation population gji (transforms
the scheme to an explicit one), which gives

gji(t + δt) = gji (t) − 2δt

δt + 2τj1
[gji(t) − f ∗

ji(t)]

− 2δt

δt + 2τj1

τj1

τj2

[
f ∗

ji(t) − f
eq
ji (t)

]

+ 2τj1δt

δt + 2τj1
[ψji(t) + φji(t)], (7)

where for the usual scheme, δt = 1. The transformation
population, gji , is defined as

gji = fji + δt

2τj1

[
fji − f ∗

ji

] + δt

2τj2

[
f ∗

ji − f
eq
ji

]

− δt

2
[ψji + φji]. (8)

The local density, momentum, and temperature of population
fji are therefore related with the populations gji , respectively
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as follows:

ρj (f ) = ρj (g), (9a)

Jjα (f ) =
Jjα (g) + δt

2τj2
J

eq
jα (f ) + δt

2

∑8
i=0 cjiαψji(

1 + δt
2τj2

) , (9b)

T (f ) =
E (f ) − J (f )2

ρ(f )

2C
=

E (g) − J (g)2

ρ(g)

2C

+ δt

4C

i=8,j=N∑
i=0,j

c2φji . (9c)

III. MACROSCOPIC LIMIT

The macroscopic limit of the proposed kinetic equation
Eq. (1) is studied via Chapman-Enskog expansion analysis. By
taking the moments of the kinetic equation Eq. (1) and using
the definition of the moments of the distribution function fji as
shown in Eq. (3), the moment transport equations are obtained
for each species as well as for the mixture. The density ρj ,
momentum Jjα , and energy Ej transport equations of each
species j are the following:

Individual density:

∂tρj + ∂αJjα = 0. (10)

Individual momentum:

∂tJjα + ∂βPjαβ = −Vjα

τj2
. (11)

Individual pressure tensor:

∂tPjαβ + ∂γ Qjαβγ

= 1

τj1

(
P ∗

jαβ − Pjαβ

) + 1

τj2

(
P

eq
jαβ − P ∗

jαβ

)
. (12)

Individual third-order contracted moment:

∂tqjα + ∂βRjαβ = 1

τj1
[q∗

jα − qjα] + 1

τj2

[
q

eq
jα − q∗

jα

]
. (13)

In the following analysis, the moment transport equations
are expanded to different orders. On the zeroth order, transport
equations of the nonconserved moments of each species j are
identified as

∂
(0)
t Jjα + ∂βP

eq
jαβ = −V

(1)
jα

τj2
, (14)

∂
(0)
t P

eq
jαβ + ∂γ Q

eq
jαβγ = − 1

τj1
P

(1)
jαβ +

(
1

τj1
− 1

τj2

)

× [(
uαV

(1)
jβ + uβV

(1)
jα

)]
, (15)

∂
(0)
t q

eq
jα + ∂βR

eq
jαβ

= − 1

τj1
q

(1)
jα +

(
1

τj1
− 1

τj2

)
4

Mj

T V
(1)
jα

+
(

1

τj1
− 1

τj2

) (
Jjαu2

j − YjJαu2 + q ′∗
jα − q

′eq
jα

)
. (16)

Note that in the case of the binary mixture of Ref. [18], when
summing up the equivalent Eq. (15) over species j, the second
terms on the right-hand-side (RHS) sum up to zero. For the
present bare model, however, they do not sum up to zero, due
to different relaxation times for each species, and they show up
as deviation terms that affect the macroscopic limit. Similarly,
the third term on the RHS in Eq. (16) results in an undesired
deviation term. The influence of both aforementioned terms
on the macroscopic momentum and energy equation will be
identified through the Chapman-Enskog analysis and will be
finally neutralized.

A. Mass diffusivity

In order to derive the macroscopic multicomponent dif-
fusion equation and identify the relation between the binary
diffusivities, Djk , and the relaxation time, τj2, for each species,
Eq. (14) is further analyzed. Taking the zeroth-order transport
equations of different moments into account [18], substituting
with Eq. (A1), and using the definition of diffusion flux
Vjα = Jjα − (ρj/ρ)Jα , one can get the first-order component
of the diffusion flux V

(1)
jα using Eq. (14):

V
(1)
jα = τj2[Yj∂αp − ∂αpj ], (17)

where pj = CjT is the pressure of species j . Since the
diffusion flux at the equilibrium state is zero, V eq

jα = 0, Eq. (17)
can be rewritten in the following form:

∂αXj = − Vjα

τj2p
+ Yj − Xj

p
∂αp. (18)

Comparing this equation with the multicomponent diffusion
equation (in the absence of body forces and neglecting the
Soret effect),

∂αXj =
N∑

k=1

XjXk

Djk

(ukα − ujα) + (Yj − Xj )
∂αp

p
, (19)

leads to the relation between binary diffusivity Djk and
relaxation time τj2. Similar to Ref. [38], the relation is

τj2 = ρj

Pj

Djm, (20)

where Djm is the mixture-averaged diffusion coefficient of
species j [38,39],

Djm = 1 − Yj∑N
k �=j Xk/Djk

, (21)

which is based on the mixture-averaged diffusion approxima-
tion. This approximation is widely used in many thermofluidic
applications such as combustion processes [40,41]. In some
isothermal multicomponent LB models this approximation is
not invoked [42–44]. A deviation is introduced to the mixture
momentum equation, whose RHS becomes nonzero:

∂tJα + ∂βPαβ = −
N∑
j

Vjα

τj2
�= 0. (22)

In order to restore conservation of the local mixture momen-
tum, a correction velocity Ucα is used [38],

Jjα = J̃jα + ρjUcα, (23)

where J̃jα is the momentum of species j before the correction
velocity implementation on the momentum conservation, and
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Jjα is the desired corrected momentum of species j . The
correction velocity Ucα has the following property:

N∑
j

ρjUcα

τj2
= −

N∑
j

ρj

ρ
Jα − J̃jα

τj2
. (24)

The correction velocity is applied to the momentum equation
by adding the forcing term ψ

(I)
ji into the kinetic equation (1),

ψ
(I)
ji = �jiα

ρjUcα

τj2
, (25)

where the coefficients �jiα (α = x,y) are defined as

�jix = 1

4cj

{0,4,0,−4,0,−1,1,1,−1} ,

(26)
�jiy = 1

4cj

{0,0,4,0,−4,−1,−1,1,1} .

B. Viscosity

In order to derive the macroscopic momentum equation
and identify the relation between the dynamic viscosity μj

and the relaxation parameter τj1 for each species, Eq. (15) is
the starting point. The nonequilibrium pressure tensor P

eq
αβ is

obtained as

P
(1)
αβ = −

N∑
j

(
τj1Cj

)
T ∂γ

(
Jα

ρ
δβγ + Jβ

ρ
δαγ − Jγ

ρ
δαβ

)

+P ′′
αβ. (27)

In the derivation, special care is taken for the second term on the
RHS of Eq. (15). If the relaxation times τj1 have the same value
for each species (e.g., the binary-mixture model), this term
will sum up to zero for the total mixture and will not introduce
any deviation at the macroscopic momentum equation. On
the contrary, if τj1 is different for each species (the case of a
multicomponent mixture), the summation of this term for the
mixture does not add up to zero, thus introducing a deviation at
the macroscopic momentum equation limit. Finally, the total
deviation of the nonequilibrium pressure tensor of the total
mixture, P ′′

αβ , is obtained as

P ′′
αβ = −

N∑
j

τj1∂γ Q′
jαβγ +

N∑
j

τj1Xj

2
∂γ q ′

γ δαβ

+
N∑
j

(
uαV

(1)
jβ + uβV

(1)
jα

)
. (28)

The final macroscopic momentum equation of the bare kinetic
model (without considering the correction terms) is

∂tJα + ∂αp + ∂β

⎡
⎣JαJβ

ρ
−

N∑
j

(τj1Cj )T ∂γ

×
(

Jα

ρ
δβγ + Jβ

ρ
δαγ − Jγ

ρ
δαβ

)⎤
⎦ + ∂βP ′′

αβ = 0. (29)

The specific form of the deviation term ∂βP ′′
αβ is given in

Appendix B 1 and is neutralized by using the counterterm
ψ

(II)
jiα:

ψ
(II)
ji = �jiα∂βP ′′

αβ. (30)

Therefore, the total correction that needs to be applied to the
kinetic equation for the recovery of the correct momentum
equation is

ψji = ψ
(I)
ji + ψ

(II)
ji . (31)

The dynamic viscosity of the mixture can be identified as

μ =
N∑
j

(τj1Cj )T . (32)

For the exact relation between dynamic viscosity μj and the
relaxation time τj for each species, the Wilke formula [40,45]
is used. It defines the viscosity of a multicomponent mixture
in terms of concentration, viscosity, and molecular weight of
each component,

μ =
N∑
j

Xjμj∑N
k Xkϕjk

, (33)

where ϕjk is

ϕjk = 1√
8

(
1 + Mj

Mk

)−1/2 [
1 +

(
μj

μk

)1/2(
Mk

Mj

)1/4]2

.

(34)

By comparing Eq. (32) and Wilke formula (33), the relation
between μj and τj1 is

τj1 = μj

p
∑N

k Xkϕjk

. (35)

C. Heat conductivity of the bare model

In the analysis of the energy equation, Eq. (16) is used to
calculate the heat conductivity. The nonequilibrium contracted
third-order moment q

(neq)
α is shown to be

q(neq)
α = −

[
4p

∑N
j

Xj τj1

Mj
∂αT + 4T

∑N
j

Vjα

Mj

−2p
∑N

j Xjτj1uβ(∂αuβ + ∂βuα − ∂γ uγ δαβ)

]

+ q ′′
α, (36)

where q ′′
α is the deviation of the nonequilibrium third-order

contracted moment q
(neq)
α from the desired MB form. In the

bare thermal multicomponent model (before the introduction
of the energy correction terms), the recovered macroscopic
energy equation is obtained and given in terms of temperature
evolution as follows:

∂tT = − T ∂αuα − uα∂αT + 1

C
∂α

⎛
⎝2p

N∑
j

Xjτj1

Mj

∂αT

⎞
⎠

− 1

C
∂α

∑
j

(2T CjUjα) + 1

C

N∑
j

(Xjτj1)p∂αuβ

× (∂αuβ + ∂βuα − ∂γ uγ δβα) − 1

2C
(∂αq ′

α + ∂αq ′′
α),

(37)

where Ujα = Vjα/ρj is the diffusion velocity. The heat
conductivity κ of the gas mixture for the bare LB model is
identified as

κ = 2p

N∑
j

Xjτj1

Mj

. (38)
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In Eq. (37), the last term on the RHS is the deviation of the bare
LB model from the desired macroscopic limit. It is corrected by
introducing a counter term φ

(I)
ji at the kinetic equation through

a forcing scheme, defined as

φ
(I)
ji = �ji∂α(q ′

α + q ′′
α), (39)

where the coefficient �ji is

�ji = 1

8c2
j

{−12,4,4,4,4,−1,−1,−1,−1}. (40)

q ′
α is given in Appendix A, and q ′′

α is identified through
Chapman-Enskog analysis in Appendix B 2. Since the exact
form of this term is known, it is neutralized by using the forcing
scheme for φji similar to Ref. [18,34].

D. Variable Prandtl number and heat conductivity

In the previous section, the heat conductivity of the
mixture stemming from the bare LB model leads to a fixed
Prandtl number (Pr) value. The Pr and heat conductivity
can be adjusted by adding qPr

jα in the correction terms. The

implementation is done through the forcing term φ
(II)
ji = ∂αqPr

jα ,
which affects the energy equation. The qPr

jα for each species
reads

qPr
jα =

(
4

Pr M
− 4

Mj

)
Xjτj1p∂αT , (41)

and therefore the heat conductivity of the mixture becomes

κ = 2p

Pr M

N∑
j

τj1Xj . (42)

The Prandtl number can also be adjusted for each species.
If the Pr number of species j is known and denoted as Prj , the
responsible term qPr

jα for species j takes the following form:

q
Prj
jα = 4τj1

∑N
k (Xkφjk)

Prj Mj

p∂αT − 4Xjτj1

Mj

CT ∂αT , (43)

which leads to the corresponding heat conductivity of each
species as

κj = 2τj1p
∑N

k Xkφjk

Prj Mj

. (44)

In general, the mixture-averaged thermal conductivity
calculated by CHEMKIN package [39,46] can be applied. It
is evaluated through the Mathur formula [39,47]:

κ = 1

2

⎛
⎝ N∑

j=1

Xjκj + 1∑N
j=1 Xj/κj

⎞
⎠ . (45)

Equations (41) and Eq. (42) are used to conveniently control
the Prandtl number and heat conductivity of the mixture.

Finally, the term that can guarantee the recovery of the
correct macroscopic energy equation and a tunable Prandtl
number is

φji = φ
(I)
ji + φ

(II)
ji . (46)

IV. SPEED OF SOUND

In this section the ability of the proposed model to describe
the speed of sound in a multicomponent mixture (thermal)
is examined. LB multicomponent models can describe the
propagation of sound waves only at an athermal environment.
To the best of our knowledge the only single-component
thermal LB model on the D2Q9 which is able to capture
accurately the speed of sound in a thermal environment is
the model of Ref. [34]. The model presented in this paper
extends this description to multicomponent flows on the D2Q9.
To study this behavior we measure the propagation of small
pressure waves in gaseous mixtures at different temperatures
and compositions.

For the simulation setup, a mixture composed of different
species is considered. The computational domain is discretized
by Nx × Ny = 3000 × 5 grid points along the horizontal x

and vertical y direction, respectively. At the left and right
boundaries of the domain, zero-Neumann BCs are applied by
copying the populations from the neighboring nodes in the
inner domain. The top and bottom boundaries are treated with
periodic boundary conditions. The simulation is repeated for
different temperatures and compositions of species in four sets,
S-I to S-IV, as is described in Tables I and II. In each simulation,
the initial temperature and species concentration distributions
are uniform through the domain. In the first two cases a binary
mixture composed of species A and B is considered. Cases
S-III and S-IV refer to a mixture composed of four species.
For all cases the molecular mass of the species can be freely
defined over a large range.

Figure 1 shows the speed of sound at different temperatures
for the binary gaseous mixture under the condition of case S-I.
The binary mixture is composed of 50% species A and 50%
species B, with a mean molar mass M = 2.5 (in LB units).
The LB simulation results (symbols in Fig. 1) are compared
with the theoretical value (solid line in Fig. 1) given by

cs =
√

γRT

M
, (47)

where γ = cP /cV is the specific heat ratio with cP being the
specific heat at constant pressure and with cV being the specific

TABLE I. Conditions of cases S-I and S-II for the sound speed of binary gaseous mixtures.

Simulation Gaseous mixture Temperature

Cases Species Xj Mj Ma T
(%) (LB units) (LB units) (LB units)

S-I A 50 1 2.5 [0.001, . . . ,0.999]
B 50 4

S-II A 60 1 [1, . . . ,400.6] 0.5
B 40 [1, . . . ,1000]

aM is the mean molar mass of the mixture.
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TABLE II. Conditions of cases S-III and S-IV for the sound speed of four-component gaseous
mixtures.

Simulation Gaseous mixture Temperature

Cases Species Xj Mj Ma T
(%) (g/mol) (g/mol) (K)

S-III H2 [5, . . . ,97] 2 [2.74, . . . ,41.37] 800
CH4 [1, . . . ,35] 16
CO2 [1, . . . ,93] 44
H2O [1, . . . ,15] 18

S-IV N2 20 28 32.6 [400, . . . ,3000]
CH4 20 16
CO2 50 44
H2O 10 18

aM is the mean molar mass of the mixture.

heat at constant volume [in the model, cP = (D + 2)/2 and
cV = D/2, giving for a two-dimensional (D = 2) case γ = 2
and for a three-dimensional case (D = 3) γ = 5/3], and R

is the universal gas constant (in the model, R = 1 in LB
units). We note at this point that in LB units the temperature
can vary between 0 and 1, and that all isothermal models
on the D2Q9 lattice operate by construction at the frozen
temperature T = 1/3. The flexibility of the model to operate at
arbitrary temperatures stems from the thermal construction in
conjunction with the implementation of appropriate correction
terms on the level of the energy equation.

The results for case S-II are presented in Fig. 2. The sound
speed is plotted for binary mixtures of different compositions
and at temperature T = 0.5 (in LB units). The composition
is varied by changing the molar mass of species B from 1 to
1000 with a constant mole fraction 40%, while species A has
MA = 1 (in LB units) and mole fraction 60%. Therefore, the
molecular mass ratio of two species ranges from 1 to 1/1000,
and accordingly the mean molecular weight M spans the range
1 to 400.6 (in LB units). For both S-I and S-II cases, the
simulation results of the current model (symbols in Figs. 1 and
2) are in excellent agreement with the theoretically predicted
values.

T (LB units)

c s
(L

B
un

its
)

10-3 10-2 10-1 1000

0.2

0.4

0.6

0.8
LB simulation
Theoretical solution

MA=1
MB=4
T=[0.001,0.999]

FIG. 1. Case S-I: Speed of sound computed for a binary gaseous
mixture at different temperatures. Symbols: LB simulation, solid line:
theoretical solution.

Figure 3 shows simulation results for case S-III. The
mixture is composed of four species: H2, CH4, CO2, and H2O.
The species mole fractions are adjusted arbitrarily, and their
values are shown in Fig. 3(a), leading to corresponding values
of mean molar mass ranging from 2.74 g/mol to 41.37 g/mol
(in physical units). The temperature is fixed at 800 K, with
reference temperature Tref,phy = 1500 K, which corresponds
to Tref,LB = 1/3 in LB units in the current formulation. (For
unit transformation, refer to Appendix C.)

Figure 4 shows the simulation result for case S-IV. The
mixture is composed of a different set of four species with a
fixed mole fraction composition: N2 (20%), CH4 (20%), CO2

(50%), and H2O (10%). The mean molar mass is 32.6 g/mol.
The speed of sound is calculated at temperatures from 400
to 3000 K. (The reference temperature is the same as in case
S-III.) The simulation results of cases S-III and S-IV verify
that the speed of sound is described correctly in multispecies
mixtures for a large range of temperatures, compositions and
species molecular masses.

Therefore, the proposed thermal multicomponent model
can be potentially used to simulate propagation of acous-
tic waves. This can be quite useful for the study of

M (LB units)

c s
(L

B
un

its
)

100 101 1020

0.2

0.4

0.6

0.8

1
LB simulation
Theoretical solution

T=0.5
MA=1
MB=[1,1000]

FIG. 2. Case S-II: Speed of sound computed for binary gaseous
mixtures with different compositions at the same temperature.
Symbols: LB simulation, solid line: theoretical solution.
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X
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c s
(m

/s
)
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0

1000

2000
LB simulation
Theoretical solution

FIG. 3. (Color online) Case S-III: Speed of sound computed
for gaseous mixtures composed of four species with different
composition at T = 800 K. Top figure: Mole fractions of each species,
dashed line represents H2, solid line represents CH4, dash-dotted line
represents CO2, long dashed line represents H2O. Bottom figure:
Symbols represent LB simulation, solid line represents theoretical
solution.

thermoacoustics in combustion [48]. It is worth commenting
that the benchmarks of this section have also demonstrated the
good numerical stability of the model.

V. BOUNDARY SCHEME FOR THERMAL CATALYTIC
SURFACE REACTION

The proposed model recovers the correct macroscopic
limits for describing thermal multicomponent flows; moreover,
the physical properties of the species can be freely adjusted.
Therefore, this model can be applied in a variety of relatively
complex flow problems such as the catalytic reactive flows with

T (K)

c s
(m

/s
)

1000 2000 3000

400

600

800

1000
LB simulation
Theoretical solution

400

FIG. 4. Case S-IV: Speed of sound computed for gaseous mix-
tures composed of four species at different temperatures. Symbols:
LB simulation, solid line: theoretical solution.

FIG. 5. Schematic for calculating the unknown density ρjw and
incoming distribution function fji for species j at the catalytic wall.

large temperature variations. In order to accurately describe the
effect of catalytic reactions and at the same time to vary the
wall temperature, the catalytic diffusive boundary condition
described in Refs. [21,25,49] needs to be extended.

In this section the diffusive boundary condition [25,49],
which has been modified to include surface chemistry under
isothermal conditions in [21], is further extended to describe
thermal wall boundaries. In the diffusive boundary condition,
the populations are redistributed after they reach the boundary
in a way consistent with the mass balance and normal flux
conditions. For the evaluation of the unknown precollision
incoming populations f in

ji on the catalytic wall boundary, the
first constraint is established by utilizing the property of mass
conservation at the wall. During the chemical reaction on the
surface (no deposition or etching effect is considered on the
surface, such that the Stefan velocity is zero), mass is balanced
among the incoming mass fluxes ρ̇ in

j , outgoing fluxes ρ̇out
j , and

the production rate ω̇j of species j :

ρ̇ in
j = ρ̇out

j + Mjω̇j , (48)

where ω̇j is a function of Cjw = ρjw/Mj , with Cjw being the
local concentration of species j at the gas-wall interface, and

FIG. 6. (Color online) Boundary condition on a catalytic wall.
“W” denotes wall boundary at y = 0, “F” denotes the first row of
fluid nodes at y = 1, and bold lattice nodes indicate that the collision
process takes place on all the computational nodes.
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FIG. 7. Catalytic reaction in a channel flow with temperature
gradients. Premixed methane-air mixtures enter a channel coated with
platinum. The channel has a prescribed constant wall temperature,
length L, and height H.

ρjw the corresponding density. The mass fluxes can also be
written in terms of populations as

ρ̇ in
j =

cjiαnα>0∑
i

|fjicjiαnα|, (49a)

ρ̇out
j =

cjiαnα<0∑
i

|fjicjiαnα|, (49b)

where nα denotes inward direction normal to the wall. For the
diffusive BC, the incoming populations f

eq
ji can be expressed

as

f in
ji = f

eq
ji (ρjw,Uw,Tw)

ρ̇ in
j

ρ̇
eq,in
ji (ρjw,Uw,Tw)

, (50)

where f
eq
ji (ρjw,Uw,Tw) are the equilibrium populations cal-

culated with the density ρjw, the wall velocity Uw, and the
wall temperature Tw. The denominator in Eq. (50) indicates
the incoming flux calculated with equilibrium populations
f

eq
ji (ρjw,Uw,Tw).

Substituting Eqs. (49) and (48), Eq. (50) becomes

f in
ji = f

eq
ji (ρj ,Uw,Tw)

∑cjiαnα<0
i |fjicjiαnα| + Mjω̇j∑cjiαnα>0

i

∣∣f eq
ji (ρj ,Uw,Tw)cjiαnα

∣∣ .
(51)

It is seen that the density of each species at the wall, ρjw,
which is unknown a priori, is needed in Eq. (48) for evaluating
ω̇j and in Eq. (50) for calculating equilibrium populations.
There is more than one way to obtain ρjw [21,50]. Here we
select to take as initial guess for ρjw the density value on
its direct neighboring node in the fluid, and to update ρjw

iteratively by using properties of the zeroth-order moment of
the distribution functions:

ρjw =
0,...,8∑

i

fji =
cjiαnα>0∑

i

fji +
cjiαnα<0∑

i

fji +
cjiαnα=0∑

i

fji .

(52)

TABLE III. Conditions for two cases of surface reactive flows in
heated catalytic channel.

Simulation Uin
a

Tin Twall
Mole fraction

cases (m/s) (K) (K) CH4(%) O2(%)

I 7.2 1200 1200 10 90
II 11.5 400 1200 10 90

aInlet velocity has a plug profile.

FIG. 8. (Color online) Catalytic channel flow: Case I: Velocity
vector field and contour map of the streamwise velocity field.

Substituting Eqs. (48) and (49), we obtain

ρjw = 2
cjiαnα<0∑

i

fji +
cjiαnα=0∑

i

fji + Mjω̇j . (53)

For better understanding, the algorithm for the computation
of the unknown density ρjw and incoming distribution function
f in

ji at the wall is presented schematically in Fig. 5. The
example of a catalytic wall is used (see Fig. 6). In the current
scheme, the wall is placed on the grid at y = 0. One can also
locate the wall at the halfway position between the lattice
grid points for increased accuracy. This would involve slightly
more computations, and for presentation purposes we select to
work with the wall placed on the grid. In the implementation
of the current boundary condition, first, the density on the
neighboring point y = 1 is used as initial guess for the density
at the boundary y = 0, leading to an approximation of the
production rate ω̇j . Thereafter, the inward mass flux ρ̇ in

j is
calculated by using Eq. (48), and the density at the wall ρ∗

jw

is obtained by using Eq. (53). By comparing the new ρ∗
jw

with the initially assumed ρjw, it is assessed whether the
computation of ρjw is correct or more iterations are necessary.
When converged, the equilibrium distribution at the wall can
be calculated with the prescribed properties, Uw, Tw and the
obtained density ρjw. Finally, the incoming populations f in

ji

are calculated by Eq. (51). The results of the density and
populations are stored, and the computation proceeds with the
LB propagation and collision calculation for this time step.

VI. BENCHMARKING: CATALYTIC REACTIVE FLOW
IN A HEATED CHANNEL

A. Problem description

In this section the proposed thermal multicomponent model
together with the catalytic boundary condition of the previous

FIG. 9. (Color online) Catalytic reaction channel flow: Case I:
Contour map of CO2 mole fraction.
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FIG. 10. (Color online) Catalytic reaction channel flow: Case I:
Comparison between the results of LB model (symbols) and the finite
volume solver [27] (solid lines) along the cross section in the middle
of the channel. The red line and adjacent filled diamonds represent
the temperature, the black line and adjacent filled diamonds the
streamwise velocity, the green line and adjacent triangles the CH4

mole fraction, the blue line and adjacent open squares the H2O mole
fraction, the red line and adjacent open diamonds the O2 mole fraction,
and the orange line and adjacent open circles the CO2 mole fraction.

section are applied to simulate the reactive flow in a catalytic
channel under large temperature gradients. As shown in Fig. 7,
a premixed methane-air mixture enters a planar catalytic
channel with inlet temperature Tin and velocity Uin. The
channel is 5 mm long and 0.5 mm high and is kept at a constant
wall temperature Twall. The mixture flow is heated up when
it passes through the channel. Simultaneously, the catalytic
oxidation of methane occurs at the catalytic walls. The surface
chemistry is treated as one-step global reaction for the catalytic
total oxidation of methane on platinum:

CH4 + 2O2 → 2H2O + CO2, kr = A exp(−Ea/RTw),

(54)

where kr is the global reaction rate constant, A = 1.27 ×
105 cm/s, Ea = 77 KJ/mol [26] is the apparent activation
energy, Twall is the temperature of the top and bottom channel
walls. The production rate ω̇CH4 of methane under lean
stoichiometries is a function of methane concentration with
a first-order dependence, ω̇CH4 = −kr [CH4], which in turn
gives the production/destruction rates of the other species as
ω̇O2 = 2ω̇CH4, ω̇H2O = −2ω̇CH4, and ω̇CO2 = −ω̇CH4.

FIG. 11. (Color online) Catalytic reaction channel flow: Case II:
Contour map for the temperature field.

FIG. 12. (Color online) Catalytic reaction channel flow: Case II:
Velocity vector field and contour map of the streamwise velocity field.

Production rates, as well as transport and thermodynamic
properties of each species, are dynamically evaluated from
the CHEMKIN package [39,46] at every time step. The
transformation from physical units to LB units is explained
in Appendix C. Under different inflow conditions, i.e., inlet
velocity and inlet temperature, the LB simulation results are
compared against the finite volume Navier-Stokes solver at
PSI [27].

B. Simulation conditions and results

Two simulations under different conditions are presented.
Table III provides values of the inlet velocity, temperature,
and composition. Case I is a simpler configuration, with no
temperature gradients. For case II, the difference between the
inlet flow temperature and wall temperature is set such that it
creates steep gradients.

In the simulation, the inlet boundary is implemented by
setting populations at equilibrium. The equilibrium popula-
tions are calculated using the inlet temperature and mole
fraction given in Table III, the total density and velocity of
the neighboring inner node. The nodes at the top and bottom
corners of inlet are treated as solid stationary wall nodes by
imposing an equilibrium population calculated at zero velocity
and wall temperature and with the density of neighboring
wall nodes (no catalytic reaction is considered). The outlet
boundary is imposed with equilibrium populations, which are
evaluated with the species velocity, ujα , mole fraction, Xj ,
and temperature, T , evaluated on the neighboring fluid nodes
in the inner domain, and the density calculated with desired
pressure Pout (in both cases, Pout = 1 bar), ρ = MPout/T .

The simulation domain is discretized by Nx × Ny =
2000 × 200 grid points along the horizontal x and vertical
y direction, respectively. For the simulation of case I, the LB
results are shown in Figs. 8–10. Figure 8 presents the velocity

FIG. 13. (Color online) Catalytic reaction channel flow: Case II:
Contour map of CO2 mole fraction.
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FIG. 14. (Color online) Catalytic reaction channel flow: Case II:
Comparison between the results of LB model (symbols) and the
finite volume solver [27] (solid lines) along the cross section in the
middle of the channel. The red line and adjacent filled diamonds
represent the temperature, the black line and adjacent filled squares
the streamwise velocity, the green line and adjacent triangles the
CH4 mole fraction, the blue line and adjacent open squares the H2O
mole fraction, the red line and adjacent open diamonds the O2 mole
fraction, and the orange line and adjacent open circles the CO2 mole
fraction.

vector field and the contour map of the streamwise velocity.
Figure 9 shows the mole fraction of the product CO2. Due to the
surface catalytic reaction, methane and oxygen are consumed,
and the concentration of CO2 is increasing gradually along
the channel. In Fig. 10 the LB results (symbols) are compared
against a finite volume solver [27] (solid lines). The curves and
symbols show the profiles along the transverse cross section
in the middle of the channel (x = 2.5 mm). The bending of
the concentration profiles near the wall clearly demonstrates
the depletion of the reactants and the formation of prod-
ucts. The results obtained by the two methods are in good
agreement.

For the simulation of case II, the obtained temperature
field, velocity field and mole fraction of the product CO2

are shown in Figs. 11, 12, and 13, respectively. The results
demonstrate that when the 400 K methane-air mixture passes
through the hot channel, the gaseous mixture is heated up,
the volume is expanded, and the flow is accelerated. At
the same time, the mole fraction of product CO2 (XCO2 in
Fig. 13) gradually increases along the streamwise direction,
indicating a catalytic reaction on the channel wall. In Fig. 14
LB profiles (symbols) and predictions from the finite volume
solver (solid lines) are compared along the cross section in the
middle of the channel. The comparison shows that, while large
temperature gradients exist in the channel flow, the LB results
are in good agreement with the predictions of the finite volume
solver.

VII. CONCLUSION

In this paper the kinetic model for thermal binary-mixture
flows proposed in Ref. [18] was extended in order to describe
thermal multicomponent flows. The macroscopic limits of the
bare LB model have been studied and the resulting deviation

was identified via the Chapman-Enskog analysis. The devia-
tion was neutralized by introducing exact correction terms at
the level of the lattice BGK equation, thus guaranteeing the
correct thermo-hydrodynamic limits. The resulting relations
between the relaxation times and the transport properties
have been identified. The values of viscosity, diffusivity,
and conductivity can now be independently applied for each
species allowing a more realistic description of mixture
flows. Moreover, this allows the integration of the CHEMKIN
package and the dynamic evaluation of the physical properties
of each species.

The compressibility and physical integrity of the model
was studied by simulating the speed of sound in gaseous
mixtures of different compositions at various temperatures.
The agreement between LB simulation and the theoretical
values indicates the potential of the proposed model to study
acoustic waves in combustion processes.

The distinct features of the proposed model were further
demonstrated through the simulation of catalytic reactive ther-
mal flows. For this purpose, the diffusive boundary condition
was adapted to include the temperature effects in addition
to the surface chemistry. The thermal multicomponent model
together with the thermal catalytic boundary scheme were
applied to simulate heterogeneous reactive flows under large
temperature variation. The LB simulation results were in good
agreement with a finite volume Navier-Stokes Elliptic solver.
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APPENDIX A: EQUILIBRIUM HIGHER ORDER
MOMENTS AND THEIR DEVIATIONS

The moments of the equilibrium populations are by con-
struction equal to the ones predicted by the kinetic theory up
to the second order. The form of the second- and higher order
moments of species j (j = 1,2, . . . ,N , is not a summation
index below) are

P
eq
jαβ = P MB

jαβ = CjT δαβ + ρjJαJβ

ρ2
,

Q
eq
jαβγ = QMB

jαβγ + Q′
jαβγ

= CjT

(
Jα

ρ
δβγ + Jβ

ρ
δαγ + Jγ

ρ
δαβ

)

+ ρjJαJβJγ

ρ3
+ Q′

jαβγ ,

q
eq
jα = qMB

jα + q ′
jα = YjJα

(
J 2

ρ2
+ 4T

Mj

)
+ q ′

jα, (A1)

R
eq
jαβ = RMB

jαβ + R′
jαβ

= CjRT

(
J 2

ρ2
+ 4T

Mj

)
δαβ

+ ρjJαJβ

ρ2

(
6T

Mj

+ J 2

ρ2

)
+ R′

jαβ,
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where Q′
jαβγ , q ′

jα , and R′
jαβ are the deviations of the higher order moments from the Maxwell-Boltzmann (MB) form. These

deviations are calculated exactly:

q ′
jα = 1 − 3T

Mj

YjJα − YjJ
3
α

ρ2
, Q′

jxxy = Q′
jxyy = 0, Q′

jxxx = 1 − 3T

Mj

YjJx − YjJ
3
x

ρ2
, Q′

jyyy = 1 − 3T

Mj

YjJy − YjJ
3
y

ρ2
,

R′
jxy = (2 − 6T )

CjJxJy

ρ2
− YjJxJyJ

2

ρ3
, R′

jxx = 1 − 3T

Mj

CjT + (1 − 6T ) CjJ
2
x

ρ2
+ YjJ

4
x

ρ3
, (A2)

R′
jyy = 1 − 3T

Mj

CjT + (1 − 6T ) CjJ
2
y

ρ2
+ YjJ

4
y

ρ3
.

APPENDIX B: CORRECTION TERMS

1. Momentum equation

The deviation term that exists in the momentum equation Eq. (29) of the bare LB model, i.e., before applying
the correction mechanism, is ∂βP ′′

αβ = ∑N
j ∂βP ′′

jαβ . The exact form is identified through Chapman-Enskog analysis:

∂βP ′′
jxβ = −∂x

⎧⎨
⎩

τj1∂x

(
1−3T
Mj

YjJx − Yj J
3
x

ρ2

)
− τj1Xj

D

[
∂x

(
1−3T

M
Jx − J 3

x

ρ2

)
+ ∂y

(
1−3T

M
Jy − J 3

y

ρ2

)]
⎫⎬
⎭

+
⎧⎨
⎩

2∂x

[
τj2Jx

ρ
(Yj∂xp − ∂xpj )

]
+∂y

[
τj2Jx

ρ
(Yj∂yp − ∂ypj ) + τj2Jy

ρ
(Yj∂xp − ∂xpj )

]
⎫⎬
⎭ , (B1a)

∂βP ′′
jyβ = −∂y

⎧⎨
⎩

τj1∂y

(
1−3T
Mj

YjJy − Yj J
3
y

ρ2

)
− τj1Xj

D

[
∂x

(
1−3T

M
Jx − J 3

x

ρ2

)
+ ∂y

(
1−3T

M
Jy − J 3

y

ρ2

)]
⎫⎬
⎭

+
⎧⎨
⎩

2∂y

[
τj2Jy

ρ
(Yj∂yp − ∂ypj )

]
+∂x

[
τj2Jy

ρ
(Yj∂xp − ∂xpj ) + τj2Jx

ρ
(Yj∂yp − ∂ypj )

]
⎫⎬
⎭ . (B1b)

This deviation is eliminated using the counterterm ψ
(II)
ji . Note that the second row of bracketed terms in Eqs. (B1a)–(B1b)

does not exist in the case of the thermal binary mixture of Ref. [18].

2. Energy equation

The deviation term in energy equation (37) of the bare LB model is expressed in two parts, ∂αq ′
α and ∂αq ′′

α . The first part
originates from the deviation of the equilibrium part of the third order contracted moment, which is directly given by Eq. (A2).
The second part, ∂αq ′′

α = ∑N
j ∂αq ′′

jα , stems from the deviation of the nonequilibrium part of the third-order contracted moment,
and was identified through Chapman-Enskog analysis. The exact form of ∂αq ′′

jα for species j is

q ′′
jα = + 3τj1CjT

Mj

∂αT + τj2 (1 − 3T )

Mj

[Yj∂αp − ∂αpj ] + τj1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 3Yj J
2
α

ρ2 ∂αp − 3Xj pJα

ρ
∂β

Jβ

ρ
+ 3Xj CJαJβ

2ρ2 ∂βT

− (1 − 3T ) ∂β
Xj CJαJβ

ρ2 + Xj (1−3T )Jα

2ρ
∂β

Jβ

M

+∂α
Cj J

2
α

ρ2 +
(

1
τj1

− 1
τj2

) (
JjαJ 2

j

ρ2
j

− Yj JαJ 2

ρ2

)
−∂β

Yj JβJ 3
α

ρ3 − Xj Jα

2ρ
∂β

J 3
β

ρ2 − ∂α
Yj J

4
α

ρ3 + ∂β
Yj JαJβJ 2

ρ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B2)

where α indicates the direction (x or y), and Einstein
summation is assumed only for the repeated index β. Similar
to the momentum equation deviations [Eqs. (B1a)–(B1b)], the
deviation of the energy equation of the thermal multicom-
ponent mixture is different compared to the thermal binary
mixture of Ref. [18].

In usual flow cases, many of the deviation terms can
be neglected, simplifying the scheme. However, it is worth

stressing that for a fully Galilean invariant scheme, all these
deviation terms must be neutralized.

APPENDIX C: TRANSFORMATION OF UNITS FOR THE
CATALYTIC SURFACE REACTION MECHANISM

In order to integrate CHEMKIN libraries into the LB
algorithm, the units should be transformed from physical to
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LB ones. The transformation follows a standard procedure.
First, length scale L′ is chosen, which is the relation between
the characteristic length of the physical system L and the
discretized lattice characteristic length LLB (number of grid
points):

L′ = L

LLB
. (C1)

The next step is to choose the velocity scale U ′. The principle
used in Ref. [38] is applied: U ′ is defined such that after the
velocities are scaled into LB units, the lattice velocity of the
lightest species M0,LB = 1 of the mixture is equal to c0,LB = 1.
For the D2Q9 lattice implementation, this velocity scale is

U ′ =
√

3T0

M0
, (C2)

where T0 is reference temperature in physical units, M0

is the molecular weight of the lightest species in physical
units.

Since the length scale and velocity scales are known, the
time scale is simply obtained by

t ′ = L′

U ′ . (C3)

The density scale is set to ρ ′ = 1 kg/m3, making the phys-
ical density and LB density equal, ρ = ρLB. The temperature
scale is defined by selecting a physical reference temperature
T0 and the reference temperature in LB units T0,LB:

T ′ = T0

T0,LB
, (C4)

where T0,LB is calculated with Eq. (C2) by substituting the
velocity with c0,LB and the molecular weight with M0,LB.

As an example, the physical reference temperature T0 in the
simulation of Sec. VI was set to T0 = 1200 K. Based on above
scaling factors, the variables with physical units and LB units
are calculated in CHEMKIN and LB solvers and transferred
to each other.
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