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A surface reaction boundary condition in multicomponent lattice Boltzmann simulations is developed. The
method is applied to a test case with nonlinear reaction rates and nonlinear density profiles. The results are
compared to the corresponding analytical solution, which shows that the error of the method scales with the
square of the lattice spacing.
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I. INTRODUCTION

The lattice Boltzmann (LB) method is a computational fluid
dynamics method, which is particularly suitable for multiphase
flows and complexly shaped boundaries; see, e.g., Refs. [1–5].
The LB method is based on a discretization of the Boltzmann
equation, governing the single-particle distribution function of
position and momentum.

In this paper the LB method is applied to chemical surface
reactions. The focus is on the formulation of the surface
reaction boundary conditions within the LB framework. LB
boundary conditions for surface reactions have previously
been addressed in the literature; see, e.g., Refs. [6–19]. Details
of these studies are explained in Sec. IV. To the best of the
authors’ knowledge all previously proposed implementations
of surface reaction boundary conditions in LB simulations
require iterative, root-finding methods to deal with nonlinear
reaction rates, i.e., reaction rates that are nonlinear functions of
the component densities at the wall; see, e.g., Refs. [12–14,17].
The goal of the present work is to develop an explicit
implementation of the surface reaction boundary condition
within the multicomponent LB framework. The advancement
of the current scheme over previously proposed schemes is
that it consists of a single, fully explicit expression and that
it requires no iterations to deal with nonlinear reaction rates.
In this respect it is noted that Huber et al. also implement
nonlinear reaction rates explicitly [19]. Their method replaces
the boundary condition by a volumetric source term, which
is different from enforcing the boundary condition directly on
the surface, which is the approach adopted in the present work.

The remainder of the paper is organized as follows.
Section II introduces the variables that define multicomponent
surface reactions. Section III presents the LB method, and
Sec. IV presents the surface reaction boundary condition. The
main result is presented by Eq. (14). Then Sec. V presents a
test case and compares the outcome of the LB simulations
to the corresponding analytical solution. Conclusions are
summarized in Sec. VI.

The main conclusion is that the error of the method scales
with the square of the grid spacing; i.e., the method is
second-order accurate. Although the test case is in one spatial
dimension, the method can be directly applied to complexly
shaped boundaries in more dimensions, as long as the shapes
are approximated by staircases, whose surfaces lie halfway
between the lattice sites, which is the conventional approxi-
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mation used in LB simulations. It is known, however, that the
staircase approximation reduces the order of the accuracy of
the LB method from two to one; see, e.g., Ref. [20]. To maintain
second-order accuracy for complexly shaped boundaries, the
present approach could be combined with an interpolation
treatment of curved boundaries; see, e.g., Ref. [21].

II. PROBLEM FORMULATION

An ideal fluid mixture of N components is consid-
ered, where mσ is the molecular mass of component σ =
{1,2, . . . ,N}. The fluid mixture reacts on a wall. The reaction
can also involve wall molecules of mass mw. The mass balance
of the reaction is ∑

σ

ξσmσ + ξwmw = 0, (1a)

where ξσ and ξw are the stoichiometrics of component σ and
of the wall component, respectively, and the summation

∑
σ

runs from σ = 1 to N . Depending on whether component σ

is produced or consumed in the reaction, ξσ > 0 or ξσ < 0,
respectively. Due to the surface reaction there is a wall normal
mass flux for each component �σ . It is assumed that the wall
is located at x = 0 and the fluid resides at x > 0. A positive
or a negative �σ corresponds to production or consumption of
component σ , respectively. Since �σ is proportional to ξσmσ ,
the mass balance [Eq. (1a)] can also be written as∑

σ

�σ + �w = 0, (1b)

where �w is the wall normal mass flux of the wall component.
The reaction rate is defined as the production of component
one �1, which is a generic function of the various component
densities ρσ at the wall:

�1 = R(ρσ ). (2)

The wall normal mass fluxes of the other components are
given by

�σ = �1
ξσmσ

ξ1m1
. (3)

III. LATTICE BOLTZMANN MODEL

In this work an implementation is developed for surface
reaction boundary conditions in multicomponent LB simula-
tions. For the sake of generality these boundary conditions are
formulated in an arbitrary number D of spatial dimensions.
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The LB method solves the single particle distribution
function of position and momentum. In the standard LB
method the D-dimensional position space is decomposed into
lattice sites, which are separated in each dimension by the
same distance �x, and the D-dimensional velocity space is
discretized into a set of Q discrete velocities vα that per time
step �t correspond to translations between neighboring lattice
sites. For the sake of completeness Table I in Appendix A
lists three commonly used velocity sets in D = 1, 2, and 3
dimensions, consisting of Q = 3, 9, and 19 velocities, which
are referred to as D1Q3, D2Q9, and D3Q19. The distribution
function for fluid component σ and for velocity vα is denoted
fσ,α . The fσ,α are also referred to as LB particles. The
dimension of fσ,α is mass per volume.

The component density ρσ and the component velocity uσ

are related to the distribution function fσ,α by ρσ = ∑
α fσ,α

and uσ = ∑
α fσ,αvα/ρσ , respectively, where the summation∑

α runs from α = 1 to Q. The total mass density and the
mass averaged velocity are given by ρ = ∑

σ ρσ and u =∑
σ ρσ uσ /ρ, respectively.
The function fσ,α is defined on each lattice site and evolves

in time according to the LB equation [4]:

fσ,α(x + �tvα,t + �t) − fσ,α(x,t)

�t
= f

eq
σ,α(x,t) − fσ,α(x,t)

τσ

,

(4a)

where τσ is the relaxation time of component σ and f
eq
σ,α

is the equilibrium distribution function, which is usually a
truncated Mach number expansion of the Maxwell Boltzmann
distribution function [4]. Here a modified version of f

eq
σ,α is

used that allows the component sound speed cσ to be varied,
which is normally fixed at c0 = �x/

√
3�t [22]:

f eq
σ,α = ρσ

{
γα + wα

[
vα · ueq

c2
0

+ 1

2

[vα · ueq]2

c4
0

− 1

2

ueq2

c2
0

]}
,

(4b)

where

γα =
{

wα + [1 − wα]
{
1 − [

cσ

c0

]2}
if vα = 0,

wα

[
cσ

c0

]2
if vα �= 0.

(4c)

Other forms that allow a varying cσ are also possible; see,
e.g., Ref. [23]. In Eqs. (4b)–(4c) wα are the LB distribution
weights. The values of these weights for D1Q3, D2Q9, and
D3Q19 are listed in Table I. One time step of the LB equation
[Eq. (4a)] involves two steps. In the streaming step, the LB
particles move between neighboring lattice sites, carrying mass
fσ,α and momentum fσ,αvα of component σ in direction vα .
The relaxation step “pushes” fσ,α towards f

eq
σ,α , such that the

various components equilibrate towards a common velocity
ueq . In order for the method to satisfy overall momentum
conservation, this velocity must be equal to

ueq =
∑

σ ρσ uσ τ−1
σ∑

σ ρσ τ−1
σ

. (4d)

It can be shown that the LB method [Eq. (4)] recovers the
correct macroscopic component mass balance:

∂ρσ

∂t
+ ∇· (uρσ ) = ∇·Dσ∇ρσ , (5)

where, provided that there is no pressure gradient and that the
τσ are all equal, the component mass diffusivity Dσ is given
by [24]

Dσ = c2
σ

[
τσ − �t

2

]
. (6)

IV. SURFACE REACTION BOUNDARY CONDITION

LB boundary conditions are usually referred to as bounce-
back methods, since one can imagine LB particles hitting a
wall and bouncing back into the fluid domain. These methods
can be divided into on-grid and halfway bounce-back methods,
depending on whether the wall is located on the lattice sites or
halfway between them. Different types of boundary conditions
can be realized, depending on the values for the outgoing
particles as functions of the incoming particles.

Surface reaction boundary conditions have been developed
in the literature following roughly three approaches. The first
approach is based on the on-grid bounce-back method by
He et al. [25], who use that at the wall the nonequilibrium
part of the distribution function: fσ,α − f

eq
σ,α is proportional

to the dot product of the concentration gradient ∇ρσ and
the microscopic velocity vα; see, e.g., Refs. [7,8,12,18]. The
second approach is based on the so-called diffusive, halfway,
bounce-back method by Ansumali and Karlin [26], who
assume Maxwellian outgoing particles; see, e.g., Refs. [13,16].
The third approach to LB surface reactions is based on a
principle proposed by Ladd [20] of adding a source term to the
halfway bounce-back method to realize a wall normal mass
flux; see, e.g., Refs. [11,14,15,27].

A wall is assumed at x = 0 and a fluid at x > 0 and an
incoming particle f −

σ,α is emitted from a lattice site next to
the wall at x = �x/2 with a wall normal velocity vα,x < 0.
Upon bouncing back from the wall into the fluid domain, its
velocity is reversed from vα to vα = −vα . Due to the surface
reaction the particle mass changes during the bounce-back,
which induces the component wall normal mass flux �σ . Using
Ladd’s principle the outgoing particle f +

σ,α is written as the
following function of the incoming particle f −

σ,α:

f +
σ,α = f −

σ,α + 6wα

(
�t

�x

)2

vα · n�σ , (7)

where n is the wall normal unit vector pointing into the fluid.
By combining Eqs. (2), (3), and (7) the following surface

reaction bounce-back method is obtained:

f +
σ,α = f −

σ,α + 6wα

(
�t

�x

)2

vα · n
ξσmσ

ξ1m1
R(ρσ (0)). (8)

The reaction rate R in Eq. (8) depends on the component
densities at the wall ρσ (0). Since the wall is located in between
the lattice sites, the values of ρσ (0) are not available during the
course of a simulation. Therefore a first-order Taylor expansion
is used,

R(ρσ (0)) = R − �x

2

[ ∑
σ

∂R

∂ρσ

∂ρσ

∂x

]
, (9)

to express R(ρσ (0)) in terms of known quantities at the nearest
lattice site to the wall, which is at x = �x/2. All variables on
the r.h.s. of Eq. (9) are evaluated at x = �x/2. This expansion
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is the main assumption of the present surface reaction bounce-
back method. The error that is introduced by this assumption
is analyzed below, but first the derivation of the bounce-back
method is completed. The wall normal mass flux is written as
the sum of the advective and the diffusive flux:

�σ = ρσu − Dσ

∂ρσ

∂x
, (10)

where Dσ is the component mass diffusivity and u is the mass
averaged wall normal velocity:

u =
∑

σ �σ

ρ
= −�w

ρ
= −�1ξwmw

ρξ1m1
, (11)

where Eqs. (1b) and (3) have been used. Combining Eqs. (10)
and (11) gives

∂ρσ

∂x
= − �1

aDσ

[
ρσ ξwmw

ρξ1m1
+ ξσmσ

ξ1m1

]
. (12)

Inserting Eq. (12) into Eq. (9) and solving for �1 = R(ρσ (0))
gives

R(ρσ (0)) = R

1 − �x
2

∑
σ

1
Dσ

∂R
∂ρσ

[
ρσ ξwmw

ρξ1m1
+ ξσ mσ

ξ1m1

] . (13)

By combining Eqs. (8) and (13), the following surface reaction
bounce-back method is obtained:

f +
σ,α = f −

σ,α +
6( �t

�x
)2wαvα·n ξσ mσ

ξ1m1
R

1 − �x
2

∑
σ ′

1
Dσ ′

∂R
∂ρσ ′

[
ρσ ′ ξwmw

ρξ1m1
+ ξσ ′mσ ′

ξ1m1

] . (14)

Equation (14) is the main result of the present paper. It is a
surface reaction, bounce-back method within a multicompo-
nent LB framework. In this equation, the reaction rate R and its
derivatives ∂R/∂ρσ as well as the component mass diffusivities
Dσ are allowed to depend on the various component densities,
whose values are taken from the nearest lattice site to the wall.

The error of the present surface reaction bounce-back
method [Eq. (14)] originates from the Taylor expansion
[Eq. (9)], which involves first-order derivatives: ∂R/∂ρσ and
∂ρσ /∂x. This expansion is needed to express the reaction rate
at the wall in terms of quantities, which are defined on the
lattice sites. When both R(ρσ ) and ρσ (x) are linear functions,
then this expansion is exact. In any other case, a relative error
ε is introduced by this expansion, which can be estimated with
the next term in the expansion [Eq. (9)] divided by R:

ε =
[ ∑

σ

∂R

∂ρσ

∂2ρσ

∂x2
+

∑
σσ ′

∂2R

∂ρσ ∂ρσ ′

∂ρσ

∂x

∂ρσ ′

∂x

]
�x2

8R
. (15)

Equation (15) estimates the error in terms of the second-order
derivatives: ∂2R/∂ρ2

σ and ∂2ρσ /∂x2. These second derivatives
are referred to as the “reaction curvature” and the “density
curvature,” respectively. Furthermore, the �x2 dependence in
Eq. (15) suggests that the method is second-order accurate.

V. TEST CASE

To verify Eq. (15) a test case is designed in which both
the reaction curvature ∂2R/∂ρ2

σ and the density curvature
∂2ρσ /∂x2 can be varied. The test case consists of a steady,
one-dimensional (1D) mixture of two ideal gases: A and

B, bounded by two walls at x = 0 and x = L. The volume
averaged mass density ρ is given by

ρ = 1

L

∫ L

0
[ρA(x) + ρB(x)] dx. (16)

The gases have molecular masses mA and mB and sound
speeds cA = √

kBT /mA and cB = √
kBT /mB , where kB is the

Boltzmann constant and T is the temperature. The component
mass diffusivities Dσ in the binary ideal gas mixture are given
by

Dσ = c2
σ [mA + mB]

ρ�

√
c2
A + c2

B

, (17)

where � is a molecular collision cross section; see, e.g.,
Ref. [28]. For the sake of completeness a derivation of
Eq. (17) is provided in Appendix B. On x = 0 component B
is transformed into component A and on x = L component
A is transformed into component B, by means of surface
reactions. The corresponding reaction rates are nth-order
power functions of the reactant concentrations:

R = kρn
B for x = 0, R = kρn

A for x = L, (18a)

where k is the reaction rate constant and n is the reaction rate
order. Both reactions at x = 0 and x = L have the following
stoichiometric ratio:

mAξA

mBξB

= −1. (18b)

The analytical solution to the component mass density pro-
files and the reaction mass flux �A are derived in Appendix C.
The mass flux is plotted in Fig. 1 as a function of the indepen-
dent parameters; i.e., the reaction rate constant k, the reaction
rate order n, and the sound speed ratio cB/cA. For small k the
mass flux is proportional to k and for large k the mass flux sat-
urates to a constant proportional to the logarithm of the sound
speed ratio: �A ∼ log(cB/cA). The densities are exponential
functions of the position, unless both sound speeds are equal:
cA/cB = 1, in which case the density profiles are linear. The
growth factor κ of the exponential profiles is proportional to
the reaction mass flux, and for k → ∞ its nondimensional
value equals κL = 2 log(cB/cA). The corresponding density
profiles are illustrated in Fig. 2 for cB/cA = 3.

The present test case allows varying the density curvature
∂2ρσ /∂x2 and the reaction curvature ∂2R/∂ρ2

σ , by varying
the sound speed ratio cA/cB and the reaction rate order n,
respectively. This allows a systematic verification of the error
[Eq. (15)] of the bounce-back method [Eq. (14)].

The test case is simulated using D1Q3; see Table I. In order
for the LB component mass diffusivity [Eq. (6)] to recover
the “real” diffusivity [Eq. (17)], both τσ are assumed to be the
following function of the mass density:

τσ = �t

2
+ mA + mB

ρ�

√
c2
A + c2

B

. (19)

It is noted that in addition to Dσ , the value of τσ also
determines the kinematic viscosity. The present test case,
however, concerns diffusive mass transport only; i.e., there
is no advection and the viscosity of the system does not play a
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FIG. 1. The analytical solution to the mass flux, as predicted by
Eq. (C5) for cB/cA = 1 (top), cB/cA = 10 (middle), and cB/cA = 102

(bottom).
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x/L

ρσ

ρ

FIG. 2. The analytical solution to the density profiles of compo-
nent A (solid line) and component B (dashed line) for cB/cA = 3 and
κL = 2 log(cB/cA) ≈ 2.2, where κ is defined in Eq. (C3d).

role. However, when advection is concerned, one needs to be
able to tune the diffusivity and the viscosity separately, which
can be done, for example, using methods, that involve multiple
relaxation times per component; see, e.g., Refs. [13,29].

By inserting Eq. (18) into Eq. (14), the surface reaction
bounce-back method specializes into⎧⎪⎨
⎪⎩

f +
A,α = f −

A,α+6
(

�t
�x

)2
wαkρn

B

[
1+�xnkρn−1

B

2DB

]−1

f +
B,α = f −

B,α−6
(

�t
�x

)2
wαkρn

B

[
1+�xnkρn−1

B

2DB

]−1

⎫⎪⎬
⎪⎭ for x = 0,

⎧⎪⎨
⎪⎩

f +
A,α = f −

A,α−6
(

�t
�x

)2
wαkρn

A

[
1+�xnkρn−1

A

2DA

]−1

f +
B,α = f −

B,α+6
(

�t
�x

)2
wαkρn

A

[
1+�xnkρn−1

A

2DA

]−1

⎫⎪⎬
⎪⎭ for x = L,

(20)

where Dσ [Eq. (17)] and ρσ are evaluated at the nearest lattice
site to the wall, which is at x = �x/2 and x = L − �x/2 for
the reactions at x = 0 and x = L, respectively. Simulations are
conducted of Eqs. (4), (19), and (20). The initial conditions for
the simulations are flat density profiles: ρA(x) = ρB(x) = ρ/2.
While integrating in time the reaction mass flux �A is
monitored. Time integration is stopped when a steady state
is reached; i.e., when the variation of �A per time step becomes
smaller than 10−12�A. The purpose of these simulations is
to study the error that is introduced by the surface reaction
bounce-back method [Eq. (14)]. In the present test case
R = kρn

A, and the error estimate [Eq. (15)] becomes

ε =
[

n

ρA

∂2ρA

∂x2
+ n[n − 1]

ρ2
A

[
∂ρA

∂x

]2]
�x2

8
. (21)

As previously mentioned, the error estimate is due to reaction
curvature and density curvature. To verify these influences
separately, two sets of simulations are conducted, with varying
diffusivities, reaction rate constants, reaction rate orders, and
sound speeds. The parameters of the simulations are given in
the caption of Fig. 3.

The first set of simulations concerns first-order reactions
(n = 1), and nonequal sound speeds (cB/cA = 2, 3, 4, and 5).
In this case the reaction curvature is zero while the density
curvature is nonzero and the error estimate is given by

ε = κ2�x2

8
, (22)

where κ is given by Eq. (C3c). Figure 3(a) shows the computed
error, which is the difference between the simulated mass flux
and Eq. (C5) as a function of (κ�x)2. The figure shows that
the simulation data collapse onto a linear relation between the
error and (κ�x)2, which is in agreement with Eq. (22).

The second set of simulations concerns equal sound speeds
(cA/cB = 1), and higher-order reaction rates (n = 4, 9, 16,
and 25), which implies a zero density curvature and a nonzero
reaction curvature, such that the error estimate becomes

ε = n [n − 1] κ̃2�x2

8
, (23)

where κ̃ is given by Eq. (C4c). Figure 3(b) also shows a col-
lapse of the simulation data onto a linear relationship between
the error and n(n − 1)(κ̃�x)2, in agreement with Eq. (23).
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FIG. 3. The relative difference between the mass flux pre-
dicted by the LB simulation and by Eq. (C5). (top) Effect
of density curvature. Parameters: L/�x = 4, cB�t/�x = 1/

√
3,

n = 1, [mA + mB ] /ρ�t�
√

c2
A + c2

B ={0.2, 0.53, 1.4, 3.8, 10},
k�t/�x ={0.010, 0.032, 0.1, 0.32, 1.0}, and cB/cA = 2 (�), 3 (�),
4 (	), 5 (♦). The dashed line represents y ∼ x. (bottom) Effect
of reaction curvature. Parameters: L/�x = 4, cB�t/�x = 1/

√
3,

cA/cB = 1, [mA + mB ] /ρ�t�
√

c2
A + c2

B ={0.2, 0.53, 1.4, 3.8, 10},
k�t/�x ={0.010, 0.032, 0.1, 0.32, 1.0}, and n = 4 (�), 9 (�), 16
(	), 25 (♦). The dashed line represents y ∼ x.

These simulation results confirm that the error in the
present surface reaction bounce-back method [Eq. (14)] is due
to reaction curvature and density curvature as predicted by
Eq. (15). This also implies that the error scales with the lattice
spacing squared, as predicted by Eq. (15); i.e., the method is
second-order accurate. It is noted that the difference between
the simulated mass flux and Eq. (C5) is of machine precision
when there is neither reaction curvature (n = 1) nor density
curvature (cA/cB = 1).

VI. CONCLUSIONS

A method [Eq. (14)] is presented to implement surface
reaction boundary conditions in a multicomponent lattice
Boltzmann framework. By applying the method to a test case
and comparing the results to the corresponding analytical
solution, the method is shown to be second-order accurate;
i.e., the error introduced by the method scales with the square
of the lattice spacing.

APPENDIX A: VELOCITY VECTORS AND
DISTRIBUTION WEIGHTS

TABLE I. Lattice Boltzmann velocity vectors vα and distribution
weights wα for three commonly used velocity sets in D = 1, 2, and
3 dimensions, consisting of Q = 3, 9, and 19 velocities, which are
referred to as D1Q3, D2Q9, and D3Q19, respectively.

D1Q3 D1Q3 D2Q9 D2Q9 D3Q19 D3Q19
vα

�t

�x
wα vα

�t

�x
wα vα

�t

�x
wα

0 2
3 (0,0) 4

9 (0,0,0) 1
3

−1 1
6 (−1,0) 1

9 (−1,0,0) 1
18

1 1
6 (1,0) 1

9 (1,0,0) 1
18

(0,−1) 1
9 (0,−1,0) 1

18

(0,1) 1
9 (0,1,0) 1

18

(−1,−1) 1
36 (0,0,−1) 1

18

(1,−1) 1
36 (0,0,1) 1

18

(−1,1) 1
36 (−1,−1,0) 1

36

(1,1) 1
36 (1,−1,0) 1

36

(−1,1,0) 1
36

(1,1,0) 1
36

(−1,0,−1) 1
36

(1,0,−1) 1
36

(−1,0,1) 1
36

(1,0,1) 1
36

(0,−1,−1) 1
36

(0,1,−1) 1
36

(0,−1,1) 1
36

(0,1,1) 1
36

APPENDIX B: BINARY DIFFUSION

Here a derivation is presented for the diffusivity in a
binary ideal gas mixture consisting of molecules of mass
mσ , where σ = 1,2. During binary diffusion, the molecules
of both types move on average with different component
velocities uσ . Consider a coordinate system that moves with
the mass averaged velocity u = ∑

σ uσρσ /
∑

σ ρσ , such that
in this coordinate system u = 0. Here ρσ is the component
mass density and ρ = ∑

σ ρσ is the total mass density. Due to
friction, a single molecule of type σ experiences an average
force Fσ . This force is written as the product of the average
momentum exchange �πσ due to a single collision between
m1 and m2 and the collision frequency ωσ :

Fσ = �πσωσ . (B1)

For the sake of simplicity a 1D collision model is used:

�π1 = 2m1m2 [u2 − u1]

m1 + m2
, (B2a)

�π2 = 2m1m2 [u1 − u2]

m1 + m2
, (B2b)
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and the collision frequency is written as

ω1 = 1

2
n2�

√
c2

1 + c2
2, (B3a)

ω2 = 1

2
n1�

√
c2

1 + c2
2, (B3b)

where cσ = √
kBT /mσ is the sound speed of component σ , kB

is the Boltzmann constant, T is the temperature, nσ = ρσ /mσ

is the number density of component σ , and � is a collisional
cross section. Combining Eqs. (B1)–(B3) gives

F1 = ζn2[u2 − u1], (B4a)

F2 = ζn1[u1 − u2], (B4b)

where

ζ =
�

√
c2

1 + c2
2m1m2

m1 + m2
, (B4c)

is a constant. Note that Eq. (B4) satisfies the overall force
balance n1F1 + n2F2 = 0. Over small enough distances, the
force Fσ is a constant, which corresponds to a potential energy
of −xFσ . The probability nσ for finding a molecule at location
x is therefore given by the Boltzmann distribution:

n1 = n1,0 exp
ζn2 [u2 − u1] x

kBT
, (B5a)

n2 = n2,0 exp
ζn1 [u1 − u2] x

kBT
, (B5b)

where nσ,0 are constants. Differentiating Eq. (B5) w.r.t. x gives

∂n1

∂x
= ζ [u2 − u1] n1n2

kBT
, (B6a)

∂n2

∂x
= ζ [u1 − u2] n1n2

kBT
. (B6b)

Note that according to Eq. (B6) ∂n1
∂x

= − ∂n2
∂x

, which means
that in this analysis, there is no gradient in the pressure p =
kBT [n1 + n2]. Combining Eq. (B6) with the fact that in the
comoving reference frame there is no net mass flux: n1m1u1 +
n2m2u2 = 0, gives

n1u1 = −m2kBT

ρζ

∂n1

∂x
, (B7a)

n2u2 = −m1kBT

ρζ

∂n2

∂x
. (B7b)

By combining Eqs. (B4c) and (B7) the component mass flux
�σ is obtained:

�σ = ρσuσ = −Dσ

∂ρσ

∂x
, (B8a)

where the component mass diffusivity is given by

Dσ = c2
σ [m1 + m2]

ρ�

√
c2

1 + c2
2

. (B8b)

APPENDIX C: ANALYTICAL SOLUTION
TO THE TEST CASE

Here the “analytical” solution is presented, which in fact is
obtained by iteration, for the reaction mass flux in the test case,

which is described in Sec. V. Since the wall molecules do not
participate in the chemical reaction, the total mass balance is
given by

�A + �B = 0. (C1a)

Furthermore the mass fluxes are expressed in terms of the
reaction rates [Eq. (18a)]:

�A = kρn
B for x = 0,

�B = −kρn
A for x = L,

(C1b)

where the minus sign reflects that at x = L the wall normal
points in the negative x-direction. Since the system is steady
and 1D and since there is no mass averaged velocity u = 0,
the component mass mass balance [Eq. (5)] is reduced to

�σ = −Dσ

∂ρσ

∂x
. (C2)

The density profiles ρA(x) and ρB(x) are governed by
Eqs. (16), (17), (18b), (C1), and (C2). Depending on the sound
speed ratio cA/cB , there are two types of solutions. When
cA/cB �= 1, the profiles are exponential functions:

ρA = p

c2
A − c2

B

− c2
BρLκ exp{−κx}[

c2
A − c2

B

]
[1 − exp{−κL}] (C3a)

and

ρB = p

c2
B − c2

A

− c2
AρLκ exp{−κx}[

c2
B − c2

A

]
[1 − exp{−κL}] . (C3b)

Here p is the x-independent fluid pressure:

p = ρ
∑

σ

c2
σ , (C3c)

and κ is given by

κ =
�A

[
1
c2
A

− 1
c2
B

]
�

√
c2
A + c2

B

mA + mB

. (C3d)

For the special case cA/cB = 1, the profiles are linear
functions:

ρA = ρ

{
1

2
− κ̃L

[
x

L
− 1

2

]}
(C4a)

and

ρB = ρ

{
1

2
+ κ̃L

[
x

L
− 1

2

]}
, (C4b)

where κ̃ is given by

κ̃ = �A�√
2cAmA

. (C4c)

Combining Eqs. (18a) and (C3) gives the following equa-
tion for the mass flux when cA/cB �= 1:

ζ = log

[2
[

βζ 1−n

kρn

] 1
n + c2

B

c2
B−c2

A

2
[

βζ 1−n

kρn

] 1
n + c2

A

c2
B−c2

A

]
, (C5a)
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where ζ is given by

ζ = �A

β
, (C5b)

and β is given by

β = mA + mB

L
[

1
c2
A

− 1
c2
B

]
�

√
c2
A + c2

B

. (C5c)

For the special case when cA/cB = 1 the mass flux is found
by combining Eqs. (18a) and (C4):

ζ̃ = 1 − 2

[
ζ̃ β̃

kρn

] 1
n

(C5d)

where ζ̃ is given by

ζ̃ = �A

β̃
, (C5e)

and β̃ is given by

β̃ =
√

2cAmA

L�
. (C5f)

The solution �A to Eq. (C5) is obtained by iteration until
the variation per iteration becomes smaller than 10−12�A.
Figure 1 shows this mass flux as a function of the independent
parameters.
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