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Higher-order terms of dielectrophoretic (DEP) force are commonly ignored by invoking the simplifying dipole
approximation. Concurrently, the trend towards micro- and nano-electrode structures in DEP design is bringing
about an increasing number of instances where the approximation is expected to lose reliability. The case is
severe for nonspherical particles (the shape of many biological particles) due to the shape-dependent nature
of dielectric polarization. However, there is a lack of analytical means to determine multipole moments of
nonspherical particles, numerical calculations of the same are regarded as unreliable, and there is a prevalence for
higher-order force considerations to be ignored. As a result, the dipole approximation is used and/or nonspherical
particles are approximated as spheres. This work proves the inefficacy of current qualitative criteria for the
reliability of the dipole approximation and presents a quantitative substitute, with verified accuracy, that enables
precise determination of the extent to which the dipole approximation would be reliable, and if found unreliable,
corrects the approximation by adding second- and third-order terms of the DEP force. The effects of field
nonuniformity, electrode design, and particle shape and aspect ratio on the significance of higher-order DEP
forces is quantitatively analyzed. The results show that higher-order DEP forces are indeed of substantially
increased significance for nonspherical particles; in the cases examined in this work, multipolar terms are seen
to constitute more than 40% of the total force on ellipsoidal and cylindrical particles. It is further shown that
approximating nonspherical particles as spheres of similar dimensions is subject to substantial error. Last, the
substantial importance of the electrode design in influencing higher-order forces is shown.
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I. INTRODUCTION

Dielectrophoresis (DEP) describes the motion of dielectrics
when subjected to nonuniform electric fields [1]. Electric fields
polarize dielectrics, giving rise to the accumulation of charge at
dielectric discontinuities. The assembly of polarization charge
can be represented through an induced dipole and higher-order
multipoles. In a nonuniform field, the charges experience
unequal forces, hence the exertion of a net dielectrophoretic
force. The magnitude and direction of the DEP force depend
on the properties of the subject dielectric(s), and dielectric
properties vary with changing electric field characteristics. As
such, the dielectrophoretic force provides versatile access to
the properties of the subject dielectric(s) and can be easily
adjusted for the exertion of different forces on dielectrics of
different morphological or internal properties. This feature
and other advantages have led to DEP enabling a wide
range of applications involving manipulation, separation, and
characterization of dielectric particles [2–4].

As most biological particles and their suspending
media exhibit dielectric properties, DEP has found particular
usefulness in miniature devices known as laboratory-on-a-chip
(LoC), aimed at providing point-of-care diagnostics with
substantially reduced cost and analysis and reaction times.
A typical LoC device houses a network of microchannels
through which flow narrow streams of sample fluid, consisting
of suspended micrometer and nanometer scale particles.
Dielectrophoresis is one of the most common means of
imparting particle motion in an LoC device, and has been
used for the separation [5–8] (e.g., of healthy and cancerous
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cells [8]), characterization [5,9,10], and manipulation [11–13]
of biological particles of different types.

It was initially believed that dielectrophoretic force would
not be capable of handling particles of submicrometer di-
mensions due to the overpowering effect of randomizing
forces [1]. Using electrode structures on the micrometer
and nanometer scale fabricated using techniques borrowed
from the electronics industry, DEP characterization, sepa-
ration, and manipulation of submicron particles has been
made possible [13–15], extending the applicability range of
dielectrophoresis. With electrode gaps of smaller dimensions,
dielectrophoretic forces of sufficient strength to dominate
particle behavior can be generated by applying voltages of
modest value, so that overheating of the fluid medium is
avoided [16].

In all of the wide-ranging DEP applications, determining
the dielectrophoretic force accurately is of crucial importance.
The force can be determined from summing those on induced
multipoles of ascending order, starting from the induced
dipole. Yet such a calculation of the DEP force is subject
to ambiguity due to the complex nature of the polarization
charge comprising an unknown mixture of free and bound
charges. The notion of effective multipoles circumvents this
ambiguity by defining the effective multipoles as free-charge
multipoles of ascending order, starting from the effective
dipole, which replace the dielectric particle of interest in
the electric field (and the suspending medium) and give the
same electric potential as that arising from the particle itself.
The DEP force is then calculated, by what is referred to as the
effective moment (EM) method, from summing forces by the
electric field on free-charge effective multipoles of ascending
order [17].

The conventional theory for dielectrophoresis is based on
a first-order (known as dipole) approximation that accounts
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only for the first-order terms of the DEP force. Higher-order
terms that arise from higher-order effective moments and their
interactions with increasing order field derivatives are assumed
to be negligible. While competent in many circumstances,
particularly the wide variety of applications that rely upon
differences in DEP force sign rather than magnitude for particle
separation, the dipole approximation is expected to become
less reliable as particle dimensions become comparable to
a characteristic length scale of electric field nonuniformity.
Although the criterion is far from definitive, it suggests that
with the current trend towards electrode structures of reduced
dimensions, there will be an increasing number of instances
where the dipole approximation is unreliable and higher-order
forces need to be accounted for. For nonspherical particles,
comprising the vast majority of biological particles, higher-
order moments are expected to be of further significance due
to the shape-dependent nature of polarization. It has been
shown [18] that in uniform fields, while, as expected, the only
nonzero moment is the dipole (and all higher-order moments
are zero), nonspherical particles have nonzero values for
higher-order moments. This indicates a fundamental difference
in determining higher-order forces for spherical particles and
nonspherical particles. The existing methods for determining
higher-order forces have been defined only for spherical
particles. As a result, in no DEP design involving nonspherical
particles have higher-order terms of the dielectrophoretic force
been accounted for.

In the very few DEP designs where higher-order forces
have been accounted for, either only spherical particles are
considered or nonspherical particles have been approximated
as spheres of similar dimensions. Liang et al. [19] have
determined the second-order DEP force on spherical particles
(only) using an analytical method (which would inevitably be
inapplicable to nonspherical particles) and identified positions
within an interdigitated electrode structure where the higher-
order term comprises 10% of the total DEP force. Dalir
et al. [20] have also included higher-order terms for deter-
mining the dielectrophoretic force, but have again considered
spherical particles only. For an electrode structure designed
for cell fractionation and transport, Kua et al. [21] have
analytically calculated the first-, second-, and third-order terms
of DEP force, yet again (as the analytical nature of the method
employed would imply) for spherical particles only. It was
claimed in the paper that “these analytical expressions allow
the evaluation on the importance of higher-order forces, which
are not possible using conventional numerical techniques,
such as those based on finite element or meshless methods.”
This paper will present quantitative evaluation (with verified
accuracy) on the importance of higher-order DEP forces
using a hybrid numerical-analytical technique implemented
using the finite element method, an extension of previous
work [18].

The (proven here to be false) claim by Kua et al. [21]
regarding the inefficacy of numerical methods for determining
higher-order DEP forces represents a presumptive obstacle in
the correct determination of the dielectrophoretic force in most
designs and devices, particularly those involving biological
particles, the vast majority of which are nonspherical: De-
termining higher-order DEP forces requires determining the
higher-order effective moments, and analytical expressions

for higher-order moments are only available for spherical
particles. The absence of analytical expressions for the higher-
order moments of nonspherical particles has automatically
led to neglecting higher-order forces, or if considering them,
confining analysis to spherical particles, or else approximating
nonspherical particles as spheres of similar dimensions. As an
example, Rosales and Lim [22] have analyzed spherical and
ellipsoidal particles in an octupolar DEP trap; for the spherical
particle, the first-, second-, and third-order terms of the DEP
force have been determined, while for the ellipsoidal particle,
the authors have stopped at the first-order term. In another
example, Zhu et al. [23] have analyzed a single-cell DEP
trap for spherical and ellipsoidal particles, where they have
determined the first- and second-order terms of the DEP force
on the spherical, but only the first-order force on the ellipsoidal
particle.

This paper will show that in the absence of analytical
expressions for the higher-order moments of nonspherical
particles, higher-order DEP forces on nonspherical particles
can be determined using the presented alternative: a hybrid
numerical-analytical method, based on previous work [18]
that addresses concerns regarding the accuracy of numerical
means of determining higher-order DEP force by verifying
the calculations through comparison against total force cal-
culations using the Maxwell stress tensor (MST) method.
The MST method is well known as an unassailable method
for determining electrical forces. By comparing the two
sets of results (DEP force terms against the total force), as
well as verifying the accuracy of the numerical calculations,
contributions from each of the individual (first-, second-, and
third-order) terms to the DEP force are accurately determined,
and a quantitative analysis presented on the significance of
higher-order dielectrophoretic forces. By considering two
different electrode structures and three different particle shapes
(spherical, ellipsoidal, and cylindrical), the large effect of
field and electrode geometry and the particular significance
of higher-order DEP forces for nonspherical particles will be
analyzed in detail.

It is important to note that although the stress tensor method
is an unassailable means of determining the total force, it is
incapable of providing information as to the composition of
the force from individual terms: first and higher order. The
method presented in this work fills this void by presenting
an accurate means of determining first- and higher-order
force terms individually so that novel applications relying
on circumstances where multipolar forces are significant and
the dipolar force is not can be realized and extended beyond
examples such as the levitation of dielectric particles under
the influence of the quadrupolar force in a field null where
the dipolar force is zero [24]. The MST method serves as a
powerful verification tool guaranteeing the accuracy of force
term calculations.

An important advantage of separate force term calculations
using the method presented in this work over total force
calculations using the MST method is in computational effort
for the design or analysis of a DEP device. Using the multipole
method, DEP force terms (the sum of which gives the total
force) can be obtained for all positions in the device from a
single simulation: a continuous solution. The MST method
requires one simulation for every position within the device,
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giving a discrete solution for the force at best. In summary, the
computational effort to determine the multipole force terms at
all positions within a device is the same as that required to
determine the total force from the MST method for a single
position, with a resulting computational overhead for the MST
method orders of magnitude greater.

II. BACKGROUND AND THEORY

A. EM method determination of DEP force terms

The effective moment method presents an unambiguous
formulation for determining first- and higher-order terms of the
DEP force. The formulation relies on determining the effective
moments p(n) of the dielectric(s) subjected to the nonuniform
electric field E; the nth-order term of the DEP force is given
by [25]

F(n) = 1

n!
p(n)[·](n)∇(n)E, (1)

where [·](n) is the generalized dot product and ∇(n) denotes the
nth-order derivative.

For spherical particles, analytical expressions are available
for effective moments up to an arbitrary order, while no such
expressions are available for the higher-order moments of
nonspherical particles. The dipole approximation posits that
higher-order moments, and hence higher-order terms of the
DEP force, are negligible so that the DEP force can be simply
determined from Eq. (1) for n = 1 [1] as follows:

F(1) = p(1) · ∇E, (2)

where p(1) is the effective dipole moment. The dipole
approximation is particularly simplifying in the case of
nonspherical particles, given the unavailability of analytical
means to determine higher-order effective moments. This is
while shape-dependent polarization suggests that higher-order
moments could be of added significance in the case of
nonspherical particles.

In the absence of analytical expressions, the numerical-
analytical method of Green and Jones [18] can be used to
determine higher-order effective moments, up to an arbitrary
order, of nonspherical particles in an axially symmetric setting.
According to the method, the nth-order effective moment p(n)

(reduced from the general tensor to a scalar in axial symmetry)
of a dielectric particle suspended in a dielectric medium of
permittivity εm is obtained from an integration of the electric
potential φRint due to the particle over a spherical enclosing
surface of radius Rint [18]

p(n) = 4πεmRn+1
int

2n + 1

2

∫ π

0
φRintPn(cosθ )sinθdθ, (3)

where Pn(cosθ ) are the Legendre polynomials, θ being the
polar angle in spherical coordinates.

Higher-order effective moments of nonspherical particles
can be obtained from Eq. (3) and the results incorporated
into the effective moment method to obtain higher-order DEP
forces. The first three terms of DEP force (which is as many
as would fit in three-dimensional space) are determined in this
work for ellipsoidal and cylindrical particles in two different
electrode configurations to present a quantitative evaluation of
the significance of higher-order DEP forces on nonspherical

particles and the effects of variations in particle and electrode
or field geometry on this significance. The quantitative
measure for the significance of higher-order DEP forces will
be individual and overall contributions from second- and
third-order terms (determined from the EM method) to the
total DEP force (determined from the MST method).

B. MST method determination of the total DEP force

The total dielectrophoretic force by an electric field E on a
dielectric particle of permittivity εp suspended in a dielectric
medium of permittivity εm can be obtained by integration of
the Maxwell stress tensor over an enclosing surface [26]

FMST = 1

2
(εp − εm)

∮ [
E2

tm + E2
nm

(
εp

εm

)]
ndA, (4)

where Etm and Enm are the tangential and normal components,
respectively, of the electric field inside the suspending medium,
and n is the unit vector normal to the integration surface A.

Through a comparison of force term calculations from
the EM method and total force calculations using the MST
method, contributions from first- and higher-order terms can
be known and quantitatively compared. The MST method also
importantly serves as a verification tool for DEP force term
results.

In all of the instances studied in this paper (the different
particle shapes, electrode configurations, and particle positions
within electrode configurations), the sum of the first three DEP
force terms determined from the EM method is seen to equal
the total force determined from the MST method by an error
margin never larger than 1%. This excellent match between
the two sets of results approves numerical calculations of
DEP force terms and contributions from first- and higher-
order terms can be individually determined by dividing the
respective term(s) over the MST method-calculated force.
Such-obtained second- and third-order contributions provide
an accurate quantitative measure for the significance of higher-
order DEP forces and how they are affected by different factors
including particle shape.

III. PHYSICAL PROBLEM SPECIFICATIONS

Figures 1(a) and 1(b) show the electrode structures studied
in this work for assessing the effect of field or electrode
geometry on the significance of higher-order DEP forces. By
studying point-plane and disk-plane electrode structures with
the same electrode separation (20 μm between the point or
disk and plane electrodes) and with the same voltage applied
across the electrodes, the importance of electrode design on
the extent to which higher-order DEP forces gain significance
is analyzed. It will be shown that slight variations in electrode
shape could result in substantial difference in the significance
of higher-order DEP forces on a given particle. To study
the effect of electric field characteristics on the significance
of higher-order DEP forces, a wide range of particle positions
within each electrode structure is studied. The different particle
positions correspond to electric fields with different degrees of
nonuniformity, with the definition of nonuniformity extended
to include second- and third-order as well as the first-order
derivative of the electric field.
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V = 2V dc V = 2V dc

d = 20µm

h = {3,4,...,17}µm

50µ 05m µm

rd = 1µmrp = 0.5µm

(a) (b)

r = 1µm

b = {0.25,0.5}µm

a = 1µm l/2 = 1µm

r = {0.25,0.5}µm

(c)

FIG. 1. Electrode structures and particle shapes and dimensions
studied in this work for analysis of the effect of electrode or field and
particle geometry on the significance of higher-order DEP forces:
(a) the point-plane electrode structure, (b) the disk-plane electrode
structure, (c) dimensions of spherical, ellipsoidal, and cylindrical
particles.

The particle geometries (shapes and dimensions) studied
in this work are shown in Fig. 1(c). It is the principal
aim of this work to show, and quantify, the significance
of higher-order DEP forces on particles of nonspherical
shape (comprising the vast majority of biological particles).
Ellipsoidal and cylindrical particles have been studied as
example shapes, typically used as models for more highly
nonspherical particles. To show the effect of nonspherical
shape on the significance of higher-order DEP forces, results
with ellipsoidal and cylindrical particles are compared against
those for a most closely fitting spherical particle of the same
dielectric properties. In addition to the dipole approximation,
the comparison provides an assessment on the validity of
another approximation commonly used, separately or in
conjunction with the dipole approximation, in DEP design: that
of nonspherical particles as a sphere of similar dimensions. It
will be shown that the reliability (or otherwise) of the two
approximations are related, in that modeling nonspherical
particles as a sphere of equal volume is guaranteed to be
error-free only if the dipole approximation is fully reliable, i.e.,
higher-order DEP forces are negligible. Two different aspect
ratios for ellipsoidal and cylindrical particles are considered
to assess the effect of particle thinness on the significance of
second- and third-order DEP forces.

To focus attention on the effect of particle geometry
(and electric field characteristics) on the significance of
higher-order DEP forces, simple assumptions have been
made regarding internal particle or medium properties: it
has been assumed that the particles and their suspending
media are lossless dielectrics with relative permittivities of
3 and 80 (pertaining to typical polymeric particles and water),
respectively.

IV. RESULTS AND DISCUSSION

A. Derivatives of the electric field

Variations of the electric field magnitude and its first
three derivatives with position h along the axis of field
symmetry are shown in Fig. 2(a) for the point-plane electrode
geometry, showing monotonically increasing field magnitude
and derivatives towards the point electrode with a sharper
rate of increase nearer the point electrode. Field magnitude
and derivative profiles for the disk-plane geometry, shown
in Fig. 2(b), are demonstrative of the pronounced effect of
electrode design on field curvature. While the only difference
between the two electrode structures is the change in shape of
a 0.5-μm-radius point (spherical) electrode to a 1-μm-radius
disk, field magnitude and derivative profiles are seen to differ
substantially: in clear contrast to the point-plane geometry, the
electric field and its derivatives in the disk-plane geometry
remain within the same order of magnitude as position h

along the axis of symmetry spans the full range; also, the
second-order derivative attains negative values at half of the
positions along the axis of field symmetry. In both electrode
configurations, the electric field and its derivatives have been
calculated analytically.

B. Effective moments

The first three effective moments of spherical (r = 1 μm),
ellipsoidal (a = 1 μm,b = {0.5,0.25} μm), and cylindrical
(l/2 = 1 μm,r = {0.5,0.25} μm) particles at different posi-
tions within the point-plane electrode geometry are shown
in Fig. 3(a). As with the field magnitude and derivatives,
first- and higher-order effective moments of particles posi-
tioned within the point-plane geometry are positive-valued
and monotonically increase with distance h from the plane
electrode. Particle geometry (shape or size) is of no effect
on the trends with which first- or higher-order moments
vary with particle position with respect to the electrodes.
However, the values of the effective moments at a given
position h show strong dependency on particle geometry:
With the exception of the spherical particle possessing third-
order moments smaller than those of all (smaller in volume)
nonspherical particles, the effective moments are found to be
larger for particles of larger volume. It is noted, however, that
only the dipole moment (and not higher-order moments) is
directly proportional to particle volume. It has been common
practice to model nonspherical particles as spheres of similar
dimensions to simplify the calculation of DEP force. From
the direct proportionality of only the effective dipole moment
with particle volume it can be concluded that modeling
nonspherical particles with spheres of equal volume will be
error-free if and only if higher-order moments can be ignored,
i.e., if and only if the dipole approximation is found to be
reliable.

The first- and higher-order effective moments of the same
particles positioned within the disk-plane electrode geometry
are plotted against h in Fig. 3(b). The profile of each of
the effective moments can be closely identified with that of
the field derivative of the preceding order, in line with the
nth-order effective moment representing the energy stored in
the particle by the (n − 1)-th-order field derivative (with n = 0
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FIG. 2. (Color online) Field curvature profiles for point-plane and disk-plane electrode structures showing the pronounced effect of electrode
design on electric field nonuniformity: (i) the electric field magnitude and its (ii) first-, (iii) second-, and (iv) third-order derivatives along the
symmetry axes of (a) point-plane and (b) disk-plane electrode structures with the characteristics given in Fig. 1.

corresponding to the field magnitude). The same observations
made with the point-plane configuration regarding the effect
of particle geometry on the effective moments, and regarding
the interdependency of the two common approximations
in DEP design involving nonspherical particles (the dipole
approximation and modeling the particles as spheres of similar
dimensions) are made with the disk-plane configuration also.
The importance of electrode design on the effective moments
of spherical and nonspherical particles is clear from the
substantial difference between trends and values of first- and
higher-order moments in point-plane and disk-plane electrode
structures, while the two electrode configurations differ only
slightly in geometry.

C. Dielectrophoretic force terms

The first-, second-, and third-order terms of the DEP force
on spherical, ellipsoidal, and cylindrical particles at different
positions within the point-plane electrode configuration are
plotted in Fig. 4(a). The DEP force terms are determined from
combining the effective moment and field derivative results
in accordance with the effective moment (EM) method. As
expected from effective moment and field derivative results and
the EM method formulation, first- and higher-order DEP forces
on spherical and nonspherical particles increase monotonically
as particles distance from the plane electrode and approach
the point electrode. With the only exception of F (3) for the
spherical particle, first- and higher-order DEP forces are found
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FIG. 3. (Color online) (i) First- (p(1)), (ii) second- (p(2)), and (iii) third-order (p(3)) effective moments of spherical (r = 1 μm), ellipsoidal
(λ = 2, λ = 4), and cylindrical (λ = 2, λ = 4) particles at different positions within (a) point-plane and (b) disk-plane electrode structures.

to be larger for particles of larger volume, while only the
DEP force obtained from the dipole approximation is directly
proportional to the particle volume. The same observation
is made with the first- and higher-order DEP forces on the
same particles positioned within the disk-plane electrode
structure [Fig. 4(b)], leading to the same conclusion as that
made previously with the effective moments: in DEP designs
involving nonspherical particles, modeling the particles with
spheres of equal volume is error-free if and only if the dipole
approximation is error-free.

As with the moments, the significant effect of electrode
shape or design on the trends (i.e., variation patterns with h)
and values of first- and higher-order DEP forces is clearly
visible from the substantial difference between the plots for
F (n) in Fig. 4 pertaining to point- and disk-plane electrodes.

The substantial difference, which indeed arises from similar
levels of difference presented previously for the field curvature
and effective moment profiles between the two electrode
configurations, signifies the importance of electrode design
on first- and higher-order dielectrophoretic forces on spherical
and nonspherical particles.

D. Verified significance of higher-order DEP forces

The reliability of the dipole approximation, and in other
words the significance of higher-order DEP forces, has been
determined on the basis of individual and overall contributions
from second- and third-order terms to the total DEP force
on particles, determined by dividing the respective terms
(obtained using the effective moment method) over the total
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FIG. 4. (Color online) (i) First- (F (1)), (ii) second- (F (2)), and (iii) third-order (F (3)) terms of DEP force on spherical (r = 1 μm), ellipsoidal
(λ = 2, λ = 4), and cylindrical (λ = 2, λ = 4) particles at different positions along the symmetry axes of (a) point-plane and (b) disk-plane
electrode structures.

force (obtained using the Maxwell stress tensor method).
Results for higher-order contributions to the DEP force on
spherical, ellipsoidal, and cylindrical particles at different
positions along the symmetry axes of point-plane and disk-
plane electrode structures are shown in Fig. 5.

1. Point-plane electrode structure

In the case of the point-plane geometry, the plots only show
the results for half of the examined range of particle positions
along the symmetry axis; for points nearer the plane than the
point electrode (h < 10 μm), higher-order contributions to the
DEP force are found to be below 2%, regardless of particle
geometry. As particles approach the point electrode, the DEP

force they experience is seen to become decreasingly dipolar:
second- and third-order contributions to the DEP force are
seen to rapidly increase as particles move closer to the point
electrode.

All three plots for the point-plane geometry [Fig. 5(a)]
show the pronounced effect of nonspherical particle shape on
the significance of higher-order DEP forces: second- and third-
order contributions to the DEP force are found to be notably
larger for nonspherical particles than for the sphere of similar
dimensions. For the r = 1 μm spherical particle, the maximum
contribution from the second-order term is nearly 10% at
h = 17 μm, while for the a = 1 μm,b = 0.5 μm ellipsoidal
particle of the same dielectric properties at the same position
within the electrode geometry, the second-order contribution
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FIG. 5. (Color online) Higher-order contributions to the DEP force on spherical (r = 1 μm), ellipsoidal (λ = 2, λ = 4), and cylindrical
(λ = 2, λ = 4) particles in (a) point-plane and (b) disk-plane electrode configurations, determined by comparing force term calculations
using the effective moment method against total force calculations using the MST method: Individual contributions from (i) second- and
(ii) third-order terms, and (iii) the overall higher-order contribution, obtained by summing second- and third-order contributions.

is seen to be 34%, i.e., more than a third of the total DEP
force. For a cylindrical particle (λ = 2) in the same position,
the second-order contribution is seen to be even larger; nearly
38%. Third-order contributions to the DEP force are also seen
to be largely different between nonspherical particles and a
sphere of similar dimensions. While the third-order term is
found to have negligible (<0.1%) contribution to the force
on the spherical particle, up to >10% contributions from the
third-order term are observed for ellipsoidal and cylindrical
particles. A comparison of the plots in Figs. 5(a.i) and 5(a.ii)
show that along the symmetry axis of the point-plane geometry,
the second-order term dominates higher-order contributions to
the DEP force on spherical and nonspherical particles.

Figure 5(a.iii) presents a quantitative evaluation of the
reliability of the dipole approximation for a range of particle
and field geometries. It can be seen that while the first-order
approximation is a highly reliable means of predicting DEP
force on spherical and nonspherical particles positioned nearer
the plane electrode (h < 10 μm), it becomes increasingly
erroneous as particles approach the point electrode. At h =
17 μm, the dipole approximation will underestimate the DEP
force on ellipsoidal and cylindrical particles by ∼40% and
∼44%, respectively. For a most closely fitting spherical
particle, the error is ∼10%. The plot shows the strong
dependency of the reliability of the dipole approximation on
particle and electric field geometry: the approximation can
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be highly accurate or highly erroneous for the same particle,
depending on the position within the electrode geometry, i.e.,
field curvature. The reliability of the dipole approximation is
also found to vary significantly for particles of different shapes:
A significant increase in the error incurred upon invoking
the dipole approximation is observed as soon as the particle
deviates from spherical shape.

Figure 5(a.iii) shows another characteristic of higher-order
DEP forces: The specificity of the error incurred upon invoking
the dipole approximation to particle shape and independence
from particle aspect ratio for a given nonspherical shape.
Overall higher-order contribution to the DEP force is found
to be identical for a = 1 μm ellipsoidal particles of different
aspect ratios, and for l/2 = 1 μm cylindrical particles of
different aspect ratios. It is found that for a given (nonspherical)
particle shape, increasing aspect ratio (i.e., thinning the
particle) gives rise to smaller quadrupolar and larger octupolar
contributions to the DEP force experienced by the particle, in a
manner that the sum of second- and third-order contributions
remains independent of the aspect ratio and specific to the
particle shape. A similar observation can be made in the case
of the disk-plane geometry.

2. Disk-plane electrode structure

The plots in Fig. 5(b) show percentage higher-order
contributions to the DEP force on spherical, ellipsoidal, and
cylindrical particles at different positions along the symmetry
axis of the disk-plane electrode geometry. It can be seen
that for the spherical particle, second- and third-order terms
constitute a negligible (<1%) portion of the dielectrophoretic
force, while for ellipsoidal and cylindrical particles, multipolar
contributions are seen to reach maximum values of ∼30%
and ∼40%, respectively. The positions along the axis of field
symmetry where higher-order forces are more significant differ
notably from those for the point-plane geometry; showing
the importance of the choice of electrode geometry on the
reliability of the dipole approximation. In the disk-plane
geometry, higher-order forces are found to contribute in largest
proportion to the total DEP force when particles are positioned
near the disk or plane electrode. Multipolar contributions are
seen to almost symmetrically drop towards nearly zero at the
midpoint h = 10 μm. Compared to the case of the point-plane
geometry, third-order contributions to the DEP force are seen
to be of added significance. For the λ = 4 cylindrical particle
positioned at h = 3 μm or h = 17 μm, nearly 20% of the DEP
force is constituted by the third-order term alone. For the same
particle at the same positions, another ∼20% of the total force
is found to be constituted by the second-order term, making
the DEP force predicted by the dipole approximation account
for only ∼60% of the actual force.

Figure 5(b.iii) shows that the error incurred upon invoking
the dipole approximation is in excess of 10% for all of
the nonspherical particles at almost all positions along the
symmetry axis of the disk-plane geometry. Figure 5(b.iii)
also shows that as with the point-plane geometry, the overall
contribution from higher-order terms to the dielectrophoretic
force on a nonspherical particle of a given shape is specific to
the shape and independent of aspect ratio, i.e., particle thinness.
As with the point-plane electrode geometry, an increasing

aspect ratio is seen to give rise to larger third-order and smaller
second-order contributions to the DEP force experienced by
the particle, with the increase and decrease occurring in a
manner that the overall higher-order contribution remains
independent of the aspect ratio.

V. CONCLUSION

A. Summary of key findings

The commonly and indiscriminately invoked dipole ap-
proximation can be highly erroneous in predicting the dielec-
trophoretic force. Circumstances where the dipole approxi-
mation would be unreliable are currently identified based on
general and qualitative criteria that, at best, (claim to) provide
a yes or no answer. It has been shown in this work that the
criteria are not at all general and can provide a wrong yes or
no answer. This work has presented a quantitative alternative
that can accurately determine the extent to which the dipole
approximation is reliable and, if found unreliable, correct
the approximation by adding second- and third-order forces.
The method has been applied to spherical, ellipsoidal, and
cylindrical particles at different positions within two electrode
structures to quantitatively analyze the significance of higher-
order DEP forces for a range of particle and field geometries,
with particular attention to the case of nonspherical particles
that comprise the vast majority of biological particles.

A major reason for the inattention to higher-order DEP
forces, particularly on nonspherical particles, has been the lack
of availability of analytic means to determine the higher-order
moments of nonspherical particles. In the absence of analytic
means, numerical methods are deemed inaccurate and higher-
order forces are deemed almost always negligible. As a result,
higher-order DEP forces are partially or (most often) totally
ignored or nonspherical particles are approximated as spheres
of similar dimensions. The accuracy of the numerical method
employed in this work has been verified and the results have
shown that higher-order terms can constitute nearly half of the
total DEP force. It has also been shown that higher-order DEP
forces are notably more significant for nonspherical particles
and that approximating nonspherical particles with spheres of
similar dimensions is subject to substantial error. Finally, it has
been shown that electrode structure or design has a pronounced
effect on the significance of higher-order DEP forces.

B. Significance of results

Figure 6 is a summary of the results of this work, showing
the proportional contributions of first-, second-, and third-order
DEP forces across the domains of the electrode geometries.
Higher-order terms have been shown to constitute up to ∼45%
and ∼40% of the total DEP force on the examined cylindrical
and ellipsoidal particles, respectively. This highlights the error
that can be incurred upon invoking the dipole approximation
for determining the DEP force on nonspherical particles.
However, it has been noted that higher-order terms do not
always contribute in such significant proportion to the DEP
force on nonspherical particles. There are instances where
nonspherical particles are subject to higher-order forces of
minimal significance; e.g., at h = 10 μm in the disk-plane
[Fig. 6(b)] and positions not close to the point electrode in the

063302-9



HOSSEIN NILI AND NICOLAS G. GREEN PHYSICAL REVIEW E 89, 063302 (2014)

FIG. 6. (Color online) Stacked area plots showing the first three terms of DEP force (F (1), F (2), and F (3)) and the total DEP force (FMST),
determined numerically, on (i) spherical (r = 1 μm), ellipsoidal [(ii) λ = 2, (iii) λ = 4], and cylindrical [(iv) λ = 2, (v) λ = 4] particles
in (a) point-plane and (b) disk-plane electrode configurations.

point-plane configuration [Fig. 6(a)]. The instances, however,
importantly do not correspond to the commonly stated criterion
for the limit of the reliability of the dipole approximation,
namely that higher-order forces gain increased significance
when the electric field varies more notably across particle
dimensions. A clear example counter to the criterion has been
shown to be the case of negligible higher-order forces at h =
10 μm in the disk-plane configuration [Fig. 6(b)] where, based
on field curvature profiles [Fig. 2(b)], the field varies most

notably across particle dimensions. Addressing the fallacy of
such criteria, this work has provided a quantitative evaluation
approach, with verified accuracy, to substitute general criteria
and “by-inspection” predictions (proven to be subject to large
error in this work) on the significance of higher-order DEP
forces.

Figure 6 also demonstrates the verification of the numerical
results presented in this work of higher-order DEP forces on
nonspherical particles. Above all the stacked area plots lies
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a FMST curve exactly fitting the sum of F (1), F (2), and F (3).
Given the unassailability of the MST method in encompassing
all interactions between an electric field and the subject
dielectric(s) that generate force, the excellent match between
the two sets of results provides verification for the numerical
second- and third-order DEP force calculations presented in
this work.

The clear contrast between the plots in Fig. 6 for point- and
disk-plane electrode geometries emphasizes the considerable
effect of electrode shape or design on the significance of
higher-order DEP forces. It has been shown in this work that
a simple change of shape of one electrode (with all other
geometrical parameters and the applied voltage unchanged)
from a 0.5-μm sphere to a 1-μm disk will result in substantial
change in the proportions by which higher-order terms con-
tribute to the total DEP force on particles, as well as positions
within the electrode geometries where these proportions are
more significant. A clear example is positions near the plane
electrode in the two electrode structures: negligible (<1%)
higher-order forces in the point-plane and significant (>30%)
higher-order forces in the disk-plane geometry. The notable
differences show that only after accurate derivation of higher-
order DEP force terms can judgements be ruled on whether or
not (and in either case to what extent) the dipole approximation
is reliable and, importantly, the results will only hold valid
for the given electrode design and not at all generalizable to
“similar” designs.

A major roadblock for including higher-order forces in
DEP designs involving nonspherical particles has been the

lack of availability of analytic expressions for the higher-order
effective moments of nonspherical particles. In the absence
of analytic means, numerical calculations of higher-order
forces are perceived as inaccurate and subject to differentiation
error, and the computational effort to circumvent the error
is seen as unworthy of the deemed negligence of higher-
order DEP forces. In this work (a) it has been shown that
higher-order DEP forces on nonspherical particles are far
from negligible and can comprise nearly half of the total
DEP force, (b) a hybrid numerical-analytical method has
been used to determine higher-order DEP forces, and the
accuracy of the method has been verified by comparing results
against total force calculations using the unassailable Maxwell
stress tensor method, (c) the computational power required
for the calculations has been very modest, and (d) it has
been shown that a quantitative evaluation of the significance
of higher-order forces is essential in DEP designs involving
nonspherical particles, of which shape are most biological
particles. Approximation with spheres, as is commonly done,
has been shown to cause substantial error.
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Science 301, 344 (2003).
[7] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and

Y. Fintschenko, Anal. Chem. 76, 1571 (2004).
[8] P. R. Gascoyne, X.-B. Wang, Y. Huang, and F. F. Becker,

Industry Applications, IEEE Transactions on 33, 670 (1997).
[9] M. P. Hughes and H. Morgan, Anal. Chem. 71, 3441 (1999).

[10] A. Sanchis, A. Brown, M. Sancho, G. Martinez, J. Sebastian,
S. Munoz, and J. Miranda, Bioelectromagnetics 28, 393 (2007).

[11] H. Morgan and N. G. Green, J. Electrost. 42, 279 (1997).
[12] X.-B. Wang, Y. Huang, P. R. Gascoyne, and F. F. Becker,

Industry Applications, IEEE Transactions on 33, 660 (1997).
[13] N. Green, H. Morgan, and J. J. Milner, J. Biochem. Biophys.

Methods 35, 89 (1997).

[14] M. P. Hughes, Nanotechnology 11, 124 (2000).
[15] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo,

Nat. Nanotechnol. 5, 525 (2010).
[16] A. Ramos, H. Morgan, N. Green, and A. Castellanos, J. Phys. D

31, 2338 (1998).
[17] T. B. Jones, Electromechanics of Particles (Cambridge

University Press, Cambridge, England, 2005).
[18] N. G. Green and T. B. Jones, J. Phys. D 40, 78 (2007).
[19] E. Liang, R. L. Smith, and D. S. Clague, Phys. Rev. E 70, 066617

(2004).
[20] H. Dalir, Y. Yanagida, and T. Hatsuzawa, J. Comput. Theor.

Nanosci. 6, 505 (2009).
[21] C. H. Kua, Y. C. Lam, C. Yang, K. Youcef-Toumi, and

I. Rodriguez, J. Electrost. 66, 514 (2008).
[22] C. Rosales and K. M. Lim, Electrophoresis 26, 2057 (2005).
[23] S. Zhu, H. Yi, Z. Ni, and C. Song, in Proceedings of International

Conference on Complex Medical Engineering, 2007, CME 2007,
IEEE/ICME (IEEE, New York, 2007), pp. 1720–1725.

[24] T. Jones and M. Washizu, J. Electrost. 33, 199 (1994).
[25] M. Washizu and T. Jones, J. Electrost. 33, 187 (1994).
[26] X. Wang, X.-B. Wang, and P. R. Gascoyne, J. Electrost. 39, 277

(1997).

063302-11

http://dx.doi.org/10.1063/1.1700065
http://dx.doi.org/10.1063/1.1700065
http://dx.doi.org/10.1063/1.1700065
http://dx.doi.org/10.1063/1.1700065
http://dx.doi.org/10.1063/1.3456626
http://dx.doi.org/10.1063/1.3456626
http://dx.doi.org/10.1063/1.3456626
http://dx.doi.org/10.1063/1.3456626
http://dx.doi.org/10.1021/ac971063b
http://dx.doi.org/10.1021/ac971063b
http://dx.doi.org/10.1021/ac971063b
http://dx.doi.org/10.1021/ac971063b
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
http://dx.doi.org/10.1099/00221287-140-3-585
http://dx.doi.org/10.1099/00221287-140-3-585
http://dx.doi.org/10.1099/00221287-140-3-585
http://dx.doi.org/10.1099/00221287-140-3-585
http://dx.doi.org/10.1126/science.1086534
http://dx.doi.org/10.1126/science.1086534
http://dx.doi.org/10.1126/science.1086534
http://dx.doi.org/10.1126/science.1086534
http://dx.doi.org/10.1021/ac034804j
http://dx.doi.org/10.1021/ac034804j
http://dx.doi.org/10.1021/ac034804j
http://dx.doi.org/10.1021/ac034804j
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1109/28.585856
http://dx.doi.org/10.1021/ac990172i
http://dx.doi.org/10.1021/ac990172i
http://dx.doi.org/10.1021/ac990172i
http://dx.doi.org/10.1021/ac990172i
http://dx.doi.org/10.1002/bem.20317
http://dx.doi.org/10.1002/bem.20317
http://dx.doi.org/10.1002/bem.20317
http://dx.doi.org/10.1002/bem.20317
http://dx.doi.org/10.1016/S0304-3886(97)00159-9
http://dx.doi.org/10.1016/S0304-3886(97)00159-9
http://dx.doi.org/10.1016/S0304-3886(97)00159-9
http://dx.doi.org/10.1016/S0304-3886(97)00159-9
http://dx.doi.org/10.1109/28.585855
http://dx.doi.org/10.1109/28.585855
http://dx.doi.org/10.1109/28.585855
http://dx.doi.org/10.1109/28.585855
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
http://dx.doi.org/10.1088/0957-4484/11/2/314
http://dx.doi.org/10.1088/0957-4484/11/2/314
http://dx.doi.org/10.1088/0957-4484/11/2/314
http://dx.doi.org/10.1088/0957-4484/11/2/314
http://dx.doi.org/10.1038/nnano.2010.106
http://dx.doi.org/10.1038/nnano.2010.106
http://dx.doi.org/10.1038/nnano.2010.106
http://dx.doi.org/10.1038/nnano.2010.106
http://dx.doi.org/10.1088/0022-3727/31/18/021
http://dx.doi.org/10.1088/0022-3727/31/18/021
http://dx.doi.org/10.1088/0022-3727/31/18/021
http://dx.doi.org/10.1088/0022-3727/31/18/021
http://dx.doi.org/10.1088/0022-3727/40/1/S12
http://dx.doi.org/10.1088/0022-3727/40/1/S12
http://dx.doi.org/10.1088/0022-3727/40/1/S12
http://dx.doi.org/10.1088/0022-3727/40/1/S12
http://dx.doi.org/10.1103/PhysRevE.70.066617
http://dx.doi.org/10.1103/PhysRevE.70.066617
http://dx.doi.org/10.1103/PhysRevE.70.066617
http://dx.doi.org/10.1103/PhysRevE.70.066617
http://dx.doi.org/10.1166/jctn.2009.1061
http://dx.doi.org/10.1166/jctn.2009.1061
http://dx.doi.org/10.1166/jctn.2009.1061
http://dx.doi.org/10.1166/jctn.2009.1061
http://dx.doi.org/10.1016/j.elstat.2008.05.001
http://dx.doi.org/10.1016/j.elstat.2008.05.001
http://dx.doi.org/10.1016/j.elstat.2008.05.001
http://dx.doi.org/10.1016/j.elstat.2008.05.001
http://dx.doi.org/10.1002/elps.200410298
http://dx.doi.org/10.1002/elps.200410298
http://dx.doi.org/10.1002/elps.200410298
http://dx.doi.org/10.1002/elps.200410298
http://dx.doi.org/10.1016/0304-3886(94)90054-X
http://dx.doi.org/10.1016/0304-3886(94)90054-X
http://dx.doi.org/10.1016/0304-3886(94)90054-X
http://dx.doi.org/10.1016/0304-3886(94)90054-X
http://dx.doi.org/10.1016/0304-3886(94)90053-1
http://dx.doi.org/10.1016/0304-3886(94)90053-1
http://dx.doi.org/10.1016/0304-3886(94)90053-1
http://dx.doi.org/10.1016/0304-3886(94)90053-1
http://dx.doi.org/10.1016/S0304-3886(97)00126-5
http://dx.doi.org/10.1016/S0304-3886(97)00126-5
http://dx.doi.org/10.1016/S0304-3886(97)00126-5
http://dx.doi.org/10.1016/S0304-3886(97)00126-5



