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Soliton interactions between multivalued localized waveguide channels within ferrites
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In this paper, we investigate both analytically and numerically the localized multivalued waveguide channels—
the loop solitons—dynamics within a ferrite slab. In the starting point of the work, we solve in detail the initial
value problem of the system while unveiling the existence of multivalued waveguide channels solutions. Paying
particular interest to the nonlinear scattering among these excitations, we study extensively the different kinds of
interacting features between these localized waves alongside the depiction of their energy densities. As a result,
we find that the interactions can be attractive or repulsive depending strongly on the ratio of the amplitudes of
the interacting structures. In the wake of these results, we address some physical implications, accordingly.
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I. INTRODUCTION

Nonlinear wave excitations and solitons—self-localized
robust and long-lived solitary waves that do not disperse and
preserve their identity as they travel through a medium—are
ubiquitous in nature. Solitons actually result from the trade-off
between nonlinearity (the tendency to increase the wave
slope) and dispersion (the tendency to flatten the wave). They
arise in many fundamental areas of physics and technol-
ogy from high-bit-rate telecommunications and controllable
soliton supercontinuum generation in ultrafast photonics,
condensed matter, and plasma physics to elementary particle
physics, cosmology, and monster (rogue) waves in oceans and
Bose-Einstein condensates [1]. Because of their remarkable
properties, the above waveguide channels might appear also
as the idealized mathematical structures for the description of
extended “elementary” particles [2,3]. This is the case of the
new concept of optical leptons and the soliton models of the
hydrogen atom investigated recently [4–6].

By virtue of the Galilean symmetry, the soliton as the
self-localized wave object is characterized by its own analog
of the de Broglie wavelength. On the other hand, the soliton
as the extended particlelike object, due to the nonlinear
self-interaction, becomes a bound state in its own self-
induced trapping potential and, as a consequence, acquires
a negative self-interaction (binding) energy [7,8]. With the
soliton binding energy, ones can get details about the shape and
the structural stability of solitons and, similarly to the nuclear
binding energy, it can be regarded as the degree of how strongly
the quasiparticles that make up the soliton are bound together.

From the viewpoint of their profiles, solitons can be
classified into two families: the single-valued waveguide
channels and the multivalued waveguide channels. The latter
have recently been investigated experimentally in a variety of
physical systems such as vortex lines of fluid dynamics [9–11],
topological defect lines in liquid crystals [12,13], singular lines
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of optical fields [14], magnetic field lines in electromagnetic
fields [15–17], and in spinor Bose-Einstein condensates [18],
just to name a few. Nonetheless, the analytical tools designed
to capture these intricate structures have remained, until now,
a challenging problem to investigate. In few months ago, some
complex multivalued excitations have been unearthed in the
light fields analytically by Kedia et al. [19] as a new family
of null solutions to Maxwell’s equations in free space whose
field lines encode all torus knots and links. The loop solitons
[20] alongside the twofoil and trefoil strings can be regarded
as simple reductive cases of these kinds of multivalued
excitations. We aim at investigating the nonlinear dynamics of
such structures in the ferrite materials and project to extend the
study to the construction of more complex multivalued solitons
of knot profiles. The motivation of the present paper also
stems from the contemporary interests in studying loop soliton
solutions to integrable nonlinear evolutionary equations (see
Ref. [21] and references therein).

Following the increasing interests in advanced magnetic
information storage and data process elements, it becomes
fundamental and more crucial to understand deeply the
micromagnetic structure in microsize and nanosize of magnets
among the ferromagnetic materials [22–25]. Some developed
nanofabrication techniques have made it possible to fabricate
ferromagnetic particles to a length of 20–30 nm [22]. Due to the
relatively small size of such nanoparticles, the magnetization
can be regarded as homogeneous over a particle and can be
described by a magnetic moment. These particles interact
with each other through a dipolar interaction of the magnetic
moments and the solitons originating from this interaction
are stably created. Alongside these structures, a wide range
of soliton-type propagation phenomena have been predicted
theoretically (see Refs. [26–28] and references therein).

In the past few years, there has been extensive research
activity on dissipative magnetization dynamics (see Ref. [29]
and references therein) in view of understanding some techno-
logical problems for magnetic materials. This research activity
aimed to reduce energy losses due to damping and also to
developing materials with higher rates of magnetization, de-
termined, however, by damping mechanisms. The dissipative
magnetization dynamics of a ferromagnet can be subdivided
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into fast and ultrafast processes. In the fast one, the slow
magnetic degrees of freedom are investigated on a time scale
much larger than the intersite hopping time of about 1 fs. For
such a time scale, the dynamics are closed to the adiabatic
limit where the electronic system is always in its ground
state within the momentary magnetization configuration. As a
matter of fact, in several films of nm thickness, spin-polarized
current-induced switching of the magnetization direction has
been observed [30,31]. Ultrafast dynamics occur on shorter
time scales, e.g., the quenching of ferromagnetic order in
about 100 fs [32]. In this work, we will restrict our interest
to the fast near-adiabatic magnetization dynamics which stand
to be the basic mechanism of the process of remagnetization
in ferromagnetic materials.

Basically, the understanding of the electromagnetic propa-
gation in ferromagnetic materials is actually made possible by
the Maxwell’s equations in such media. Theses equations are
supplemented with a relation between the magnetization and
the auxiliary magnetic field in the materials. Such a relation
appears as the phenomenological equation of motion for the
magnetization. A physical description of the micromagnetic
phenomena is based on the use of the Landau-Lifshitz-Gilbert
(LLG) equation controlling the magnetic relaxation process
and determining how fast the magnetization is restored to its
equilibrium position [29]. As far as we are concerned, no fully
analytical theory has been developed so far to solve the above
equations. Nonetheless, in view of obtaining results valid in
nonlinear regimes, one has to resort to intermediate models
where a novel perturbative parameter, most often of longness
or shortness of the wave, is introduced [33].

In the present paper, we pay attention to the propagation of
short waves in a saturated ferrite only in the direction perpen-
dicular to the external saturating magnetic field. Granted this
consideration is satisfied, the nonlinear dynamics actually obey
an evolution system which integrability can be investigated by
means of the phase portrait analysis combined to the Hirota’s
bilinearization [34] among other methods of study. The initial
value problem of the system provides a whole depiction of
the dynamics of the system while revealing the existence
of miscellaneous traveling waveguide excitations supported
by the system. The Hirota’s bilinearization [34] provides a
whole analysis of the interaction of localized waves while
characterizing the head-on collision.

In the wake of the above concerns, we organize the paper
as follows. In Sec. II, we present the basic nonlinear system
consisting of two coupled evolution equations derived from the
Maxwell’s equations combined to the LLG phenomenological
theory of damping in ferromagnets [29]. This basic system
governs the propagation of nonlinear electromagnetic short
waves within the ferrites [26]. In Sec. III, we solve the initial
value problem of the system while depicting its phase portraits
alongside the energy densities of the traveling waveguide
channels. This analysis reveals the existence of localized and
periodic traveling excitations propagating within the medium.
In Sec. IV, paying particular interest to the localized waves, we
investigate their scattering properties by means of the Hirota’s
bilinearization [34] and we also depict the energy functional
of the waves. In Sec. V, we address the physical implications
of the solutions. Finally, in the last section, we end this work
with a brief summary.
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FIG. 1. Configuration considered. Vectors v and H∞
0 stand for the

velocity of the wave propagation and the in-plane external magnetic
field, respectively.

II. BASIC NONLINEAR SYSTEM

We consider a quasi-one-dimensional ferrite slab lying in
the x axis, the transverse dimension being negligible. This
slab is magnetized to saturation by an in-plane external field
H∞

0 directed along the transverse y axis perpendicular to the
propagation x direction as presented in Fig. 1. In such a
condition, due to the absence of eddy currents, electromagnetic
waves are likely to propagate. We consider a thick-enough film
in view of ensuring an homogeneous magnetization over the
ferrite. We assume that the crystalline and surface anisotropy
of the sample is negligible. The use of the Maxwell’s equations
combined to the LLG equation [29] for a ferrite result in the
derivation of the following dimensionless coupled system [26]:

− ∇ · (∇ · H) + �H = ∂2
t (H + M), (2.1a)

∂tM = −M ∧ Heff + σM ∧ ∂tM/m,

(2.1b)

where the vectors H and M stand for the dimensionless mag-
netic induction and magnetization density, respectively. From
a practical viewpoint, the above coupled equations are actually
fundamental for investigation of the data loading processes in
reversal magnetic memory devices in the ferrites. We note
that the independent space-time variables are expressed into
their dimensionless forms. The constants m and σ refer to the
dimensionless saturation magnetization and Gilbert-damping
parameter [29], respectively. Generally speaking, damping
of a physical system generates a force in opposition to the
macroscopic driving force. When the two forces balance, the
energy gain from the driving force is balanced by the energy
loss from the damping force while leading to a steady state.
When the forces are not equal, energy is either gained (if the
driving force is larger) or lost (if the damping force is larger),
and the macroscopic motion either accelerates or decelerates.
If the damping force always increases or decreases as the
rates of change of the dynamical variables that characterize
the macroscopic motion increase or decrease, then when the
driving force is constant, the rates of change of the dynamical
variables increase or decrease until the driving and damping
forces are equal and a steady-state condition is attained. The
simplest case, which commonly occurs when there are many
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different damping forces out of any resonance phenomenon,
is that the damping force is directly proportional to the rate of
change of the macroscopic dynamical variables of the system
[29].

Now, considering a uniaxial ferrite referring to a quasi-one-
dimensional configuration presented in Fig. 1 above, we use
the following expansion series of the magnetization density
and the magnetic induction expressed as [26]:

M =
∞∑

j=0

Mj ε
j , H =

∞∑
j=0

Hj ε
j , (2.2)

where the parameter ε represents the small perturbation
related to the wavelength of the short-wave perturbation along
the ferrite. Replacing Eq. (2.2) into (2.1) and following a
blend of transformations where two independent space-time
coordinates X and T express [26]

X = −ε−1m(x − t)/2, T = εmt, (2.3)

Eq. (2.1) transforms to

BXT = BCX − sBX, (2.4a)

CXT = −BBX, (2.4b)

where observables B and C and constant s are defined by [26]

C = −X −
∫ X (

Hy
0/m

)
dX, B = Mx

1/2m, s = −σ1/2.

(2.5)

Let us note that, conventionally, subscripts to observables
with respect to the space-time variables refer to their partial
derivatives. Thus, from the above equations, writing BX or CX,
for example, means the partial derivatives of observables B and
C with respect to variable X. Besides, we need to mention that
the dependent functions B and C expressed above represent the
“relative magnetization” of the ferrite [26] with respect to the
saturation magnetization and the “integral effective magnetic
strength” of the ferrite, respectively. Parameter σ1 stands
for the first-order expansion cœfficient of the dimensionless
Gilbert damping against the short-wavelength perturbation.
The quantities H0 and M1 instead, refer to the zeroth and
first-order expansion coefficients of the external magnetic field
and the magnetization, respectively. According to Eq. (2.4),
these observables evolve dynamically within the space-time-
like manifold described by variables X and T , respectively,
with the boundary conditions limX→∞ H0 = (0,μm,0) and
limX→∞ M1 = 0, parameters m and μ (μ > 0) being the
saturation magnetization and strength of the internal magnetic
field of the ferrite, respectively [26]. For the sake of simplicity,
these two independent variables will be written into their lower
cases x and t , respectively.

The term (−sBX) in Eq. (2.4a) accounts for the Landau-
Gilbert damping, which represents the dissipation which
occurs in a real ferrite. Let us provide an explanation regarding
where the absorbed energy of a damped ferromagnet comes
from. First, we need to note that for a ferromagnet, as it is
the case for ferrites in this paper, the dynamical characteristic
observable is the magnetization field. In such materials, the
damping involves loss of energy from the macroscopic motion
of the local magnetization field by transfer of kinetic and

potential energies to microscopic thermal motion (heat energy)
in the form of spin waves, lattice vibrations (phonons), and
thermal excitations, among others. However, the details of
the mechanisms for the transfer processes are too complex
to be taken into account explicitly in the field equations.
Nonetheless, when the external magnetic field is not strong
enough to eliminate all domain walls, the domain structure
plays a dominant role in the damping, and the local rate of
energy loss vary by large amounts within a ferromagnet [29].

It is of particular interest to see that the effects of the
Gilbert-damping account significantly at the first order of
expansion in the perturbative reduction method: σ ∼ σ1ε +
O(ε2). In some typical materials, keeping only the second-
order expansion coefficient (σ ∼ σ2ε

2) discards the dissipation
in the final analysis. This is actually of good interest when
investigating the dynamics of self-confined coherent structures
propagating in the ferrite with conserved properties such as
shape, amplitude, and momentum, just to name a few. As a
matter of fact, for vanishing dissipation parameter s ≡ 0, a
soliton solution to Eq. (2.4) has been obtained by Kraenkel,
Merle, and Manna [26] via a transformation to the sine-Gordon
(sG) equation and given by

B = 2
(1 + μ)

κ
sechZ,

C = −(1 + μ)

(
X − 2

κ
tanh Z

)
+ C0, (2.6)

where the phase z is given by

Z = κX − 1 + μ

κ
T + Z0, (2.7)

with wave number κ and constant C0 and Z0 being arbitrary
parameters. Following such a transformation, it is actually
difficult to discuss in detail the interacting features of two-
soliton, three-soliton, and multisoliton solutions due to some
cumbersome calculus. In this work, we propose an alternative
and interesting approach to study these waves in detail, i.e., to
describe the sG solitons.

In the wake of the derivation of the aforementioned coupled
equations, from the viewpoint of integrability, it is always
straightforward to investigate whether such a system would
possess an infinite set of conservation quantities. One powerful
and direct method addressed to study this subject is the initial
value problem resorting to the Hirota’s bilinearization [34].

III. PHASE PORTRAIT ANALYSIS

Let us pass to a global coordinate in which the system (2.4)
has stationary solutions. In this consideration, we introduce
the following variable η given by

η = x − vt + η0, (3.1)

where the quantity η0 is an arbitrary parameter and the
nonzero constant v here stands for the velocity of the traveling
waves. Setting B(x,t) = φ(η), C(x,t) = ψ(η), the system
(2.4) transforms to

vφηη + φψη − sφη = 0, (3.2a)

vψηη − φφη = 0. (3.2b)
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As mentioned previously, subscripts to observables φ and ψ

with respect to sole coordinate η denote their total derivatives,
accordingly. From Eq. (3.2b), after the first integration with
respect to variable η, it straightforwardly yields

ψη = φ2/2v + K, (3.3)

with K being an arbitrary parameter. The physical meaning of
the parameter K is quite straightforward. In fact, comparing
Eqs (2.5) and (3.3) from the viewpoint of their asymptotical
behaviors provides K = −(1 + μ) which stands to be negative
valued (μ > 0). It can be interpreted as the “effective saturation
internal magnetic strength” of the ferrite.

From a physical viewpoint, according to Eq. (2.5), the
dependent variable φ represents the “relative magnetization”
of the ferrite [26] with respect to the saturation magnetization.
To provide a physical meaning of the variable ψ , let us
first mention that limX→∞ CX = −(1 + μ), which can be
interpreted as the “effective saturation internal magnetic
strength” of the ferrite. Thus, with the expression of the
dependent variable C given by Eq. (2.5), the variable ψ can be
construed as the “integral effective magnetic strength” of the
ferrite at a given time of the dynamics towards the saturation
regime.

From Eq. (3.2), we can easily derive the Hamiltonian-like
of the system as follows: Multiplying Eq. (3.2a) by (−φη) and
taking into account the expression given by Eq. (3.3) provides

(−v/2)∂η

[
φ2

η + (K + φ2/2v)2
] = −sφ2

η. (3.4)

It is hence straightforward to define the Hamiltonian-like of
the system as

H = −v
[
φ2

η + (K + φ2/2v)2
]
/2, (3.5)

provided the following relation:

Hη = −sφ2
η (3.6)

is satisfied.
We need to mention that by “system” we mean the nonlinear

coupling of the external magnetic field and the magnetization
of the ferrite which dynamics are described by Eq. (2.4). Due
to the fact that the variable η does not appear explicitly in
Eq. (3.5), from a physical viewpoint, the system is natural
and the Hamiltonian refers to its “energy.” We note that this
“energy” given by the Hamiltonian needs to be construed as
the energy of the traveling waveguide excitations supported by
the system under interests. It is actually clear that this “energy”
is not identical to the energy of the physical system.

From Eq. (3.5), as the traveling waves are moving, their
“energy” decreases with η. Thus, it appears that waves moving
toward the positive direction of the propagating axis are more
stable than those traveling to the left-hand side of the axis.

As mentioned previously, due to the fact that the system
under interest is natural, the above Hamiltonian-like expres-
sion actually stands for its total energy. Its kinetic-like T and
potential-like energy V are expressed as

T = −vφ2
η/2, V = −v(K + φ2/2v)2/2, (3.7)

showing a typical φ-four potential type in which the traveling
waveguide channels are dynamics. We note that for s = 0, the
energy of the system is constant as we will see in the figures.

In addition, from Eq. (3.7), the Lagrangian-likeL = T − V
of the system above is expressed as

L = −v
[
φ2

η − (K + φ2/2v)2
]
/2. (3.8)

According to the Euler-Lagrange formalism for real me-
chanical system dynamics submitted to conservative and
nonconservative constraints, the equation of motion of such
systems reads as follows:

δL
δφ

= ∂L
∂φ

− d

dη

(
∂L
∂φη

)
= −Fnc, (3.9)

where the quantity Fnc stands for the nonconservative external
constraint acting on the system. It is expressed as

Fnc = −sφη. (3.10)

From the above expressions, the Hamilton equations are
given by

∂H
∂p

= φη,
∂H
∂φ

= Fnc − pη, (3.11)

where the quantity p refers to the conjugate momentum to
the observable φ. According to the Euler-Lagrange formalism
above, the conjugate momentum expresses p = ∂L/∂φη ≡
−vφη. Defining a variable y while setting

p = −vy, (3.12)

the system (3.11) becomes

φη = y, yη = [−φ(K + φ2/2v) + sy
]
/v, (3.13)

from which, using the four-order Runge-Kutta computational
scheme, one can seemingly discuss the phase portrait features
of the system. We aim at paying particular interest to the
dynamics of the observable φ. Accordingly, from Eq. (3.13)
it is straightforward that on all points of the axis y = 0, the
orbits cross the axis perpendicularly. Also, on all points of the
curve −φ(K + φ2/2v) + sy = 0, the orbits possess horizontal
tangents.

From a physical viewpoint, in order to investigate the
genuine meaning of the variable y, we need to consider
the equation giving the expression of the z component of
the external magnetic field Hz

0 as Hz
0 = −mBX derived

by Kraenkel, Merle, and Manna [26]. Incidently, it comes
that y = −Hz

0 /m. Hence, the variable y appears as the
“relative z component of the zeroth-order (with respect to
the wavelength perturbation) external magnetic field” of the
ferrite with respect to the saturation magnetization. It can
also characterize the “internal magnetic strength along the
transverse z direction.”

In order to properly manage the numerical investigation of
the above coupled system, it is actually important to start off
with the full analytical survey of its dynamical features around
the equilibrium point by means of the Lyapunov method.

The equilibrium point of the system (3.13) is derived from
the system

φ(K + φ2/2v) = 0, y = 0. (3.14)

Since the product Kv is negative valued, the system
(3.13) presents three equilibrium points (0,0), (φ0,0), where
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FIG. 2. (Color online) Phase features and energy functional of
the system (3.13). The upper panels (a) and (b) depict the phase
portraits of the system and the lower panel (c) deals with the energy
densities of the corresponding traveling waveguide channels with the
velocity v = 2 within a dissipation s = 10 and K = −4. In this panel,
black, blue, and magenta represent the total energy, the potential
energy, and the kinetic energy of the waves, respectively. Panel (d)
presents the variations of observable φ with respect to ψ .

φ0 = ±√
2|Kv|. The behavior of the system around the points

φ0 is linearized as

Xη = AX, (3.15)

with vector X(φ,y) and matrix A defined as

A =
(

0 1
2K/v s/v

)
. (3.16)

This linearization is similar to the one done near the origin
(0,0) provided to set 2K = −K ′. In this case, the product K ′v
is always positive definite. Consequently, the origin (0,0) is a
saddle. Accordingly, we address the following discussion.

(i) s > s0 with s0 = 2
√

K ′v = 2
√

2|Kv|. Remembering
that velocity v > 0, vector X becomes infinite and does not
tend to (φ0,0). The equilibrium point is unstable. It is a
divergent node. The phase portraits depict orbits diverging
from the above point. We illustrate such a situation in Fig. 2.
It is shown that the variations of observable φ can exhibit
few profiles with vanishing tails. On the contrary, vanishing
tails are not found among profiles of observable ψ which,
because of the existence of the focal point in its phase portraits,
present periodic shapes with varying amplitudes. As the waves
propagate, their energy densities decrease up to a maximum
rate of −120.

(ii) s = s0. As η → +∞, vector X becomes infinite and
does not tend to (φ0,0). The equilibrium point is unstable. It is a
divergent degenerated node. The phase portraits depict orbits
diverging from the origin of the phase space but following
a parabolic branch directed by the vector (1,λ0 = s0/2v)
near the equilibrium point. Figure 3 presents an illustrative
situation where the existence of the saddle point (0,0) implies
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FIG. 3. (Color online) Phase features and energy functional of
the system (3.13). The upper panels (a) and (b) depict the phase
portraits of the system and the lower panel (c) deals with the energy
densities of the corresponding traveling waveguide channels with the
velocity v = 2 within a dissipation s = 8 and K = −4. In this panel,
black, blue, and magenta represent the total energy, the potential
energy, and the kinetic energy of the waves, respectively. Panel (d)
presents the variations of observable φ with respect to ψ .

that observable φ can exhibit profiles with vanishing tails
unlike those of the observable ψ showing periodic shapes
with varying amplitudes. As the waves propagate, their energy
densities decrease up to a maximum rate of −300.

(iii) 0 � s < s0. The vector X describes a spiral of asymp-
totical point O.

(a) If s = 0, the point (φ0,0) is a summit or center.
The phase portraits exhibit concentric cycles with (φ0,0)
as center. This is presented in Fig. 4. It is shown that the
variations of observable φ can be periodic or localized.
While vanishing tails are not found among profiles of
observable ψ , the existence of homoclinic orbit through
the origin of the phase portraits implies localized waves
described by observable φ. This is observed through the
variations of observable φ versus ψ depicting localized
and harmonic loop shapes. As the waves propagate, their
energy densities take constant values depending upon the
initial data. For example, the lowest energy density is −16,
corresponding to the origin (0,0).

(b) If s 	= 0, it appears that as η → +∞, vector X be-
comes infinite and does not tend to (φ0,0). The equilibrium
point is unstable. It is a divergent focal point. The phase
portraits exhibit spirals winding around the equilibrium
point within the direct sense while the motion occurs in
the opposite direction. In Fig. 5, with the details presented
in the caption, we present an illustrative situation. The
existence of the saddle point (0,0) implies that observable
φ can exhibit profiles with vanishing tails unlike those of
the observable ψ showing periodic shapes with varying

063201-5



NGUEPJOUO, KUETCHE, AND KOFANE PHYSICAL REVIEW E 89, 063201 (2014)

−5 0 5
−4

−2

0

2

4

φ

y

(a)

−20 −10 0 10 20
−4

−2

0

2

4

ψ
ψ

(b)

−10 −5 0 5 10

−15

−10

−5

0

η

E
ne

rg
y 

fu
nc

tio
na

l

(c)

−20 −10 0 10 20

−5

0

5

ψ

φ
(d)

FIG. 4. (Color online) Phase features and energy functional of
the system (3.13). The upper panels (a) and (b) depict the phase
portraits of the system and the lower panel (c) deals with the energy
densities of the corresponding traveling waveguide channels with
the velocity v = 2 within a vanishing dissipation with K = −4. In
this panel, black, blue, and magenta represent the total energy, the
potential energy, and the kinetic energy of the waves, respectively.
Panel (d) presents the variations of observable φ with respect
to ψ .
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FIG. 5. (Color online) Phase features and energy functional of
the system (3.13). The upper panels (a) and (b) depict the phase
portraits of the system and the lower panel (c) deals with the energy
densities of the corresponding traveling waveguide channels with the
velocity v = 2 within a dissipation s = 4 and K = −4. In this panel,
black, blue, and magenta represent the total energy, the potential
energy, and the kinetic energy of the waves, respectively. Panel (d)
presents the variations of observable φ with respect to ψ .

amplitudes. As the waves propagate, their energy densities
decrease up to a maximum rate of −190.
From the above profiles, we have shown through the

phase portraits that stable traveling waveguide channels can
propagate within the ferrite provided the phase velocity
v is positive-definite. This is hence corroborated by the
confinement of their energy densities within the positive-
definite η axis. Also, the inclusion of dissipation in the system
contributes significantly to the decrease of the energy densities.
Thus, the increase of the stability of the system from the
viewpoint of the propagation of stable waveguide channels
can be achieved with the introduction of dissipation within the
system.

The phase portraits have shown that the moving structures
globally belong to two families of waves, namely the periodic
and the localized waves. Among the self-confined solitary
waves, there is the loop-shaped waveguide channel described
by the observable φ vs ψ . We aim at paying particular interest
to the full nonlinear dynamics of such an excitation.

IV. SCATTERING BEHAVIOR OF THE LOCALIZED
WAVEGUIDE CHANNELS: SOLITON STRUCTURE OF

THE SYSTEM

In a first step, let us note the following. In account of
the asymptotical boundary conditions limX→∞ B = 0 and
limX→∞ CX = −(1 + μ) to Eq. (2.4), we consider the scale
transformation given by

B → (1 + μ)B, C → −(1 + μ)C,

T → −T/(1 + μ), X → X. (4.1)

Under the above transformation, the system given by Eq. (2.4)
is invariant. In this section, the dependent variables B and C,
and the independent variables T and X expressed below, are
actually derived from Eq. (4.1), to which we refer when writing
the genuine expressions of the original variables.

The invariant Eq. (2.4) with the transformation above,
where conventionally space-time variables are written into
their lowercase forms, possesses Lagrangian and Hamiltonian
formulations as follows. With observables B and C regarded
as two degrees of freedom of the system above, the Euler-
Lagrange equation of motion of the system reads

δL
δB

= sBx,
δL
δC

= 0, (4.2)

where the Lagrangian L of the system is expressed as

L = (BxBt + CxCt + B2Cx)/2. (4.3)

From this Lagrangian formulation, the Hamiltonian of the
system is given by

H = (BxBt + CxCt )/2. (4.4)

The expression of the Lagrangian above shows that it does
not depend explicitly on time t . Consequently, the system
under investigation is regarded as natural in such a way that
its kinetic-like T and potential-like energy V densities can be
derived seemingly. These quantities are then expressed as

T = (BxBt + CxCt + B2Cx/2)/2,

V = −B2Cx/4. (4.5)
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FIG. 6. (Color online) Multivalued single-waveguide channel solution to Eq. (2.4) in its invariant form. The snapshot is taken at initial time
t = 0 and parameters are chosen arbitrarily as A = 1 and κ = 0.5. The panel on the right presents the density plot of such a traveling structure
while showing a constant phase velocity of the wave propagation.

The energy-like functional of the system refers to the sum of
its kineticlike T and potential-like energy V densities. Since
the system is natural, we refer this sum to its total energy-like
density represented by the Hamiltonian H above.

In order to tread into the scattering properties of the local-
ized solutions, we pay particular interests to weak damping
and we transform the system (2.4) into its bilinear form by
means of the Hirota method [34]. As a result, we find

(DxDt + sDx)GF = GF, D2
t FF = G2/2, (4.6)

provided

B = G/F, C = x − 2(ln F )t + x0, (4.7)

where the quantity x0 is an arbitrary parameter. The symbol
Dx , Dt refers to the Hirota’s operators [34] with respect to the
variable x, t , respectively. According to the usual procedure,
the dependent functions G and F are expanded into suitable
power series of a perturbation parameter ε. In this paper, in
view of investigating the dynamics of localized excitations
with vanishing tails, we arguably expand the functions G and
F as follows:

G = εG1 + ε3G3 + · · · ,

F = 1 + ε2F2 + ε4F4 + · · · , (4.8)

where the functions Gi , Fi , (i = 1,2,3, . . . ,) are expansion
coefficients of the above series. Substituting this expansion
into Eq. (2.4) and collecting the terms of each order of ε, we
obtain the results presented below.

A. The one-soliton solution

The one-soliton solution to Eq. (4.6) is obtained from the
following truncation:

G = exp(η), F = 1 + (κ2/16) exp(2η), (4.9)

where the phase η is defined by

η = κx + ωt + η0, (4.10)

with constants κ and ω being wave number and frequency
of the traveling wave and constant η0 being an arbitrary
parameter. According to Eq. (4.6), the dispersion relation
reads ωκ = 1 and the damping vanishes. For convenience,
we arbitrarily choose κ > 0. Thus, the one-soliton solution
expressed by Eq. (4.6) transforms to

B = 2ωsechη, C = x − 2ω(1 + tanh η) + x0. (4.11)

Now, looking forward to comparing these one-soliton solutions
with the ones given by Kraenkel, Merle, and Manna [26]
through Eqs. (2.6) and (2.7), we need to consider the variable
transformation given by Eq. (4.1). It hence comes that these
expressions are similar provided the following relations:

κ = κ, ω = 1/κ, η0 = Z0, x0 = C0 − 2

κ
(1 + μ)

(4.12)

hold.
Figure 6 depicts the variations of the observable B with

respect to variable C at t = 0. As observed, the shape of the
profile is a loop propagating at a constant velocity ω2 towards
the negative-definite C axis. This velocity increases with the
amplitude of the waves. Looking forward into the shape of
this looplike solitary wave, we define the quantities L, H , and
h standing for the maximum width of the loop, the height
at which this occurs, and the height at which the crossover
point occurs. This is all summarized in the above figure. We
note that requiring symmetry in (C − t) space, for the one-
soliton solution above, we have chosen x0 = 2ω. Therefore,
the crossover point will occur at C = 0 corresponding to η =
η1 so

tanh η1 = κx1/2. (4.13)

Since the calculations are made at the initial time, when
η = η1, the height h is expressed as

h = 2ω

√
1 − κ2x2

1

/
4. (4.14)
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FIG. 7. (Color online) Energy functional of the multivalued single-waveguide channel solution to Eq. (2.4) in its invariant form. In this
panel, black, blue, and magenta represent the total energy, the potential energy, and the kinetic energy densities of the wave, respectively. The
panel on the right presents the shifts δ1/ω1 and δ2/ω2 of the interacting multivalued waveguide channels solutions to Eq. (2.4). Blue and black
refer to shifts δ1/ω1 and δ2/ω2, respectively. From this panel, the shift δ1 is always positive valued, meaning that the larger loop soliton is
always shifted forwards by the interaction.

We solve Eq. (4.13) numerically and we obtain κx1 = 1.9150.
With the details used to plot the one-soliton solution, we find
h = 1.1537.

In order to derive the width L and height H , we have to
solve the equation 1 − κ2B2/2 = 0. This leads to

H =
√

2ω, L = 2ω[
√

2 − ln(
√

2 + 1)], (4.15)

which numerically reads H = 2.8284 and L = 2.1314. The
above numerical values vary with the wave parameters. From
the expression of the amplitude of the solitary wave, i.e., 2ω,
as the wave number κ increases, this amplitude decreases.
Since the width L and the heights H and h are proportional to
the amplitude of the wave, they also decrease with the wave
number.

The evaluation of the energy density functional of this one-
loop solitary wave is depicted in Fig. 7. As observed, the
energy density H increases with the amplitude of the wave.
The kinetic-like energy density of the wave increases until it
reaches its maximum and then decreases further to zero. The
potential-like energy density instead vanishes for B ∈ {0,H }
such that the part of the wave 0 � B � H is more stable than
the upper part.

One further survey at this stage is to see whether the solitary
wave above would actually behave as a particle, i.e., whether
the term soliton can be coined to such a structure. We must now
investigate the scattering properties of these kinds of waves
within the interaction area.

B. The two-soliton solution

We truncate the expansion of Eq. (4.8) up to a fourth order
of parameter ε. Therefore, we obtain

G = A1 exp(η1) + A2 exp(η2) + C12 exp(η1 + 2η2)

+C21 exp(η2 + 2η1), (4.16a)

F = 1 + B11 exp(2η1) + B22 exp(2η2) + B12 exp(η1 + η2)

+E12 exp 2(η1 + η2), (4.16b)

where

B11 = A2
1

16ω2
1

, B22 = A2
2

16ω2
2

,

B12 = A1A2

2(ω1 + ω2)2
, (4.17a)

C12 = A1B22(ω1 − ω2)2

(ω1 + ω2)2
, C21 = A2B11(ω1 − ω2)2

(ω1 + ω2)2
,

E12 = B11B22(ω1 − ω2)4

(ω1 + ω2)4
, (4.17b)

with ηi = κi(x + t/κ2
i ) + η0i , κi > 0, (i = 1,2). In order to

investigate the nonlinear effects of the interaction, it is
interesting to determine the shifts of the interacting waves.
Thus, we assume that κ1 < κ2, meaning that the larger soliton
is moving faster with the velocity c1 than the smaller soliton
of velocity c2 < c1. With such a hypothesis which does not
break down the generality, the shifts δ1 and δ2 of these solitons
expressed within the (C,t) coordinates are easily found as

δ1/ω1 = −4r + 2 ln

(
1 − r

1 + r

)
,

δ2/ω2 = 4

r
+ 2 ln

(
1 − r

1 + r

)
, (4.18)

where r = ω2/ω1 = κ1/κ2, (0 < r < 1). The first term of the
shift is due to two loops repelling, attracting each other, or
traveling along another loop. The second terms show the shift
caused by the nonlinear interaction between the solitons.

The plots of δ1/ω1 and δ2/ω2 as functions of the ratio r of
the amplitudes of the individual smaller and larger solitons are
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FIG. 8. (Color online) The interaction process for two multivalued waveguide channels solutions to Eq. (2.4) in its invariant form with
(A1 = 1,κ1 = 0.51) and (A2 = 1,κ2 = 0.6) so the ratio r = 0.85. From this panel, the shift δ2 is always negative valued, meaning that the
smaller loop soliton is always shifted backwards by the interaction. The panel from right presents the density plot of the interaction process
for two multivalued waveguide channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.51) and (A2 = 1,κ2 = 0.6). From this depiction, the small
soliton is shifted backwards, whereas the larger one is shifted forwards by the interaction.

shown in Fig. 7. It is seen that δ1 > 0 so the larger loop soliton
is always shifted forwards by the interaction.

However, for the shift δ2, we find that
(i) For r = rc, where rc = 0.8336 is the root of 2/r +

ln [(1 − r)/(1 + r)] = 0, δ2 = 0. The smaller loop soliton is
not shifted by the interaction.

(ii) For 0 < r < rc, δ2 > 0. The smaller loop soliton is
shifted forwards.

(iii) For 0.8386 < r < 1, δ2 < 0. The smaller loop soliton
is shifted backwards.

Naturally, at first, it might seem that the behavior in (i) and
(ii) contradicts conservation of “momentum.” In fact, in a zero
dissipation [Eq. (2.4)] can be transformed into the equation
∂C∂tB − ∂2

C(B3)/6 − B = 0 such that after integration with
respect to C, we find that

∫ +∞
−∞ BdC = 0. Also, by multiplying

this equation by C and integrating with respect to C, we obtain∫ +∞
−∞ CBdC = 0. Thus, in (C − t) space, the “mass” of each

soliton is zero, and momentum is conserved whatever δ1 and
δ2 may be.

As an illustration of the previous analysis, a two-soliton
solution feature is presented in Fig. 8 which describes the
interaction between two similar amplitudes with the ratio r =
0.85. As we can see in this figure, the two single solitary waves
seem to attract each other while moving to the left-hand side of
the C axis. However, at the interaction area, it happens as the
two waves repulse each other while exchanging amplitudes.
As observed in previous Fig. 7, the smaller wave is shifted
backwards while the larger is always shifted forwards. The
density plot presented by Fig. 8 clearly represents such a
phenomenon where we can see how a bundle line curves at the
interaction area while changing its width at the final analysis.
The computation of the energy densities of these waves is also
depicted in Fig. 9(a). We see that in the zone 0 � B � 0.5826
the interacting waves superimpose their profiles. The area
is a stable zone where the potential-like energy density of
the two-wave satisfies to −0.8086 < V < 0. It corresponds
to the center of the interacting area at time t = 0 where the
waves do not overlap but present similar shapes (see Fig. 8).

Within this zone, the densities T and H are monotone. For
B ∈ [0.5826,1.9310], the two waves interact with each other
but their shapes are no longer superimposed. In this area, the
energy V decreases to −0.4423 while the densities T and H
increase as multivalued functions. Now, for B � 1.9310, the
interacting waves separate continuously, but the stable zone
where the density V is still negative is B ∈ [1.931,2.686].
In this interval, the energy T increases until it reaches its
maximum while the total energy is monotone. It should be
noted that the multivalued profile of the energy densities is an
indication of the interaction features of two solitary waves. As a
result of this interaction feature, the initial waves scatter elasti-
cally although exchanging amplitudes during the process. This
property is characteristic of particles at the head-on collision

Another two-soliton feature is presented in Fig. 10 describ-
ing the interaction between two dissimilar amplitudes with the
ratio r = 0.5834. As one can analyze the snapshots, the two
solitary waves attract each other while moving to the left-hand
side of the C axis. In contrast to the previous features, the
head-on collision of the two loop solitons is attractive whereby
the two solitons touch each other. Even if the two structures do
not overlap, they superimpose their amplitudes at a given time.
As depicted in Fig. 7, the smaller wave is shifted forwards
as the larger one. The proper representations of these shifts
are depicted in Fig. 10, which shows the density plots of the
interacting solitons. These plots provide details regarding the
scattering of the waves. As we can see in the figure, the initial
bundle lines which are straight curve within the interacting
area and recover their width at the end of analysis. In this
interacting region, the shift of the larger soliton is smaller than
that of the smaller soliton. Also, the energy densities of these
waveguide channels are depicted in Fig. 9(b). In this figure,
within the interval B ∈ [0,1.5], the interacting waves share the
same amplitudes and profiles. This region is a stable one where
the potential-like energy density of the two-wave satisfies to
−0.472 < V < 0. In this segment, the initial waves have the
same profile and amplitudes, i.e., though they do not overlap.
Accordingly, the energy densities T and H are monotone. For

063201-9



NGUEPJOUO, KUETCHE, AND KOFANE PHYSICAL REVIEW E 89, 063201 (2014)

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5

B

E
ne

rg
y 

de
ns

ity

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

2

3

4

5

6

7

B

E
ne

rg
y 

de
ns

ity

(b)

FIG. 9. (Color online) Panel (a) presents the energy density of interaction process for two multivalued waveguide channels solutions to
Eq. (2.4) in its invariant form with (A1 = 1,κ1 = 0.51) and (A2 = 1,κ2 = 0.6) so the ratio r = 0.85. Panel (b) presents the energy density
of interaction process for two multivalued waveguide channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.35) and (A2 = 1,κ2 = 0.6) so the
ratio r = 0.5834. In the figure, black, blue, and magenta represent the total energy, the potential energy, and the kinetic energy densities of the
system, respectively.

B ∈ [1.5,2], the two single waves interact mutually but with
different amplitudes. In this area, the potential-like energy
decreases to −0.7062 while densities T and H continue to
increase. After the interaction, the initial soliton continue their
propagation trip for B � 2. Nonetheless, the stable part of
their shape is obtained where the potential-like energy density
is negative valued, i.e., B ∈ [3.563,4.098]. Within this zone,
the multivalued density T increases until it reaches its maxima
and further decreases in a peculiar manner. On contrary to
the density T , the multivalued energy density H can take
negative values particularly in the region where the potential
V is negative valued.

Still paying interest to the interacting waves with positive-
definite amplitudes, we consider the case where the ratio
r is small. For example r = 1/3. This is another case of
dissimilarity of amplitudes. The illustration is made in Fig. 11

which presents two solitons moving towards negative-definite
C axis where the small wave travels along the larger one
anticlockwise before separating each other at the final analysis
while recovering their initial shapes, respectively. During this
process, the two solitons shift forwards, i.e., δ1 > 0 and δ2 > 0.
But, graphically, since the large soliton has an amplitude
that is relatively greater than that of the small one, the large
soliton seems to be unmoving. This phenomenon is depicted
in Fig. 11, which presents the density plot of the interacting
waves. Evaluating the energy densities of these structures, we
follow the same procedure as in the previous figure and we plot
in Fig. 12(a) the densities T , V , and H. This is to characterize
the features of the interacting area. As we can see in this
figure, for B ∈ [0,4], the larger soliton overlaps the small
one, which corresponds here to the small soliton traveling
along the large one. In this scale, the potential-like energy V
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FIG. 10. (Color online) The interaction process for two multivalued waveguide channels solutions to Eq. (2.4) in its invariant form with
(A1 = 1,κ1 = 0.35) and (A2 = 1,κ2 = 0.6) so the ratio r = 0.5834. From this panel, the shift δ2 is always positive valued, meaning that the
smaller loop soliton is shifted forwards by the interaction. The panel from right presents the density plot of the interaction process for two
multivalued waveguide channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.35) and (A2 = 1,κ2 = 0.6). From this depiction, the smaller and
larger soliton are both shifted forwards by the interaction.
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FIG. 11. (Color online) The interaction process for two multivalued waveguide channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.2) and
(A2 = 1,κ2 = 0.6) so the ratio r = 0.3334. From this panel, the shift δ2 is always positive valued, meaning that the smaller loop soliton is
shifted forwards by the interaction. The panel on the right presents the density plot of the interaction process for two multivalued waveguide
channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.2) and (A2 = 1,κ2 = 0.6). From this depiction, the smaller and larger solitons are both
shifted forwards by the interaction.

is negative valued and satisfies to −2.649 < V < 0, showing
that these amplitudes are the stable ones. Simultaneously, the
energy densities T and H increase with amplitude B. For
B ∈ [4,4.716], the two single waves interact mutually but
begin to separate from each other. In this range, the potential
energy V decreases to −2.894 where densities T and H
increase. Following this step, the interacting waves evolve
with clearly separated shapes but it appears that in this zone
of B � 4.716, while the multivalued energy T increases and
further decreases, the multivalued total energy density varies
in a peculiar scheme. Nonetheless, the stable part of their
shape of the two-soliton is numerically evaluated as the range
[6.561,7.897]. Within this range, total energyH and the kinetic
T can take negative values, in contrast to the previous cases.
However, these constitute useful indications of the stability of
this part of the two-soliton solution.

We note that the quantity (−B) is also a solution to Eq. (2.4).
The case of a positive-definite observable has been surveyed
above. Now we combine the two cases by studying the
interaction between a loop and an antiloop soliton. We consider
the interaction between two dissimilar amplitudes where the
larger amplitude refers to a soliton and the lower amplitude
stands for an antisoliton, i.e., a soliton with an algebraically
negative-definite amplitude. The details are presented in the
caption to Fig. 13. With these details, the shifts expressed by
Eq. (4.18) are positive valued, meaning that, during the process
of interaction, the two waves shift forwards. As observed in
the figure, during the scattering process, the antiloop soliton
travels anticlockwise along the loop soliton before being
shifted forwards at the final analysis. This phenomenon is
remarkable and is actually characteristic of the interaction
between such waves no matter how dissimilar or similar their

1 2 3 4 5 6 7 8 9
−10

−5

0

5

10

15

20

B

E
ne

rg
y 

de
ns

ity

(a)

1 2 3 4 5 6

−10

−8

−6

−4

−2

0

2

4

6

8

B

E
ne

rg
y 

de
ns

ity

(b)

FIG. 12. (Color online) Panel (a) presents the energy density of interaction process for two multivalued waveguide channels solutions to
Eq. (2.4) in its invariant form with (A1 = 1,κ1 = 0.2) and (A2 = 1,κ2 = 0.6) so the ratio r = 0.3334. Panel (b) presents the energy density
of interaction process for two multivalued waveguide channels solutions to Eq. (2.4) in its invariant form with (A1 = 1,κ1 = 0.35) and
(A2 = −1,κ2 = 0.6) so the ratio r = 0.5834. In the figure, black, blue, and magenta represent the total energy, the potential energy, and the
kinetic energy densities of the system, respectively.
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FIG. 13. (Color online) The interaction process for two multivalued waveguide channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.35)
and (A2 = −1,κ2 = 0.6) so the ratio r = 0.5834. From this panel, the shift δ2 is always positive valued, meaning that the smaller loop soliton
is shifted forwards by the interaction. The panel from right presents the density plot of the interaction process for two multivalued waveguide
channels solutions to Eq. (2.4) with (A1 = 1,κ1 = 0.35) and (A2 = −1,κ2 = 0.6). From this depiction, the two solitons are both shifted forwards
by the interaction.

amplitudes are. A graphical representation of the shifts is
presented in Fig. 13, which depicts the density plots of the
interacting waves. In this figure, since the amplitude of the loop
soliton is greater than that of the antiloop soliton, the larger
soliton seems to observe a zero phase shift. In the interacting
area, the density plots show how the antiloop soliton travels
along the soliton. This interacting area appears as the zone
where the straight rope characterizing the soliton and the soft
string referring to the antisoliton fasten together. Evaluating
the energy functional of this kind of two-soliton, we plot the
densitiesV ,T , andH in the plane presented in Fig. 12(b). From
these plots it is shown that for amplitudes B ∈ [0,1.859], there
is a one-loop shape which corresponds to the overlapping of the
antiloop soliton. Such an overlapping has a particular meaning
of the antisoliton traveling around the soliton during the
propagation in the scattering area. In this range of amplitude,
the potential energy V satisfies to −0.6875 < V < 0 and the
other densities increase with the amplitude B. Still within the
interacting area, for B ∈ [1.859,2.168] the two waves begin to
separate each from other. In this zone, the densities T and H
become multivalued while increasing with B and the potential
energy V decreases to −0.8505. This part of amplitudes
denotes a stable two-wave. For B > 2.168, the interacting
waves evolve with clearly separated shapes. Nonetheless, the
stable part of the amplitudes of the two-loop is obtained in
the range B ∈ [2.168,4.453], within which the multivalued
densities T and H show both negative and positive values.

V. PHYSICAL IMPLICATIONS OF THE SOLUTIONS

In order to provide some physical implications of the results
obtained in this work, we should recall that the dimensionless
quantity B refers to the the magnetization within the ferrite.
Thus, the magnetization in the ferrite evolves as a traveling
wave with finite tails. Since it can be positive valued or
negative valued, it then describes bright and dark solitary
waves with pulselike profiles. These solitary waves interact
mutually through elastic process. Thus, within the ferrite, in a

fast magnetization process while loading the magnetic memory
devices, we can send simultaneously data inputs in terms of
nonlinear excitations in the magnet which, as a result, will in-
teract together to retrieve their initial properties at the end of the
process. Also, in a remagnetization process, the ferromagnet
can support the propagation of some solitary waves sent in the
structure sequently to produce typical periodic or doubly peri-
odic waves. Thus, by propagating a sequence of single-valued
waveguide channels of different amplitudes such as humplike
soliton solutions in the ferrite after some time intervals, the
data inputs will undergo a fast magnetization process within
the magnetic memory device while empowering the system
with a great and efficient storage capacity.

In another hand, from the expression of the observable C, it
is possible to evaluate the profile of the external magnetic
field. Discussing the physical structure of the solutions in
terms of the observables M and H, the magnetization and the
magnetic field behave differently in the ferrite. In fact, during
the magnetic relaxation process where the magnetization and
magnetic field are restored to their equilibrium positions, while
the magnetization describes a bright soliton, the magnetic field
behaves, in contrast, as a dark soliton. Fundamentally, within
the region of the ferrite where the magnitude of the external
magnetic field decreases significantly, the number of magnetic
dipoles increases. This is particularly very important in the
magnetic information storage and data process elements in
micromagnetic structure of ferromagnets. It should, however,
be noted that the propagation of solitons in the ferrite is made
possible under the assumption that the slab is magnetized to
saturation by an in-plane external magnetic field directed along
the transverse direction perpendicularly to the propagation
axis. Under such an assumption, through a magnetic storage
process in ferrite devices such as yttrium iron garnet films [35],
we can send in the medium some perturbations of the external
magnetic fields in the form of nonlinear excitations of dark
types. These structures will then interact elastically, that is,
there is scattering without the structural alteration of the initial
magnetic inputs.
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VI. SUMMARY

In this work, we have investigated the fast near-adiabatic
magnetization dynamics of a nonconducting ferromagnetic
slab from the viewpoint of a short-wavelength approximation.
At the starting point of the study, we have considered a
one-dimensional slab lying in the x axis, the direction of the
propagation of waves. This ferromagnetic insulator known
as ferrite [26] is magnetized to saturation by an in-plane
external field H∞

0 directed along the y axis, in the absence
of any eddy currents in view of allowing electromagnetic
wave propagation. We have chosen a thick-enough condition
at the film boundaries to ensure a homogeneous magnetization
over the ferrite. We have also assumed that the crystalline
and surface anisotropy of the sample are negligible. The LLG
equation [29] actually stands to be the simplest conceivable
model to describe the fast near-adiabatic magnetization dy-
namics of a ferromagnet. Using the full set of Maxwell’s
equations associated to the previous dynamical equation [29],
a governing coupled system of equations with dissipation has
been derived and addressed for the propagation of nonlinear
electromagnetic short waves in ferrites [26].

Looking forward to surveying the integrability properties
of the above coupled system, we have investigated the phase
portraits of the system combined to the Hirota’s bilinearization
[34] among other methods of study. This initial value problem
of the system has provided a whole depiction of the dynamics
of the system while revealing the existence of miscellaneous
traveling waveguide excitations supported by the system. The
Hirota’s bilinearization [34] has, on the other side, provided a
whole analysis of the interaction of localized waves while
characterizing the head-on collision. Indeed, alongside the
phase portraits of the system, we have also computed its
energy functional through the total energy and the kinetic and
potential energy densities. Prior to the numerical analysis of
the subject, we delved into the analytical structure of the initial
value problem. We found that under some considerations, the
system possesses one or three equilibrium points behaving as
nodes or saddle or focal points. The depiction of the energy
densities of the traveling waveguide channels have shown that
the stable excitations are those propagating with a positive-
definite velocity, that is, waves moving to the positive-valued
propagating axis. Paying particular interest to the localized
waves, we have focused our interests on the structures moving
with vanishing tails. With the help of Hirota’s method [34],
we have investigated the dynamics of the magnetization with
respect to an implicit function related to the external magnetic
field. This investigation has revealed the soliton structure of
the magnet under study. We have unearthed a typical type of
soliton solutions with looplike shapes interacting elastically
in the medium. We have also provided some details about
such a profile. We have computed the shifts of the interacting
waves characterizing the nonlinear scattering and the head-on
collision, and we found that the larger soliton is always shifted
forwards during the interaction. Investigating the interaction
features in detail, we found that when the amplitudes of the
interacting waves are “dissimilar,” the waves attract each other
in such a way that the smaller soliton travels along the larger
one before being shifted at the end of the analysis. When the
amplitudes are “similar,” the initial waves repulse or seem

to exchange amplitudes. When there is interaction between a
soliton and an antisoliton solution, it is always the antisoliton
which travels along the soliton before being shifted, no matter
how dissimilar or similar their amplitudes are. Globally, it
appears as there exists a critical value of the ratio of the
interacting waves at which the collision process changes its
characteristic features. Alongside these interacting features,
we have also computed their energy functional, which is useful
in assessing the stability of the interacting waves.

As a physical implication of the results, within the ferrite,
in a fast magnetization process while loading the magnetic
memory devices, we can send simultaneously data inputs
in terms of nonlinear excitations in the magnet. These
excitations will interact together elastically to retrieve their
initial properties at the end of the process. In addition, during
the magnetic relaxation process where the magnetization and
magnetic field are restored to their equilibrium positions, while
the magnetization describes a bright soliton, the magnetic field
behaves, in contrast, as a dark soliton. Fundamentally, within
the region of the ferrite where the magnitude of the external
magnetic field decreases significantly, the number of magnetic
dipoles increases. This is particularly very important in terms
of the magnetic information storage and data process elements
in the micromagnetic structure of ferromagnets.

Moreover, the range of validity of the LLG equation
had previously been established by Brown [36] through the
description of a magnetic moment coupled to a heat bath
and treated as a Brownian particle described by the slow
degrees of freedom of angular types. Since the early 2000s
[37], important experimental advances regarding the very short
time-resolved response of the magnetization below the limit
proposed by Brown [36] have been reported. Very recently, the
dynamical equation for magnetization has been reconsidered
by enlarging the phase space of the ferromagnetic degrees of
freedom to the angular momentum [23]. The generalized LLG
equation that includes inertial terms, and the corresponding
Fokker-Planck equation, are then derived in the framework
of mesoscopic nonequilibrium thermodynamics theory. It is
obvious that the introduction of such an inertial regime
offers new opportunities for the implementation of ultrafast
magnetization switching in magnetic devices. The question
remains whether this generalized LLG equation would furnish
further information about the dynamics of polaritons where
inertial terms are regarded. We aim to investigate such a
problem in a separate paper.

In addition, it has been shown that the inclusion of the spin-
torque term in the LLG equation provides more information
about the magnetization relaxation processes described by the
radiation-spin interaction where the radiation field is produced
by the magnetization precessional motion itself [38]. We
believe that the investigation of such a system alongside the
inclusion of the spin-torque term in the generalized LLG
equation above [23], within the framework of the formalism
elaborated in this paper, would be worth studying.
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