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Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and
in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections
are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction
potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The
corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate
the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data
results are then compared with available experimental data for different proportions of ions in each state. This
allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling
within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical
kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better
use in biomedical applications.
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I. INTRODUCTION

In low temperature plasma generated in noble gases, ion
swarm data are needed to optimize the features of many
devices devoted for instance to biomedical applications [1].
More particularly, they can be used in electrohydrodynamic
and chemical models of the low temperature plasma jets,
to quantify and to tune the production of active species for
a better use in the medical field for antitumor treatment,
wound healing, blood coagulation, and others; Ref. [2] and
the references given therein provide more information on this
topic. For instance, the interaction of low temperature plasmas
with cancerous cells has been studied for several years. It was
clearly found in in vitro studies that the plasma induced cancer
cell apoptosis, and that a size reduction of microtumor xeno-
grafted occurs in the case of animal or murine experimentation.
However, the plasma species responsible for these effects are
not yet clearly identified and require further research (see, e.g.,
Refs. [1] and [2]).

Moreover, to tune such plasma sources to each specific
biomedical application, it is very important to better un-
derstand the mechanisms of formation and propagation of
observed fast plasma bullets or ionization waves in the plasma
jet devices. Electrohydrodynamic and chemical plasma models
are in complement to experimental measurements and are
useful tools to study the physical phenomena and to accurately
quantify the generated active species [3]. However, the use
of such models requires a good knowledge of ion swarm
input data such as reduced mobility, diffusion coefficients,
and reaction rates.
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Many low temperature plasma devices use a helium carrier
due to the relatively low voltage required to ignite an electrical
discharge [1]. The transport data of He+ and He2

+ ions have
been already studied in detail elsewhere [4,5]. However, in
order to generate plasma jets with different active species for
different potential biomedical applications, it is interesting
to investigate other carrier gases such as argon. Moreover,
this allows one to anticipate the future shortage of helium
worldwide production and also to use a gas which is more
easily available and cheaper than helium. Argon has been
already used to generate low temperature plasma jets in the
biomedical field [6,7]. For instance, a plasma jet using argon
carrier gas at low flow velocity (a few m/s) can be initiated
in a glass tube (about 10 mm diameter) involving a concentric
tungsten wire having small diameter (see, e.g., [7]). Such a
thin electrode (e.g., 0.6 mm diameter) that is powered with
a pulsed high voltage (a few kV and kHz), generates a high
electric field [around 100 Td (1 Td = 10−17 V cm2)] around
the tip of the wire inside the glass tube, which initiates the
plasma jet propagation along the tube axis. The active plasma
species needed for biomedical applications (radicals, long
living excited species, ions, UV photons, etc.) are produced
in open air and are strongly dependent on the magnitude of
the space-charge electric field that propagates the plasma jet
outside the tube. It is noteworthy that the magnitude of the
space-charge electric field is totally controlled by the transport
of argon ions when using argon as a carrier gas. This means
that the kinetics of argon ions can also play a significant role
in the formation of the active species [8]. Therefore, a good
knowledge of ion transport coefficients is absolutely necessary
for an accurate determination of the space-charge electric field
(i.e., the electric field self-generated by ionization waves) and
to quantify the produced active species.
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Atomic argon ions can be found in the plasma jet in two
different fine structure states. A fraction of Ar+ is in the ground
state level labeled 2P3/2 where J = 3/2 is the total (orbital +
spin) angular momentum of the ion. This corresponds to two
possible absolute values � = (1/2, 3/2) for the projection
of this total angular momentum on a given axis. Another
fraction is in the metastable state 2P1/2 where J = 1/2 and
includes ions with � = 1/2 only. In weakly ionized gases,
corresponding to the low temperature plasma jet under the
action of an external electric field, the ion transport coefficients
are closely related to the ion-neutral interaction potential
curves and can be derived from the corresponding collision
cross sections. The purpose of this work is to compute accurate
transport coefficients for the ions in both the ground state
2P3/2 and the metastable state 2P1/2 using an optimized Monte
Carlo code [9]. These transport coefficients are obtained using
the differential collision cross sections calculated for several
ab initio interaction potentials given in the literature. For the di-
atomic argon ion, the spin-orbit (SO) coupling is important and
we have taken it into account following the Cohen-Schneider
atoms-in-molecules model [10] where the SO atomic coupling
scheme is extended to the molecule. The main effect is a
splitting of the molecular potential curves at large distances
consistent with the atomic fine structure splitting. Therefore,
we have performed calculations of transport coefficients for
ions in the ground and metastable states. By comparison of
ion transport coefficients with available experimental data
[11–14], we can assess the accuracy of the diatomic potentials
that were used.

Following this introduction, Sec. II is devoted to the
description of the interaction potentials of the Ar+/Ar interac-
tion system without the inclusion of the spin-orbit couplings
[15–18]. The Cohen-Schneider semiempirical model is then
briefly described for the inclusion of the spin-orbit interaction
[10]. In Sec. III the close coupling quantum method [19,20] is
used to calculate the collision cross sections for the possible
electronic transitions of Ar+ ions colliding with Ar. Since we
are interested in the calculation of ion transport coefficient at
room temperature (300 K corresponding to a mean gas energy
of 0.04 eV), collision cross sections for energies below 1 meV
are not considered here. The collision cross section for ions in
the ground 2P3/2 state and the metastable 2P1/2 state are then
presented over a limited center-of-mass energy range varying
from 1 meV to 12 eV. In Sec. IV a short description of the
Monte Carlo method is given followed by a comparison of the
transport coefficients obtained at T = 300 K by using different
interaction potentials, for both electronic states of Ar+ (2P3/2

and 2P1/2), and over a wide range of reduced electric field
E/N (E is the electric field and N the gas density) varying
from 1 to 1500 Td. Moreover, the effect of the spin-orbit
couplings on the mobility will also be tested in this study.
Since experimental data contain an unknown proportion of
Ar+ ions in the metastable state, a comparative analysis of ion
transport coefficients calculated for different ions proportions
in the metastable state is done to provide information on the
accuracy of the molecular potentials and to decide between
different experimental data. Finally, we draw some conclusions
in Sec. V.

II. INTERACTION POTENTIALS

The first excited neutral and ionic Ar states are 11.6 eV [Ar:
3s23p5(2P3/2)4s] and 15.8 eV (Ar+: 3p5 2P3/2) [21] above the
ground state of the neutral atom, respectively, and the first
excited state of Ar2

+ is asymptotically about 12 eV above
the ground state of the ionic dimer. Therefore, for the low
Ar+-Ar collision energies considered here, one needs to take
into account only the states

∑+
u ,

∏
g ,

∏
u, and

∑+
g which

dissociate to the lowest limit of Ar+ + Ar. In order to
get accurate ion transport coefficient results, several Ar2

+
interaction potentials available from the literature without
the inclusion of the spin-orbit (SO) interaction have been
considered in this study. The SO couplings are then taken
into account using the Cohen-Schneider semiempirical model
[10].

Barata et al. [15] give an analytical form for the four lowest
electronic states of Ar2

+ depending on several parameters
adjusted in order to reproduce experimental high-resolution
photoelectron spectroscopy data, dissociation energies De,
and equilibrium internuclear distances re, reported by Wüest
and Merkt [22]. Whitaker et al. [16] determined ab initio
Born-Oppenheimer (BO) potentials over a grid of points using
a Gaussian basis set and a nonrelativistic single reference
configuration interaction (CI). Gadéa and Paidarová [17] and
Ha et al. [18] also used nonrelativistic CI ab initio calculations
with large basis sets to determine the potential energy curves
of Ar2

+. Since the literature potentials are mostly reported
as tables of points [16–18], a cubic spline interpolation has
been employed here for the intermediate internuclear distance
range. A couple of points were added in the intermediate
attractive region by using the following function, in order to
remove oscillations caused by the spline interpolation:

V att(r) = − α1

2r4
− C6

r6
− C8

r8
+ D, (2.1)

where V att(r) is the attractive interaction potential, r is the
internuclear distance, and α1, C6, C8, and D are constants
to be determined in order that V att(r) fits best the ab initio
points given in the intermediate attractive region. Outside this
range, potential curves were extrapolated at long range by the
standard attractive polarization potential:

V l(r) = − α

2r4
+D, (2.2)

where V l(r) is the long-distance potential energy and α =
10.891 a.u. is the polarizability of argon. For short internuclear
distances, the interaction potential curves were extrapolated
using the following relation:

V s(r) = Ae−Br + C, (2.3)

where V s(r) is the short-distance potential and A, B, and C are
three constants calculated in order to fit three shortest distance
ab initio discrete points. However, the three shortest distance
points given by Whitaker et al. [16] and Gadéa and Paidarová
[17] for

∑+
u and

∏
g are too close to the potential well to

use the relation (2.3) for a repulsive extrapolation. Therefore,
an analytic exponential form was used to fit the difference
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TABLE I. Parameters of Eqs. (2.1)–(2.3) in a.u. used for the interpolation and extrapolation of Whitaker et al.’s [16], Gadéa and Paidarová’s
[17], and Ha et al.’s [18] Ar2

+ potential curves without inclusion of the spin-orbit interaction.

Ref. of potentials State α1 C6 C8 A B C D

Whitaker et al. [16]
∑+

u 14.19 3.08 × 103 4.72 × 105 571.3 2.422 −6.12 × 10−2 2.45 × 10−8

�g 9.45 114.34 3.01 × 104 163.5 1.864 −1.31 × 10−2 6.45 × 10−8

�u 9.66 285.20 −2.84 × 104 112.2 1.643 −7.88 × 10−3 6.45 × 10−8∑+
g 11.04 1592.4 −3.04 × 105 46.94 1.355 −8.25 × 10−3 2.45 × 10−8

Gadéa and Paidarová [17]
∑+

u – – – 768.4 2.527 −41.5809 −41.521
�g – – – 184.0 1.910 −41.5366 −41.521
�u – – – 152.6 1.748 −41.5210 −41.521∑+

g – – – 43.08 1.334 −41.5209 −41.521

Ha et al. [18]
∑+

u 11.55 4.90 × 104 −4.16 × 107 328.4 2.272 −9.32 × 10−1 −0.859 2018
�g 12.96 1.65 × 104 −1.86 × 107 99.16 1.717 −8.91 × 10−1 −0.859 2018
�u 14.27 9.52 × 103 −1.45 × 107 49.13 1.374 −9.23 × 10−1 −0.859 2018∑+

g 11.26 5.00 × 104 −4.20 × 107 51.45 1.404 −8.29 × 10−1 −0.859 2018

between the potential curves of Whitaker et al. or Gadéa and
Paidarová and Ha in this region. This allowed us to obtain
energy points for Gadéa and Paidarová and Whitaker et al.
at shorter distances than the ones given in original papers
and to use Eq. (2.3) to extrapolate the potentials at short
internuclear distances. The parameters α1, C6, C8, and D used
in Eqs. (2.1)–(2.3) for interpolation at intermediate range and
A, B, C parameters for the extrapolation at short distance
of the ab initio electronic states

∑+
u ,

∏
g ,

∏
u, and

∑+
g of

Refs. [16–18] are listed in Table I. The value of α1 is close to
the polarizability α of argon while the C6 and C8 parameters
are much more dependent on the ab initio calculation and
act as corrective terms. It should be however emphasized
that in all cases, extrapolation at long distance follows only
Eq. (2.2). The parameter D depends primarily on the kind of
ab initio calculation, i.e., if pseudopotentials are used or not
for example. Figure 1 shows the four lowest electronic states
given by Ha et al. [18] for the Ar+/Ar interaction system. The
typical behavior of these potentials can be understood on the
basis of simple monoelectronic pictures. For the σ or π bonds,
which present respectively an axial or lateral overlap, there

FIG. 1. (Color online) Interaction potential curves for the Ar+/Ar
interaction system in the four lowest electronic states

∑+
u ,

∏
g ,

∏
u,

and
∑+

g without inclusion of the spin-orbit interaction.

is a strong attractive interaction when an electron is removed
from a strongly antibonding orbital (respectively, σu or πg)
and a strong repulsive interaction when it is removed from a
bonding orbital (respectively, σg or πu).

At intermediate and short interatomic distances, the spin-
orbit coupling is small compared to the electrostatic interac-
tions and the Ar2

+ dimer presents four well separated curves.
At the long-distance range, the molecular interactions vanish
and as the four curves approach degeneracy and converge
to the asymptotic limit, the spin-orbit coupling becomes the
dominant interaction. In order to obtain potential curves with
the inclusion of the spin-orbit interaction, the Cohen-Schneider
model [10] has been used. This model introduces a mixing
between the different adiabatic interaction potential curves∑

and
∏

(without inclusion of the spin-orbit) which have
the same � and g/u symmetry as presented in the matrix
given in Table II. Diagonalizing this matrix for each value
of internuclear distance r leads to six adiabatic interaction
potential curves if the spin-orbit interaction is considered.
These states are labeled, in ascending order of energy, I(1/2)u,
I(3/2)g , I(1/2)g , I(3/2)u, II(1/2)u, and II(1/2)g , where � is
given in parentheses and the symmetry label g/u is in the
subscript. I or II corresponds, respectively, to J = 3/2 and
J = 1/2 asymptotically. Adiabatic interaction potential curves
including the spin-orbit interaction are displayed in Fig. 2.
The asymptotic energy difference �Ep between the states
Ar+(2P3/2) + Ar(1S) and Ar+(2P1/2) + Ar(1S) is related to the
fine structure atomic parameter a = 0.118 33 eV [21]:

�Ep = 3
2a = 0.1775 eV.

TABLE II. Electronic Hamiltonian according to the Cohen-
Schneider semiempirical model [10] for each symmetry g/u.

∑+
1/2

∏
1/2

∏
3/2∑+

1/2 E∑+
g,u

−a/
√

2 0∏
1/2 −a/

√
2 E∏

g,u
+ a/2 0∏

3/2 0 0 E∏
g,u

− a/2
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FIG. 2. (Color online) Interaction potential curves with inclusion
of the spin-orbit interaction for the six lowest electronic states of Ar2

+.

Therefore, inelastic spin change processes cannot take place
for collision energies below about 0.18 eV and have thus
no effect on the ion transport coefficients at low electric
fields.

Absolute deviations in meV between Ha et al.’s potential
curves with the inclusion of the SO interaction and other
potentials are displayed in Fig. 3. Ha et al.’s potentials have
been taken as a reference since they are the most recent
ones. We can see from this figure that the deviations increase
for all the potential curves in the short-range repulsive part.
Moreover, at intermediate and large interatomic distances, the
interaction potential curves I(3/2)u and I(3/2)g of Barata et al.
and Gadéa and Paidarová are rather close to each other. We can
thus expect that for �= 3/2, collision cross sections calculated
from Barata et al. and Gadéa and Paidarová’s potentials would
be similar at low collision energies.

III. COLLISION CROSS SECTIONS

We consider here differential, integral, and momentum
transfer collision cross sections. A description of the formalism
used to compute cross sections has been already given
elsewhere [19,20]. In short, assuming that argon nuclei are
distinguishable and using partial wave expansion with angular
momentum l, the scattering amplitude at collision energy ε in
angle θ for a particle coming from the initial internal state or
channel i to the final one j is given by

fij (ε,θ ) = − 1

2i(kikj )1/2

∑
l

(2l + 1)T l
ij (ε)Pl(cos θ ), (3.1)

where ki and kj are initial and final wave vectors, T l
ij (ε) is

a transition matrix element, and Pl(cos θ ) are the Legendre
polynomials of order l. The transition matrix elements are
obtained after numerical integration of the coupled differential
equations resulting from the expansion of the total wave
function of the system on the molecular state basis associated
with the potentials described in Sec. II. This molecular
wave function method corresponds to a numerical integration
of the nuclear Schrödinger equation without semiclassical
approximation which is efficient for the rather low collision

energies considered here (for more details, see Sec. M.5
in [20]). Integral σ

ij

0 (ε) and momentum transfer σ
ij

1 (ε) cross
sections from initial channel i to final one j are obtained by
integration over solid angle χ :

σ
ij

0 (ε) = kj

ki

∫
dχ |fij (ε,θ )|2 (dχ = 2π sin θdθ ), (3.2)

σ
ij

1 (ε) = kj

ki

∫
dχ (1 − cos θ )|fij (ε,θ )|2, (3.3)

so that

σ
ij

0 (ε) = π

k2
i

∑
l

(2l + 1)
∣∣T l

ij (ε)
∣∣2

, (3.4)

σ
ij

1 (ε) = π

k2
i

∑
l

{
(2l + 1)

∣∣T l
ij (ε)

∣∣2 − 2(l + 1)

× Re
[
T l

ij (ε)∗T l+1
ij (ε)

]}
, (3.5)

Re referring to the real part of the product of transition matrix
elements.

We first do not take into account the fact that the two
interacting Ar atoms are identical. As spin-orbit couplings
exist only between states which have the same �, the latter
is conserved during the collision, whereas J can be modified.
We note here (Ji, � → Jf , �)NCT (NCT: no charge transfer)
the transition corresponding to the process

Ar+(Ji,�) + Ar → Ar+(Jf,�) + Ar

and (Ji, � → Jf , �)CT (CT: charge transfer) the transition for

Ar+(Ji,�) + Ar → Ar + Ar+(Jf,�).

The global problem involving six coupled potentials (cf.
Table II) can be split into two separate simpler ones for
each subspace � = 3/2 and � = 1/2. For � = 3/2, the
calculation involves only the two potential curves I(3/2)u,g

with the same asymptotical energy, corresponding to the two
possible localizations of the electron. At this step, these two
potential curves are assumed coupled since colliding partners
are not identical. In this case, only the elastic (3/2, 3/2 →
3/2, 3/2)NCT and charge transfer (3/2, 3/2 → 3/2, 3/2)CT

transitions (without spin change) can take place. For the
subspace � = 1/2, the four coupled potentials curves I(1/2)u,g

and II(1/2)u,g are involved. The asymptotical limits of I and
II states are separated by an energy �Ep (cf. Sec. II). Then,
in this case four NCT and CT processes can take place: three
transitions are without a threshold in kinetic energy, (3/2,
1/2 → 3/2, 1/2)NCT,CT, (1/2, 1/2 → 1/2, 1/2)NCT,CT, and
(1/2, 1/2 → 3/2, 1/2)NCT,CT; while one (3/2, 1/2 → 1/2,
1/2)NCT,CT has a kinetic energy threshold of �Ep. Figure 4
displays schematically the possible ion transitions, where the
charge is initially localized on one of the two argon atoms and
when the two colliding particles are supposed distinguishable.

We now take into account the fact that the colliding
partners are identical 40Ar nuclei (99.6003%). This allows g/u
separation and reduces the 2×2 problem (for �= 3/2) into two
single ones. Similar separation can be done for subspace � =
1/2 and the 4×4 problem is reduced into two 2×2 simple ones.
Moreover, the resonant charge transfer processes [Ar+(Ji, �)
+ Ar → Ar + Ar+(Jf , �)] occurring in direction (π − θ ) are
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FIG. 3. Absolute deviation between the potential curves (a) I(1/2)u, (b) I(3/2)g , (c) I(1/2)g , (d) I(3/2)u, (e) II(1/2)u, and (f) II(1/2)g given
by Refs. [15–17] and those given by Ha et al. [18].

not distinguishable from the no charge transfer ones [Ar+(Ji,
�) + Ar → Ar+(Jf , �) + Ar] occurring in θ direction. As
a result, symmetrized scattering amplitude fsym(ε,θ ) must be
defined as a linear combination of NCT and CT for each spin
state as follows:

fsym(ε,θ ) = fNCT(ε,θ ) + fCT(ε,π − θ ). (3.6)

This leads to one symmetrized integral and momentum
transfer collision cross section sσ (Ji,�→Jf ,�)(ε) for each possi-
ble transition (Ji,� → Jf,�). We then have one symmetrized

integral and momentum collision cross section for � = 3/2
and four for � = 1/2. Transition matrices were obtained by
a simple numerical integration from rmin to rmax over the
corresponding potential using the De Vogelaere algorithm
[23]. We typically used rmin = 1.3 Å and rmax varying between
25 and 100 Å and the integration was performed with 20 points
per wavelength.

To calculate the ion transport coefficients, the symmetrized
differential collision cross sections and Eq. (3.2) were used.
Indeed, the quantum calculation provides us finite differential
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FIG. 4. (Color online) Schematic representation of the possible
ion transitions induced by a collision between two argon atoms A
and B and when the charge is initially localized on atom A.

cross sections (contrary to classical mechanics calculation)
which can be used for an accurate Monte Carlo calculation.
However, if only finite momentum transfer collision cross
sections are available, it has previously been shown [4] that
their use in Monte Carlo simulation considering an isotropic
scattering, allows us to obtain the ion transport coefficients
with a much shorter computation time and maximal relative
deviation of ±2% from the exact results. This method remains
valid even in a case of strong anisotropy [4]. Comparison
between mobilities of Ar+ ions in Ar obtained with the two
methods will be done in Sec. IV. For inelastic processes,
this approximate method is an extension of the usual one
based on the momentum transfer collision cross section in the
elastic case. Figure 5 displays an example of the symmetrized
(3/2, 3/2 → 3/2, 3/2) differential cross sections obtained
from Ha et al.’s I(3/2)u,g interaction potential curves at two

FIG. 5. (Color online) Differential collision cross sections as a
function of the ion scattering angle θ in degree calculated from the
interaction potential curves of Ha et al. [18] for ε = 10−3 eV and
ε = 10 eV.

FIG. 6. Symmetrized integral (filled stars) and momentum trans-
fer (empty stars) collision cross sections for the Ha et al.’s [18]
interaction potentials and for collision energies varying from 1 meV
to 12 eV. The Massey-Mohr law at low energy is shown as a dashed
line.

different collision energies ε. A complex variation of the
differential cross sections with a strong anisotropy in the
forward and backward directions is clearly seen. By comparing
the corresponding integral and momentum transfer collision
cross sections (cf. Fig. 6), we see that the momentum transfer
collision cross section sσ1 is smaller than the integral collision
cross section sσ0. This can be easily understood since the large
contributions at small and large scattering angles, i.e., θ → 0°
and θ → 180°, are eliminated by weighting the differential
collision cross section by (1 − cos θ ). This remains valid for
all collision energies ε. Similarly to Ref. [4], we interpret the
observed oscillations on the collision cross sections as a result
of glory scattering [19]. If these oscillations are smoothed out,
the collision cross sections decrease according to the Massey
and Mohr law, which in the present ion-atom case (long range
attractive potential 1/r4) is a ε−1/3 power law in the low energy
range (cf. Eq. (185) on p. 172 in Ref. [24]). It is shown by the
dashed line on the log-log plot of Fig. 6. The slower linear
decrease of the cross sections at high energies in Figs. 6–10 is
due to the repulsive part of the potential. In the intermediate
energy range, the interference of this direct contribution with
forward scattering glory contribution provides the oscillations
observed in Figs. 6–10. Their amplitudes however are smaller
than in the helium case due to the higher masses of the present
collision partners (cf. Eq. (191) on p. 175 in Ref. [24]).

The symmetrized momentum transfer sσ
(Ji,�→Jf ,�)
1 (ε) col-

lision cross sections, calculated for the potentials mentioned
above in Sec. II, are displayed in Fig. 7 for subspace � =
3/2 and in Fig. 8 for subspace � = 1/2. As shown in Fig. 7,
the collision cross sections sσ

(3/2,3/2→3/2,3/2)
1 (ε) obtained from

Barata et al.’s [15] and Gadéa and Paidarová’s [17] potentials
are close to each other at low collision energies. This behavior
results from the fact that both potentials are similar at
intermediate and large interatomic distances. However, at
high energies ε, Barata et al.’s potentials give collision cross
sections quite different from the ones calculated using the
other potentials [16–18]. Indeed, the cross section obtained
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FIG. 7. (Color online) Symmetrized momentum transfer colli-
sion cross sections as function of collision energy obtained from
the several interaction potential curves [15–18] with the inclusion of
the spin-orbit interaction for subspace � = 3/2.

for Barata et al.’s potentials is higher than the other ones at
high collision energies and would lead to lower ion transport
coefficients. Figures 8(a) and 8(b) also show that the collision
cross sections obtained from Barata et al. for subspace

� = 1/2 are higher at high collision energies. They would
then lead to lower ion transport coefficients at high reduced
electric fields compared to the ones calculated for the other
potentials. Moreover, Fig. 8(c) shows that the inelastic spin
change transition (3/2, 1/2 → 1/2, 1/2) would not play an
important role in the ion transport coefficient calculations,
since the corresponding collision cross sections are negligible.
Indeed, this collision cross section is at least about two
orders of magnitude smaller than the other ones for subspace
� = 3/2 and � = 1/2.

By applying the microreversibility principle,

k2
i σ

(i→j )(ε) = k2
j σ

(j→i)(ε), (3.7)

where i: (3/2, 1/2) and j : (1/2, 1/2), we can obtain the
collision cross section for the inelastic spin change transition
(j → i) from the (i → j ) cross section. In particular, at
large kinetic energies with respect to the energy release of the
process (�Ep = 0.18 eV), k2

j ≈ k2
i and both collision cross

sections are close. However, at low energies, k2
j � k2

i so that
σ (j→i)(ε) � σ (i→j )(ε). Thus, because both (3/2, 1/2 → 1/2,
1/2) and (1/2, 1/2 → 3/2, 1/2) collision cross sections are
small in a wide energy range, the adiabatic basis, i.e., the
uncoupled I(1/2)u,g and II(1/2)u,g interaction potential curves
can be used for the cross section and ion transport coefficients
calculation. This is what was done in the collision cross section

FIG. 8. (Color online) Symmetrized momentum transfer collision cross sections as function of collision energy for the transitions (a) (3/2,
1/2 → 3/2, 1/2), (b) (1/2, 1/2 → 1/2, 1/2), and (c) (3/2, 1/2 → 1/2, 1/2) obtained from the several interaction potential curves [15–18]
with the inclusion of the spin-orbit interaction for subspace � = 1/2.
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calculation of Ref. [15] and the results obtained therein are
close to ours within ±5%.

Finally, the needed collision cross sections (differential,
integral and momentum transfer) for the ion transport coeffi-
cients calculation are obtained for each internal energy level
of Ar+, 2P3/2 and 2P1/2, by summing over the final states and
averaging over the initial ones as follows:

Q
(2
P3/2

) = 1
2 [sσ (3/2,3/2→3/2,3/2) + sσ (3/2,1/2→3/2,1/2)

+ sσ (3/2,1/2→1/2,1/2)], (3.8)

Q
(2
P1/2

) = sσ (1/2,1/2→1/2,1/2) + sσ (1/2,1/2→3/2,1/2). (3.9)

Figure 9 displays the symmetrized and averaged momen-
tum transfer collision cross sections Q1, calculated for the
considered interaction potentials [15–18] for the Ar+/Ar inter-
action system and for the 2P3/2 state of Ar+. The momentum
transfer collision cross section obtained by Phelps [25] using
a “Langevin” polarization scattering method is also plotted
for comparison. The data by Phelps show a good agreement
with our cross section obtained from Barata et al.’s interaction
potential curves [15]. However, Phelps [25] does not give cross
section values for energies below 0.1 eV (cf. Fig. 9), which
does not allow us to calculate the ion transport coefficients
for the ions in the ground state 2P3/2 at low electric fields. In
Fig. 9 we can further notice that the collision cross sections
obtained for the potentials given by Whitaker et al. [16], Gadéa
and Paidarová [17], and Ha et al. [18] are very similar to
each other at high collision energies. The corresponding ion
transport coefficients will be then very close at high electric
fields. In the intermediate region, it is noteworthy that the
potentials by Whitaker et al. and Gadéa and Paidarová present
quite similar collision cross sections. We can then expect that
the corresponding ion transport coefficients calculated from
these two potentials will be close at low electric fields.

Figure 10 shows the collision cross sections obtained for
the 2P1/2 state of Ar+ ion and for kinetic energies varying
from 0.01 to about 12 eV. A global overview on these collision
cross sections can predict that the ion transport coefficients

FIG. 9. (Color online) Symmetrized momentum transfer colli-
sion cross sections obtained from the several interaction potential
curves [15–18] with the inclusion of the spin-orbit interaction as
function of kinetic energy for the ions in the ground state 2P3/2.

FIG. 10. (Color online) Symmetrized momentum transfer colli-
sion cross sections obtained from the several interaction potential
curves [15–18] with the inclusion of the spin-orbit interaction as
function of the kinetic energy of the ions for the excited state 2P1/2.

calculated obtained from the potentials given by Whitaker et
al. [16] and Ha et al. [18] will be similar to each other at all
electric fields, the ones calculated from Gadéa and Paidarová’s
potentials [17] will be a little larger, and those of Barata et al.
[15] will be a bit smaller. Moreover, it is noteworthy that the
ground and excited state momentum transfer collision cross
sections are similar to each other, which is especially true for
the integral collision cross sections. Inspection of the cross
section opacity shows that the large impact parameters, i.e.,
the long range part of the potentials, contribute predominantly
to the collision cross sections. Since the long range parts of
all the potentials are similar (the ion-atom polarization term
dominates here), this leads to close collision cross sections and
will lead to comparable transport coefficients for the ground
2P3/2 and metastable 2P1/2 states.

IV. ION TRANSPORT COEFFICIENTS

A. Monte Carlo method

The Monte Carlo algorithm has been used to simulate the
transport of Ar+ ions, in the ground 2P3/2 and metastable 2P1/2

states, in argon gas under the action of a uniform electric field
E (applied along the z axis). Simulation techniques using the
Monte Carlo method for transport coefficient calculations have
been already detailed elsewhere [9,26]. In short, Monte Carlo
code treats an initially great number of seed particles one
by one until their disappearance, while elastic and inelastic
collisions are defined by their collision cross sections. In
addition, fictitious ionization (ion creation) is also considered
in order to obtain more accurate results if there are frequent
processes of ion removal. The usual approximation of a weakly
ionized gas is made, where only interactions between ion
and neutral species in their ground states are taken into
account. This means that probability of collisions between
ion and excited neutral species is assumed negligible. The
target gas motion at ambient temperature (300 K) has been
taken into account in the calculation of the relative ion
energy by considering both ion and target gas velocities. Ion
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energy is calculated from the classical dynamics equations by
considering the electric field acceleration and the energy of the
target gas is determined by assuming a Maxwellian distribution
at 300 K.

Transport coefficient data are calculated from Monte Carlo
simulation using either the differential collision cross sections
without any additional assumption on ion scattering, or using
momentum transfer collision cross sections by assuming an
isotropic scattering for the calculation of the deviation angle
after every collision. In the first case, the deviation angle θ is
calculated from the following relation:

rθ =
∫ θ

0 σsym(ε,θ ′)sin(θ ′)dθ ′∫ π

0 σsym(ε,θ ′)sin(θ ′)dθ ′ , (4.1)

where rθ is a random number uniformly distributed in the
interval [0,1]. In the Ar+/Ar system, there are not simple
analytical expressions for the differential cross section vari-
ation as a function of the derivation angle θ (cf. Fig. 5). This
means that the unknown deviation angle θ has to be calculated
from the numerical solution of Eq. (4.1), which is required for
every collision during the Monte Carlo simulation of the ion
transport. In fact, such a numerical approach leads to a huge
computation time since several millions of collisions have to
be considered during the Monte Carlo simulation. To reduce
the computation time, the momentum collision cross section
can be considered instead as an approximation to indirectly
take into account the anisotropy of collisions without using
the differential cross section. In this case, the deviation angle
is determined by the following relation:

cos(θ ) = 1 − 2rθ . (4.2)

A simulation using the differential collision cross sections
[i.e., the deviation angle calculated from Eq. (4.1)] leads to
computation times more than 100 times longer in comparison
to the isotropic scattering case [i.e., deviation angle calculated
from Eq. (4.2)]. A comparative analysis between reduced
mobilities calculated from the differential collision cross
section on the one hand and from the momentum collision
cross sections on the other hand will be outlined below
in Sec. IV B. The description of the successive steps of
Monte Carlo algorithms (calculation of the free time of flight,
trajectory between collisions, the type of collision, velocities
before and after every collision, and transport coefficients)
can be found in detail elsewhere [9,26]. Transport coefficients
such as reduced mobility K0 and longitudinal DL or transversal
DT diffusion coefficients are determined respectively from the
following relations:

K0N = 〈vz〉
E/N

T0

Tgas

Pgas

P0
, (4.3)

DL = 1

2

d[z(t) − 〈z(t)〉]2

dt
, (4.4)

DT = 1

4

d{[x(t) − 〈x(t)〉]2 + [y(t) − 〈y(t)〉]2}
dt

, (4.5)

where T0 = 273.16 K is the standard temperature, Tgas is the
gas temperature, P0 = 760 torr is the standard atmospheric
pressure, and Pgas is the gas pressure. The ion trajectories x(t),
y(t), z(t) between two successive collisions are determined

from classical equations where the electric field �E is applied
along the z axis accelerating uniformly the ions during their
free flight. Considering the position (or drift velocity) Xi,j

related to the positive ion number i undergoing collision
number j during its drift towards the cathode under the
action of the uniform electric field �E, the mean quantity X

is calculated by using a statistical mean from the conventional
formula,

〈X〉 = 1

np

np∑
i=1

1

nc

nc∑
j=1

Xi,j , (4.6)

where np is the number of seed particles and nc is the
total number of collisions occurring during the whole ion
pathway from its emission at the anode to its disappearance
at the cathode (or during non-conservative inelastic collision
processes). Such a definition is consistent with the uniform
electric field condition and steady state regime reached in the
case of standard drift tubes used for ion mobility measurements
[27].

B. Results and discussion

The number of seed particles np considered in the
Monte Carlo simulation was taken as np = 5 000 000 for
E/N � 10 Td, np = 1 000 000 for 10 < E/N � 100 Td
and np = 100 000 for higher electric fields, in order to use
the Monte Carlo method as a reliable tool for the precision
estimate of the different interaction potentials. These numbers
of seed particles, which give negligible statistical errors on
calculated transport coefficients, were determined from a
previous detailed study [4]. The seed particles are considered
in the simulation until their disappearance either when an
inelastic process occurs (for instance, spin change processes
lead to the disappearance of the considered 2P3/2 or 2P1/2 ion) or
when the maximum simulation time is elapsed. Convergence
parameters, namely εmax (the maximum energy required for a
given E/N) and the maximum time tmax (chosen longer than
the ion relaxation time for every E/N), vary respectively from
0.7 to 12 eV and from 0.4 to 1 μs for reduced electric fields
varying between 1 and 1500 Td. The ion energy distribution
functions given by the Monte Carlo simulation show that, for
ions in the ground state 2P3/2, the ion energy does not exceed
ε = 0.3 eV at 1 Td, ε = 4 eV at 500 Td, and ε = 12 eV
at 1500 Td (cf. Fig. 11). This also remains valid for ions in
the excited state 2P1/2 since the corresponding ion distribution
function is similar to that obtained for ions in the 2P3/2 state.
This can be easily understood since the corresponding collision
cross sections Q1(2P3/2) and Q1(2P1/2) are quite close to each
other.

As a first step, the reduced ion mobility data K0(2P3/2) of
the ground state (2P3/2) Ar+ ion in Ar have been calculated
using the 2P3/2 differential collision cross sections obtained
for the different interaction potentials considered in Sec. II
[15–18]. The spin change transition (3/2, 1/2 → 1/2, 1/2)
is considered as an inelastic process which leads to the
disappearance of Ar+(2P3/2) ions. The E/N dependence of
the calculated 2P3/2 reduced mobility data calculated for
the different interaction potentials is shown in Fig. 12 and
listed in Table III. The experimental mobility data of Helm
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FIG. 11. Normalized energy distribution function of 2P3/2 ions
for reduced fields E/N = 1, 500, and 1500 Td.

and Elford [11], Hegerberg et al. [12], Basurto et al. [14],
and those compiled by Ellis et al. [13] (from Beaty [28] and
Hornbeck [29]) are also shown in Fig. 12 for comparison
with an experimental error of 1% for E/N < 250 Td and 3%
for higher electric fields. For the reader’s convenience, the
experimental mobility data are listed in Table IV. It is clear
from Fig. 12 that the mobilities calculated by using Gadéa and
Paidarová’s [17] and Whitaker et al.’s [16] potentials show a
good agreement with Ellis et al. [13], Helm and Elford [11],
and Hegerberg [12] experimental results.

To illustrate the performance of the interaction potentials,
the relative and standard errors with respect to the experimental
data of Ellis et al. [13], Basurto et al. [14], and the association
of the data by Helm and Elford [11] and Hegerberg [12]
have been calculated. Mobility data calculated by using Gadéa
and Paidarová’s interaction potential curves [17] give the best
agreement where standard errors of SE = 0.0060 cm2 V−1 s−1

and SE = 0.0007 cm2 V−1 s−1 were obtained, respectively,
from Ellis et al. [13] data and the association of Helm and

FIG. 12. (Color online) Comparison between measured ion mo-
bility [11–14] and calculated ones for ions in the ground state 2P3/2

using interaction potentials [15–18].

TABLE III. Calculated reduced mobilities in cm2 V−1 s−1 of Ar+

ions in the ground state 2P3/2 in Ar from several interaction potentials
[15–18] and the associated standard errors (SE) with respect to
experimental data [11–14].

References of potentials

Barata Whitaker Gadéa and Ha
E/N (Td) et al. [15] et al. [16] Paidarová [17] et al. [18]

1 1.45 1.55 1.54 1.59
2 1.46 1.54 1.54 1.59
3 1.47 1.56 1.55 1.59
5 1.47 1.55 1.54 1.60
7 1.47 1.56 1.54 1.59
10 1.47 1.54 1.54 1.59
12 1.47 1.55 1.54 1.59
15 1.47 1.54 1.53 1.58
20 1.45 1.53 1.52 1.57
30 1.43 1.51 1.50 1.55

40 1.41 1.48 1.47 1.52
50 1.38 1.44 1.44 1.48
60 1.35 1.41 1.41 1.45
70 1.33 1.38 1.38 1.41
80 1.30 1.35 1.35 1.38
90 1.27 1.32 1.32 1.35
100 1.24 1.29 1.29 1.32
120 1.20 1.24 1.25 1.27
150 1.13 1.17 1.18 1.19
200 1.05 1.08 1.09 1.10

300 0.92 0.95 0.96 0.96
400 0.83 0.85 0.86 0.87
500 0.77 0.79 0.79 0.79
600 0.71 0.73 0.74 0.75
700 0.67 0.69 0.70 0.70
1000 0.58 0.60 0.60 0.61
1500 0.49 0.51 0.51 0.51
SE Ellis
et al. [13] 0.0078 0.0060 0.0060 0.0122

SE Helm and
Hegerberg [11,12] 0.0113 0.0016 0.0007 0.0062

SE Basurto
et al. [14] 0.0083 0.0166 0.0190 0.0211

Hegerberg [11,12] data. The maximum relative deviation is
11.1% at 1500 Td from Ellis et al. data and 0.63% at 300 Td
from Helm and Hegerberg data. Results obtained by using
Whitaker et al.’s interaction potential curves [16] show also ex-
cellent agreement experimental data. A standard error of SE =
0.0060 cm2 V−1 s−1 and a maximal relative deviation of 10.5%
at 1500 Td were obtained from experimental data of Ellis et al.
[13], while a standard error of SE = 0.0016 cm2 V−1 s−1

and a maximal relative deviation of 1.21% at 600 Td were
obtained from Helm and Hegerberg measurements [11,12].
However, Ha et al.’s [18] and Barata et al.’s [15] potential
curves lead to higher standard errors respectively equal to
SE = 0.0122 cm2 V−1 s−1 and SE = 0.0078 cm2 V−1 s−1

from Ellis et al. [13] data and SE = 0.0062 cm2 V−1 s−1 and
SE = 0.0113 cm2 V−1 s−1 from the association of Helm and
Hegerberg [11,12] data. The standard errors obtained from
Basurto et al.’s measurements [14] are much higher for the
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TABLE IV. Measured reduced mobilities in cm2 V−1 s−1 of Ar+
ions in Ar.

References

Helm and Hegerberg Ellis Basurto
E/N (Td) Elford [11] et al. [12] et al. [13] et al. [14]

8 1.53
10 1.53
12 1.53
15 1.52
20 1.51
30 1.47
40 1.47 1.44
50 1.44 1.41

60 1.41 1.38
70 1.38
80 1.35 1.32
90 1.32
100 1.30 1.27
120 1.25 1.22 1.18
150 1.18 1.18 1.16 1.10
200 1.09 1.06 1.01

300 0.95 0.95 0.89
400 0.86 0.85 0.80
500 0.80 0.78 0.74
600 0.74 0.72 0.69
700 0.70 0.65
1000 0.61 0.56 0.56
1500 0.46 0.47

interaction potentials of Gadéa and Paidarová and Whitaker
et al., which show the best agreement with other experiments
[11–13]. From these first transport coefficients results, it is
noteworthy that the mobility data measured by Helm and
Elford [11] and Hegerberg et al. [12] give the best agreement
with the calculated ab initio transport coefficients, i.e., when
mobilities are calculated by using potentials given by Whitaker
et al. [16], Gadéa and Paidarová [17], or Ha et al. [18]. The
relative deviations between our calculations and Helm and
Hegerberg experiments [11,12] are summarized in Fig. 13.

These results presented above are valid only if 2P3/2 ions
are considered in experiments. But, in reality the background
weakly ionized gas also contains, in addition to a major
proportion of ions in the 2P3/2 state, a small proportion of 2P1/2

ions (pmet). In order to confirm the excellent agreements of
the mobilities calculated by using Gadéa and Paidarová’s [17]
or Whitaker’s [16] interaction potentials with the experimental
results of Helm and Hegerberg [11,12], standard errors have to
be calculated for linearly weighted averages of the mobilities
obtained for both ionic states:

K0= (1 − pmet)K0
(

2P3/2
) + pmetK0

(
2P1/2

)
, (4.7)

with different proportions of metastable ions (pmet). Then, as a
second step, the reduced ion mobility data K0(2P1/2) of Ar+ ion
in 2P1/2 state have been calculated using the 2P1/2 differential
collision cross sections obtained for the different interaction
potentials [15–18] (cf. Sec. II). The mobilities are shown in
Fig. 14 and listed in Table V. Experimental data are shown as

FIG. 13. (Color online) Relative deviation between reduced mo-
bility obtained from the association of Helm and Elford [11] and
Hegerberg et al. [12] experimental results and from collision cross
sections calculated using the interaction potentials [15–18].

a reference only. It is noteworthy that for each potential, the
mobilities obtained for ions in the metastable state 2P1/2 are
as expected close to the ones obtained for ions in the ground
state 2P3/2 (cf. Figs. 12 and 14).

This confirms the observations done by Helm and Elford
[11] who could not measure separately mobilities of ions in the
ground state and in the metastable state and, thus, concluded
that the mobilities of Ar+ ions in either states lay within
±1%–5%.

The 2P3/2 and 2P1/2 ion mobilities have then been mixed
as shown in Eq. (4.7) for each of the considered interaction
potentials and the corresponding standard errors were cal-
culated with respect to the experimental results [11–14] for
a proportion of metastable ions ranging between 0.02 and
0.2. Standard errors calculated for the various proportions of
metastable ions with respect to Ellis et al.’s [13] mobility
data show that the use of Gadéa and Paidarová’s [17] or

FIG. 14. (Color online) Calculated ion mobility data for ions
in the metastable state 2P1/2 using interaction potentials [15–18].
Experimental data [11–14] are also shown for reference.
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TABLE V. Calculated reduced mobilities in cm2 V−1 s−1 of Ar+

ions in the excited state 2P1/2 in Ar from several interaction potentials
[15–18].

References of potentials

Barata Whitaker Gadéa and Ha
E/N (Td) et al. [15] et al. [16] Paidarová [17] et al. [18]

1 1.41 1.62 1.64 1.59
2 1.44 1.60 1.63 1.56
3 1.44 1.61 1.64 1.58
5 1.43 1.60 1.64 1.58
7 1.43 1.60 1.64 1.57
10 1.43 1.59 1.64 1.57
12 1.43 1.59 1.63 1.57
15 1.42 1.59 1.62 1.56
20 1.42 1.57 1.61 1.55

30 1.40 1.55 1.58 1.52
40 1.38 1.52 1.54 1.49
50 1.35 1.48 1.50 1.45
60 1.32 1.45 1.47 1.42
70 1.30 1.41 1.43 1.39
80 1.27 1.38 1.39 1.36
90 1.25 1.35 1.36 1.33
100 1.22 1.32 1.33 1.30
120 1.17 1.26 1.27 1.25

150 1.11 1.20 1.20 1.18
200 1.03 1.10 1.10 1.08
300 0.91 0.96 0.96 0.95
400 0.82 0.87 0.86 0.86
500 0.76 0.80 0.79 0.79
600 0.71 0.74 0.73 0.74
700 0.67 0.70 0.69 0.69
1000 0.58 0.60 0.59 0.60
1500 0.49 0.51 0.50 0.51

Whitaker et al.’s [16] interaction potential curves leads to
the best agreement with similar SE varying between about
0.0062 and 0.0077 cm2 V−1 s−1

. However, standard errors
with respect to Basurto et al.’s [14] data show that potentials
by Barata et al. [15] give the best agreement with a minimal
SE = 0.0077 cm2 V−1 s−1 for pmet = 0.2. However, this result
is not consistent since the agreement improves with increasing
the metastable proportion pmet. Moreover, the interaction
potential of Barata et al. is not an ab initio potential but an
analytical fit adjusted from experimental spectroscopy data.
The standard errors calculated with respect to the association
of the Helm and Hegerberg measurements [11,12] confirm the
previous observations. Indeed, the best agreement is found
for the potentials of Gadéa and Paidarová [17] and Whitaker
et al. [16] with standard errors SE varying between 0.0007
and 0.0019 cm2 V−1 s−1. The lowest standard mobility
errors SE are obtained with respect to Helm and Hegerberg
measurements when Gadéa and Paidarová’s or Whitaker
et al.’s potentials are used for the calculation of collision cross
sections. Figure 15 displays the standard errors obtained for the
considered interaction potentials [15–18] with respect to Helm
and Hegerberg measurements for different pmet proportions. It
is noteworthy that the proportion of metastable ions does not
influence considerably the mobility results except for Gadéa

FIG. 15. (Color online) Standard errors of the mobility obtained
for Barata et al. (�), Whitaker et al. (�), Gadéa and Paidarová (�),
and Ha et al. (�) for different proportions of ions in the metastable
state from the association of Helm and Elford [11] and Hegerberg
et al. [12] experimental results.

and Paidarová for which the standard deviation SE increases
with the pmet proportion. From these results, it is clear that the
proportion of metastable ions is highly probably small (0–5%)
in the experiment, in agreement with experimental conclusions
[11].

In addition to the ion mobility, other ion transport
coefficients such as longitudinal and transversal diffusion
characteristic energies, respectively, eDL/K and eDT/K

(K = K0N ), which are needed for multidimensional modeling
of plasma jet electrodynamics, were also calculated using the
interaction potential curves by Gadéa and Paidarová. Figure 16
shows the calculated characteristic energies plotted against
the reduced electric field for the 2P3/2 ion. The obtained
transversal coefficients are within the ±5% error bars of

FIG. 16. (Color online) Transversal eDT/K and longitudinal
eDL/K diffusion characteristic energies for Ar+ ions in the ground
state calculated using the interaction potential curves of Gadéa and
Paidarová [17]. The experimental results [30] of eDT/K are shown
for comparison.
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TABLE VI. Calculated transversal eDT/K and longitudinal
eDL/K diffusion characteristic energies in meV for Ar+ ions 2P3/2

and 2P1/2 states using Gadéa and Paidarová’s [17] interaction potential
curves.

2P3/2
2P1/2

E/N (Td) eDT/K eDL/K eDT/K eDL/K

1 25.93 25.99 25.73 25.701
2 25.91 25.90 25.68 25.63
3 25.83 25.85 25.92 25.98
5 25.93 25.95 25.93 26.01
7 25.86 26.02 25.85 25.99
10 25.99 26.15 25.90 26.15
12 25.95 26.27 26.14 26.32
15 26.15 26.47 26.18 26.66
20 26.27 27.20 26.40 27.10

30 26.79 28.47 26.92 28.50
40 27.35 30.25 27.59 30.30
50 28.04 32.15 28.37 32.06
60 28.70 34.10 29.19 34.20
70 29.49 36.29 30.13 36.14
80 30.40 38.72 30.85 38.50
90 31.13 40.90 31.71 40.67
100 32.00 42.89 32.50 43.08
120 33.61 47.78 34.15 48.00

150 36.47 56.40 36.85 55.27
200 40.27 67.50 40.39 67.67
300 48.32 93.21 48.13 94.55
400 55.69 119.97 55.34 121.17
500 62.40 146.21 62.88 149.16
600 69.75 173.62 70.59 179.66
700 77.28 205.16 76.88 208.13
1000 96.98 300.28 98.07 301.45
1500 125.87 453.18 131.75 468.03

transverse diffusion measurements compiled by Viehland and
Mason [30]. Diffusion characteristic energies are also listed
in Table VI for both 2P3/2 and 2P1/2 ions. It is clear from
Fig. 16 and Table VI that, at low electric field (E/N =
1 Td), longitudinal and transversal characteristic energies
converge as expected to about a 25.8 meV average. This
value is consistent with the one obtained for T = 300 K
from the Nernst-Townsend-Einstein relation [31], which is
valid in weak fields when the diffusion becomes isotropic (i.e.,
DL = DT = D),

eD/K = kBT . (4.8)

Here kB is the Boltzmann constant, T is the background gas
temperature, and e is the electric charge of the ion.

Our mobility and diffusion coefficients results obtained for
Ar+(2P3/2) and Ar+(2P1/2) ions (cf. Tables III, V, and VI)
can be compared to the previous calculation of Viehland
and Hesche [32]. In this study they computed the collision
cross section using the Michels et al.’s [33], Wadt’s [34],
and Dehmer and Dehmer’s [35] Ar2

+ interaction potentials
with the JWKB approximation. Ion transport coefficients
are obtained from the kinetic theory based on moments of
Boltzmann equation. Whereas our best mobility calculation
are less than 1% in error with respect to experimental data

FIG. 17. (Color online) Relative deviation between reduced mo-
bility obtained from the differential collision cross sections and from
the momentum transfer ones calculated from the potential curves
given by Gadéa and Paidarová [17].

(cf. Fig. 13), their results show only a good qualitative
agreement with deviations from experiments that can reach
10%. The present work provides improvement both in the
accuracy of the potentials and in the transport coefficients
calculated from the collision cross sections.

On the other hand, is has been shown in Sec. III that the
spin change (3/2, 1/2 → 1/2, 1/2) and (1/2, 1/2 → 3/2, 1/2)
collision cross sections are negligible against the other
contributions to the 2P3/2 and 2P1/2 collision cross sections
[cf. Eqs. (3.8) and (3.9)]. Additional Monte Carlo calculations
ignoring (3/2, 1/2 → 1/2, 1/2) and (1/2, 1/2 → 3/2, 1/2) spin
change processes lead to similar transport coefficient results.

As a final step, mobilities were calculated using the
momentum transfer collision cross sections to confirm the
expectation that the resulting mobilities are within a maximal
relative deviation of ±2% from the exact results [4]. Relative
deviations between Monte Carlo mobilities for ions in the
ground state 2P3/2 calculated by using the differential collision
cross sections obtained from Gadéa and Paidarová’s [17]
potential curves and the corresponding momentum transfer
collision cross sections are displayed for various reduced
electric fields (E/N) in Fig. 17. This figure shows that the
relative deviation between reduced mobilities calculated using
the differential cross section and the momentum cross section
does not exceed ±2%. This maximum deviation remains valid
for all other potentials as well as for the 2P1/2 state. Moreover,
the use of the momentum transfer collision cross sections
rather than the differential ones reduces the computation time
by at least of two orders of magnitude.

V. CONCLUSIONS

Collision cross sections have been calculated using a close
coupling quantum method from different ab initio interaction
potentials, with the inclusion of the spin-orbit interaction, for
Ar+ ions, either in the ground 2P3/2 state or in the metastable
2P1/2 state, colliding with Ar. The corresponding ion transport
coefficients have further been calculated using an optimized
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Monte Carlo code and compared to available experimental re-
sults. The agreement is very good which clearly demonstrates
that it is possible to compute ab initio transport properties
with high accuracy. The best agreement between theory and
experiment has been found for the Gadéa and Paidarová’s [17]
or Whitaker et al.’s [16] electronic potential curves. In the
two cases, the minimum average relative errors between our
calculations and experimental data of Helm and Elford [11]
and Hegerberg et al. [12] have been found, respectively, less
than 0.2% and 0.6%, which can presumably be considered as
the most accurate experimental results. This may presumably
lead us to a conclusion that the two sets of experimental data
may be considered as the most accurate The transversal and
longitudinal diffusion coefficients have been obtained from
the Gadéa and Paidarová’s and Whitaker et al.’s interaction
potential curves within the error bars of available experimental
results. Therefore, the interaction potential curves of Gadéa

and Paidarová’s or Whitaker et al.’s will be used in the
diatomic-in-molecules (DIM) model, in a forthcoming work,
to study the Ar2

+/Ar interaction system and to obtain the
corresponding ion transport data. Moreover, it has been shown
that the spin change processes do not have a significant
influence on the ion transport coefficients obtained both for
the ground state ions (2P3/2) and metastable ions (2P1/2).
Ion transport coefficients have also been calculated from an
approximate approach using the momentum transfer collision
cross sections. It has been shown that this approximation
leads to mobility results with a maximal deviation of ±2%
from the exact ones, in agreement with a previous study [4].
However, a gain of a factor larger than 100 in computing
time has been observed in the former case. Therefore, the
approach based on the momentum transfer cross sections
can be considered as an interesting approximation for further
studies.
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