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A previously developed model for the Rayleigh-Taylor instability at an interface between an elastoplastic solid
and a viscous fluid [Piriz, Sun, and Tahir, Phys. Rev. E 88, 023026 (2013)] has been used for calculating the time
evolution of the perturbations in terms of the mechanical properties of the solid and the liquid, as well as of the
initial amplitude ξ0 and the wavelength λ of the perturbation. Four kinds of possible evolution are found: two
stable and two unstable, depending on their positions in the space of parameters (ξ0,λ). All of them present some
features that are independent of the solid properties and that are determined only by the liquid viscosity.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) in accelerated solids
was first considered by Miles in 1966 by means of an
approximate theoretical analysis [1]. Since then, numerous
theoretical, numerical, and experimental investigations have
been performed [2–15]. The interest in this problem has grown
in the last decade mainly because of its application as a tool
for determining mechanical properties of solids at the high
strains and high strain rates that can be achieved in experiments
driven by intense laser pulses [16–22]. These experiments have
allowed for extending the pioneering work by Barnes et al.
performed with high explosives [3,4]. In addition, the RTI in
solids is of relevance in geophysics as it plays a role in the
thickening of the lithosphere beneath mountain belts [23–26],
as well as in astrophysics as it seems to be present in starquakes
occurring in slowly accreting neutron stars [27].

On the other hand, the RTI in solids is also of relevance
for the design of some experiments on high-energy-density
matter (HEDM) such as the Laboratory Planetary Sciences
(LAPLAS) experiment planned in the framework of the
Facility for Antiproton and Ion Research (FAIR) presently
under construction at Darmstadt (Germany) [28–36]. LAPLAS
consists of the implosion of a thick W or Ta cylindrical
shell driven by an intense heavy-ion beam with a ring-shaped
focal spot. The tamped expansion of the annular region (the
absorber) heated by the ion beam drives the implosion of
the internal layers (the pusher) leading to the low-entropy
compression of a sample material that is placed in the axial
region. In the course of the heating process the absorber region
is melted while the pusher remains in the solid state. Thus
during the acceleration phase it can be considered that the
absorber is a viscous liquid and that the pusher is a solid with
elastoplastic material properties.
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The LAPLAS conditions are expected to be similar to those
present in magnetically imploded liners for which the external
layers can be melted depending on the intensity and time
history of the driving electrical current [37,38]. In both cases, a
solid-liquid imploding interface is generated that is susceptible
to being affected by the onset of the Rayleigh-Taylor instability
[3,4,16–22,39–47].

At this type of interface the RTI has previously been
considered only for the case in which the solid is perfectly
elastic [42,43]. Additionally, we have recently studied the
RTI at an elastoplastic-solid–viscous-liquid interface, but we
restricted ourselves to the problem of finding the stability
region as it is determined by the initial amplitude ξ0 and the
wavelength λ of the perturbations, as well as by the mechanical
properties of the solid and the liquid given by the respective
rheological models [48]. However, the complete solution
of the problem providing the different stable and unstable
evolutions of the perturbation amplitude is necessary for the
better understanding and design of experiments on HEDM, as
well as for its application to the analysis of experiments for
determining the mechanical properties of solids under extreme
conditions. In particular, the case under consideration in this
work involving the presence of a viscous liquid may indicate a
way for using the RTI also for the experimental determination
of the viscosity of melted metals at megabar pressures and
temperatures of a few thousand kelvin. The viscosity of liquid
metals under such conditions is considered as one of the
most important and least known parameters in geophysics and
planetary sciences [49–53].

In this work we use the model of Ref. [48] for obtaining
explicit analytical solutions that describe the linear evolu-
tion of the perturbation amplitude in the different stable
and unstable regimes. Such regimes are determined by the
stability boundary which depends on the initial amplitude and
wavelength of the perturbation, and on the material properties
of the solid and the liquid. The model is expected to be
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useful in conceiving a new experiment for the measurement
of the viscosity of liquid metals under high-energy-density
conditions. In addition, although it deals with the RTI in planar
geometry it can be used to understand some aspects of the
LAPLAS experiment related to the instability in the presence
of a liquid metal pushing an elastoplastic solid.

II. FORMULATION OF THE PROBLEM AND the
PHYSICAL MODEL

The physical situation is the same as described in Ref. [48],
in which we have an incompressible solid plate of density
ρ2 thick enough so that it can be considered to occupy the
complete half space y < 0. This assumption requires that the
plate thickness h is such that kh � 1, where k = 2π/λ is
the perturbation wave number. In the same manner, the half
space y > 0 is filled with an incompressible liquid of density
ρ1 < ρ2.

For the constitutive properties of the liquid we assume that
it is a Newtonian fluid characterized by a dynamical viscosity
μ [42–44]. For the solid we assume that it can be described by a
nonlinear Pandlt-Reuss model with von Mises stress criterion
that is characterized by a constant shear modulus G and a
constant yield strength Y [46,47,53,54]. This model provides
a suitable expression for the deviatoric part of the stress tensor
Sij that has been derived in Ref. [47] by considering an
irrotational perturbed velocity field [vx = ξ̇ (t)eky cos kx, and
vy = ξ̇ (t)eky sin kx]. In particular, the normal component Syy

is given by

Syy =
{

2kGξeky sin kx if ξ � ξp,

1√
3
Y sin kx if ξ � ξp.

(1)

As discussed in Refs. [46–48], we also consider that the
solid has been pushed and accelerated by the fluid for a very
long time until the time t = 0, with a constant and uniform
pressure p0 applied on the interface (y = 0) so that, at t � 0,
the interface has an acceleration �a = −gey (g = p0/ρh).
Then, at t = 0, a ripple δp = p0(ξ0/h)e−k|y| sin kx is super-
posed on the uniform pressure p0. Although this approach is
entirely equivalent to the more usual one considering a uniform
pressure at t = 0 and an initial corrugation ξ0 on the interface, it
allows for a more realistic description of the situation expected
in the LAPLAS experiment. In fact, a nonuniform pressure will
be generated at the interface by the irradiation nonuniformities
produced in creating an effective annular focal spot by a rf
wobbler system that will rotate the ion beam [55–57].

On the other hand, Eq. (1) shows that the onset of the plastic
flow occurs first at y = 0 where the maximum deformation
takes place. Then, as the perturbation grows, the yielded
region progresses toward the solid interior (y � 0). By keeping
in mind that we are dealing with the average motion of the
region affected by the instability and that it expands over a
region with thickness of the order of k−1, we can expect that
the onset of plastic flow will not affect the RTI until this entire
solid region has yielded [47]. Therefore, Eq. (1) is evaluated
at y ≈ −k−1 and hereafter we will take eky ≈ 1/3.

With the previous assumptions the time evolution of the
perturbation amplitude ξ (t) has been found to be described by

the following differential equation [48]:

ξ̈ + 2μk2

ρ2 + ρ1
ξ̇ − AT kg(ξ + ξ0) = −

⎧⎨
⎩

2k2G
ρ2+ρ1

ξ for ξ � ξp,

√
3Yk

ρ2+ρ1
for ξ � ξp,

(2)

where AT = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number, ξp =√
3Y/(2kG) is the perturbation amplitude when the transition

from the elastic to the plastic regime takes place (the EP
transition), and the overdots indicate time derivatives. The
reader is referred to Ref. [48] for more details about the
derivation of Eq. (2) (see also Refs. [41,43–47]). The initial
conditions for the previous equation are ξ (0) = ξ̇ (0) = 0.

It is convenient to rewrite Eq. (2) by introducing the
following dimensionless variables:

z = ξ

ξ0
, τ = t

√
AT kg. (3)

Thus Eq. (2) reads

z̈ + 2Dż =
{

1 − �z for z � zp,

z − X for z � zp,
(4)

where we have used the following definitions:

� = λ̂−1 − 1, X = ξ̂−1 − 1, D = D0

λ̂3/2
, (5)

and

λ̂ = (ρ2 − ρ1)gλ

4πG
, ξ̂ = (ρ2 − ρ1)gξ0√

3Y
,

(6)

D0 = μg

2
√

2

√
AT (ρ2 − ρ1)

G3
.

In addition, we have

1 − �zp = zp − X, zp = λ̂

ξ̂
, (7)

and the corresponding initial conditions read

z(0) = ż(0) = 0. (8)

In order to solve Eq. (4) we introduce the following
transformations:

x1 = (1 − �z)eDτ for z � zp, (9)

x2 = (z − X)eDτ for z � zp. (10)

Thus, the two branches of Eq.(4) transform as follows:

ẍ1 = (D2 − �)x1 for z � zp, (11)

ẍ2 = (1 + D2)x2 for z � zp, (12)

and these equations must satisfy the following conditions:

x1(0) = 1, ẋ1(0) = D, (13)

x1(τp) = x2(τp) = xp, (14)

ẋ1(τp) = ẋ1p, ẋ2(τp) = ẋ2p, (15)

where τp is the time when the EP transition takes place.
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A. Stability and EP transition boundaries

The boundaries for the stability and for the EP transition
were obtained in Ref. [48] and here we will briefly review
the main results in order to reference them in the following
paragraphs with a consistent notation.

For determining the stability boundary we have to take
into account that if the interface is stable the amplitude z(τ )
must have a maximum at a certain time τ = τm. Therefore, we
must have ż(τm) = 0 and z̈(τm) � 0. If instead z̈(τm) � 0 the
extreme will be an inflection point and the interface will be
unstable. Therefore, the condition for marginal stability that
determine the instability threshold reads [46,47]

ż
(
τ th
m

) = z̈
(
τ th
m

) = 0, (16)

where the index “th” indicates that we are considering
solutions that are marginally stable so that they are lying on the
instability threshold, and τ th

m is the instant when such solutions
achieve the maximum perturbation amplitude.

As we can see from Eq. (4), the conditions for marginal
stability are never satisfied for λ > 1 (z � 0), and therefore the
interface will be unstable for any value of the dimensionless
amplitude ξ̂ , as happens for purely elastic solids [29,42,47].
This is because, for λ > 1, the buoyancy force (ρ2 − ρ1)gξ

always overcomes the mechanical force Syy for any value of
ξ .

We start with the branch for z � zp, and upon integration
of Eq. (11) we get

ẋ1 = −
√

(D2 − �)x2
1 + �, (17)

where the negative sign is taken because for solutions lying on
the stability threshold we must have z � 0, ż = 0, and z̈ � 0.
Therefore, from Eq. (4) for z � zp we see that 1 − �z � 0
and, thus, ẋ1 � 0.

Now, by integrating Eq. (17) from τ = 0 to τ = τ th
p (τ th

p is
the instant when the marginally stable solution undergoes the
transition to the plastic regime), and then taking into account
Eq. (14), we obtain

τ th
p = − 1√

� − D2

[
sin−1

(√
� − D2

�
x th

p

)

− sin−1

(√
� − D2

�

)]
. (18)

By proceeding in a similar manner with the branch for
z � zp, we perform a first integration of Eq. (12):

ẋ2
2 = (

ẋ th
2p

)2 + (1 + D2)
[
x2

2 − (
x th

p

)2]
, (19)

where we have taken into account Eqs. (13) and (14). Since
the solutions lying on the instability boundary must satisfy
Eqs. (16), it turns out from Eq. (4) (for z � zp) and from the
derivative of Eq. (12) that x2(τ th

m ) = ẋ2(τ th
m ) = 0. Then Eq. (19)

yields

ẋ th
2p = −x th

p

√
1 + D2. (20)

By evaluating the derivative of Eq. (9) at τ = τ th
p and using

Eqs. (17) and (20), we get

x th
p = −

√
λ̂

1 + 2D(D + √
1 + D2)

. (21)

Since from Eq. (9) we have x th
p = [1 − �(ξ̂th/λ̂)]eDτ th

p , then
Eq. (21) yields the following equation for the instability
threshold:

ξ̂th = 1 − λ̂

1 − x th
p e−Dτ th

p

, (22)

with τ th
p given by Eq. (18).

In a similar manner, we can find the boundary for the
EP transition by taking into account that it occurs when
the maximum amplitude ze

m of the purely elastic oscillations
(for z � zp) becomes equal to zp at the transition time τe:
ze
m = zp(τe) = ξ̂ep/λ̂. Therefore, z(τe) = ze

m and ż(τe) = 0,
and the derivative of Eq. (9) yields

ẋ1e = ẋ1(τe) = x1eD = [1 − �(ξ̂ep/λ̂)]eDτe , (23)

and combining this equation with Eq. (17) evaluated at τ = τe

we find that x1e = −1. On the other hand, the integral of
Eq. (17) between τ = 0 and τ = τe gives the following
expression for τe:

τe = 2√
� − D2

sin−1

(√
� − D2

�

)
. (24)

Thus, from Eq. (23) the boundary for the EP transition is given
by the following equation:

ξ̂ep = 1 − λ̂

1 + e−Dτe
. (25)

Taking into account the definition of D by Eq. (5) and the
expressions for τ th

p and τe given respectively by Eqs. (18)
and (24), Eqs. (22) and (25) give respectively the instability
threshold and the boundary for the EP transition as the
functions ξ̂th(λ̂) and ξ̂ep(λ̂) with D0 as a parameter.

These two boundaries are represented in Fig. 1 for different
values of D0 (0, 0.05, 0.5, and 5). As noticed in Refs. [46–48],
ξ̂ep � ξ̂th always, and the two boundaries become the same in
the limit of high viscosity D0 � 1, so that ξ̂∞

ep = ξ̂∞
th = 1 − λ̂.
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FIG. 1. (a) Boundary for the EP transition, and (b) stability region,
for different values of the dimensionless viscosity D0. D0 increases
in the curves from bottom to top.
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B. Time evolution of the perturbation amplitude

We can obtain the linear growth of the RTI upon integration
of Eq. (4). For this, we first integrate the transformed Eq. (11)
for z � zp with the initial conditions given by Eq. (13). Then,
we invert the transformation given by Eq. (9) to find z(τ ) for
this branch. We proceed in the same manner with Eq. (12)
for the branch z � zp, with the conditions given by Eqs. (14)
and (15) to get x2(τ ), and then we invert the transformation of
Eq. (10) to obtain z(τ ) for the other branch.

The resulting time evolution z(τ ) will depend on the parame-
ters ξ̂ , λ̂, and D0 and, according to the position in the space
(ξ̂ ,λ̂) shown in Fig. 1 (see also Fig. 2), we can have two kinds
of stable solution and two kinds of unstable solution.

1. Stable solutions

The two stable cases correspond to λ̂ � 1, for ξ̂ � ξ̂ep and
for ξ̂ep � ξ̂ � ξ̂th, respectively:

z(τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
�

{
1 − e−Dτ

[
cos(

√
� − D2 τ ) + D√

�−D2 sin(
√

� − D2 τ )
]}

, τ � τp,

X + 1
2e−Dτ

[(
xp + ẋ2p√

1+D2

)
e
√

1+D2(τ−τp) + (
xp − ẋ2p√

1+D2

)
e−√

1+D2(τ−τp)
]
, τp � τ � τm,

zm − X−zm

�

[
1 − e−D(τ−τm)

(
cos[

√
� − D2(τ − τm)] + D√

�−D2 sin[
√

� − D2(τ − τm)]
)]

, τ � τm,

(26)

where xp = (1 − �zp)eDτp , and ẋ2p is obtained from Eqs. (9)
and (10). For this last purpose, we take the derivatives of those
equations, evaluate them at τ = τp, and eliminate żp from the
two resulting expressions [using also Eq. (17)]:

ẋ2p = 1

�

[
xpD(1 + �) +

√
(D2 − �)x2

p + �
]
. (27)

In addition, τp is given by an implicit equation obtained
by evaluating the first branch of Eq. (26) at τ = τp when
z = zp = λ̂/ξ̂ :

λ̂

ξ̂
= 1

�

{
1 − e−Dτp

[
cos(

√
� − D2 τp)

+ D√
� − D2

sin(
√

� − D2 τp)

]}
. (28)
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 th

 ep

D0 = 0.05

 th  ep,

FIG. 2. Stability region for the dimensionless viscosity D0 =
0.05. The boundary for the EP transition is indicated by the dotted
line. Dots correspond to typical cases represented in Figs. 3–5.

On the other hand, in Eq. (26) τm is the time at which
the plastic branch of Eq. (26) (τp � τ � τm) achieves the
maximum amplitude zm = z(τm) and then for τ � τm, the
evolution of the amplitude goes back to the purely elastic
regime in which, provided that D2 < �, it remains oscillating
around a maximum with damped oscillations [curves (a) and
(b) in Fig. 3]:

τm = τp + 1

2
√

1 + D2

× ln

{
(xp

√
1 + D2 − ẋ2p)(

√
1 + D2 + D)

(xp

√
1 + D2 + ẋ2p)(

√
1 + D2 − D)

}
. (29)
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  ep
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FIG. 3. Stable solutions in the purely elastic regime (λ̂ � 1
and ξ̂ � ξ̂ep). Curves (a) and (b) correspond to oscillatory damped
solutions (D2 < �), and curve (c) corresponds to an overdamped
solution (D2 > �).
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FIG. 4. Stable solutions in the plastic regime (λ̂ � 1 and ξ̂ep �
ξ̂ � ξ̂th).

Instead, if D2 > �, then the amplitude goes to its maximum
asymptotically in an overdamped growth [curve (c) in Fig. 3].
In this case, the amplitude grows up to a maximum zmax =
λ̂/(1 − λ̂) which is always less than zp, so that the overdamped
stable growth remains always in the purely elastic region.

The triangles in Fig. 2 (full and empty) indicate the typical
loci of the two kinds of stable solution in the space (ξ̂ ,λ̂). In

Fig. 3 we show typical stable solutions in the purely elastic
region (ξ̂ � ξ̂ep) corresponding to the full triangles in Fig. 2. In
this region the time evolution of the perturbation amplitude is
independent of ξ̂ and the amplitude of the oscillations for
τ > τm increases with λ̂ up to infinity for λ̂ = 1. Curves
(a) and (b) represent two typical cases for λ̂ = 0.3 and 0.2,
respectively, and for D0 = 0.05. In this region we may also
have overdamped solutions when D2 > � [curve (c) for
λ̂ = 0.3 and D0 = 0.5].

In Fig. 4 we show two typical examples of the other kind
of stable solution corresponding to the plastic region (ξ̂ep �
ξ̂ � ξ̂th) for λ̂ = 0.3 and D0 = 0.05. Curve (a) corresponds to
a case close to the EP transition, and curve (b) to one that is
close to the instability threshold. As we can see the maximum
amplitude of the perturbation increases as we approach the
instability threshold but the amplitude of the elastic oscillations
occurring for τ � τm decreases. The general behavior of the
stable solutions is qualitatively similar to that found for an
elastoplastic-solid–inviscid-fluid interface [46,47], except for
the viscous damping as e−Dτ of the elastic oscillations after
τm.

2. Unstable solutions

As in the case of Refs. [46,47] involving an inviscid fluid,
we have two kinds of unstable solution for values of (ξ̂ ,λ̂)
lying beyond the stability boundary as in the cases indicated
in Fig. 2 with full and empty circles. One case corresponds to
λ̂ � 1 and ξ̂ � ξ̂th, like the two examples indicated in Fig. 2
with empty circles. This kind of unstable solution is described
by the following equation (λ̂ � 1):

z(τ ) =

⎧⎪⎨
⎪⎩

1
�

{
1 − e−Dτ

[
cos(

√
� − D2 τ ) + D√

�−D2 sin(
√

� − D2 τ )
]}

, τ � τp,

X + 1
2e−Dτ

[(
xp + ẋ2p√

1+D2

)
e
√

1+D2(τ−τp) + (
xp − ẋ2p√

1+D2

)
e−√

1+D2(τ−τp)
]
, τ � τp.

(30)

In a similar manner, the other kind of unstable solution occurring for λ̂ � 1 (� � 1) is given by the following expression:

z(τ ) =

⎧⎪⎨
⎪⎩

1
�

{
1 − e−Dτ

[
cosh(

√
D2 − � τ ) + D√

�−D2 sinh(
√

D2 − � τ )
]}

, τ � τp,

X + 1
2e−Dτ

[(
xp + ẋ2p√

1+D2

)
e
√

1+D2(τ−τp) + (
xp − ẋ2p√

1+D2

)
e−√

1+D2(τ−τp)
]
, τ � τp.

(31)

In Fig. 5 we show two typical examples for λ̂ = 0.3,
corresponding to the empty circles in Fig. 2. One is for
ξ̂ = 0.58, which is above but close to the instability threshold
[curve (a)], and the other one for the case with ξ̂ = 0.78 [curve
(b)] relatively far from the threshold. We can see that after
an initial common elastic phase of growth, the growth rate
becomes larger in the latter case. However, the asymptotic
growth rate σ∞ (for τ → ∞) turns out to be the same. In fact,
from Eq. (30), we get

ξ∞
ξ0

= 1

2

(
xp + ẋ2p√

1 + D2

)
e−√

1+D2τp eσ∞τ , (32)

where

σ∞ =
√

1 + D2 − D. (33)

This growth rate is the same as the one corresponding to
the evolution of the RTI in a pure viscous fluid. That is,
the asymptotic growth rate does not contains any information
regarding the mechanical properties of the solid. This infor-
mation, however, remains in the effective initial amplitude
= ξ0

2 (xp + ẋ2p√
1+D2 )e−√

1+D2τp .

The same happens with the unstable solutions for λ̂ � 1, as
we can see from Eq. (31) for τ → ∞. Two examples of the
last kind of unstable solution, corresponding to the full circles
in Fig. 2 are shown in curves (c) and (d) of Fig. 5 for ξ̂ = 0.3
and λ̂ = 1.1 and 1.5, respectively.

Eventually, for cases placed far enough from the sta-
bility region (ξ̂ � ξ̂th, λ̂ � 1) all the unstable solutions
have a growth rate that approaches the classical value√

AT kgσ∞ [Fig. 5, curve (e)]. A similar behavior was
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FIG. 5. Unstable solutions. (a) and (b) λ̂ � 1 and ξ̂ � ξ̂th. (c) and
(d) λ̂ � 1. (e) Classical viscous case.

observed for elastoplastic-solid–inviscid-fluid interfaces in
Refs. [46,47].

It is important to notice that both stable and unstable cases
present particular features that depend only on the viscosity of
the liquid phase, independently of the mechanical properties
of the elastoplastic solid. Thus, they could be used as a tool
for measuring the viscosity of melted metals under extreme
conditions relevant to geophysics and planetary sciences [49–
52]. In fact, the elastic oscillations of the stable solutions taking
place after the maximum amplitude zm are damped as e−Dτ so
that this damping is determined only by the liquid viscosity. In
the same manner, the asymptotic linear growth rate of all the
unstable solutions given by Eq. (33) does not depend on the
solid’s mechanical properties. Thus, provided that the linear
growth regime is accessible to experimental measurements,
the RTI could be used for determining the viscosity of melted
metals in a manner similar to the way it is currently used for
evaluating the yield strength of solids.

III. CONCLUDING REMARKS

We have used a previous model for the linear growth of the
RTI at an interface between an elastoplastic solid and a viscous

liquid to calculate the time evolution of the perturbation
amplitude in different regions of the space parameters (ξ̂ ,λ̂)
and to evaluate the effect of the liquid viscosity on them. The
understanding of the behavior of the RTI at such types of inter-
face is required for analysis of the performance of the LAPLAS
experiment at the FAIR facility. In addition, LAPLAS has
recently been included in the research program that will be un-
dertaken in the new Heavy Ion Facility (HIAF) under planning
at the Institute of Modern Physics of the Chinese Academy of
Sciences.

We find that both stable and unstable solutions present fea-
tures that depend exclusively on the liquid viscosity, apart from
the externally imposed experimental conditions. Therefore,
they can be used as a tool for the experimental determination
of the viscosity of liquid metals under conditions that are
of great relevance to geophysics and planetary sciences, in
a similar manner to the way the RTI is currently used for
evaluating solid mechanical properties. Namely, the stable
time evolutions of the perturbation performs purely elastic
oscillations after achieving its maximum amplitude, and these
oscillations are damped only because of the liquid viscosity.
Certainly, the linear regime that we have studied here may not
be easily accessible to experimental measurements. However,
in Ref. [22] experiments on the RTI in solids are reported in
which sinusoidal corrugations with ξ0 = 0.6 μm and λ = 60
and 100 μm were machined on a vanadium plate, so that
kξ0 � 0.06. Therefore, the conditions for the realization of RTI
experiments in the linear regime for measuring the viscosity as
proposed in this work may not be beyond present experimental
possibilities.

On the other hand, we can see that all the unstable time
evolutions grow with an asymptotic growth rate corresponding
to an interface between an ideal fluid and a viscous liquid given
by Eq. (33). A similar behavior was observed in Refs. [46,47]
for the RTI at the interface between an elastic solid and ideal
fluid for which the asymptotic growth rate was equal to

√
kg,

as in the classical case. This feature could indicate that the
mechanical properties of the solid will not affect the late RTI
evolution in the nonlinear regime, except for the memory saved
in the “effective” initial amplitude in Eq. (33).
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