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Anomalous diffusion for inertial particles under gravity in parallel flows
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We investigate the bounds between normal or anomalous effective diffusion for inertial particles transported by
parallel flows. The infrared behavior of the fluid kinetic-energy spectrum, i.e., the possible presence of long-range
spatiotemporal correlations, is modeled as a power law by means of two parameters, and the problem is studied
as a function of these latter. Our results, obtained in the limit of weak relative inertia, extend well-known results
for tracers and apply to particles of any mass density, subject to gravity and Brownian diffusion. We consider
both steady and time-dependent flows, and cases of both vanishing and finite particle sedimentation.
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I. INTRODUCTION

The concept of particle diffusion is ubiquitous in dynamical
systems and fluid mechanics [1–3]. Most classical works [4]
dealt with Lagrangian tracer particles, but some studies [5–8]
have also focused on particles endowed with inertia (relative
to the fluid), such as drops in gases, bubbles in liquids, and
more generally aerosols in fluids. In Ref. [9] this problem was
attacked in the phase space.

If a statistical description is introduced, whenever the
central-limit theorem holds a normal diffusion process takes
place, i.e., the mean square displacement of particles follows

〈|r(t) − r(0)|2〉 ∼ tγ (1)

with γ = 1, at long times (and thus large scales). The
proportionality coefficient is named eddy diffusivity, and its
value can be by many orders of magnitude different (typically,
larger) than its Brownian or molecular counterpart. It is
however possible to find exceptions to this normal picture, in
which case γ �= 1 [10–13] and the term anomalous diffusion
is used. Namely, one can have subdiffusion—due to trapping
processes—if γ < 1, or superdiffusion if γ > 1. In this
latter situation, one finds a divergence in the eddy-diffusivity
coefficient, or in its correspondent effective-diffusivity tensor
if the full tensorial problem is investigated in the Eulerian
framework for the physical-space concentration.

The aim of the present work is to identify bounds separating
situations of normal or anomalous diffusion, for inertial-
gravitational-Brownian particles advected by a parallel flow,
which points always and everywhere in the same direction.
This task is performed in terms of the behavior of the fluid
velocity spectrum in the infrared region, i.e., very small
wave numbers or frequencies in the Fourier space, which
describe the possible presence of long-range spatiotemporal
correlations that in turn may help in breaking the process of
normal diffusion. Our investigation takes into account particle
inertia, gravity, Brownian diffusivity, and added mass (it is thus
valid for any ratio of the mass densities), and can be divided
in different chapters according to three main discriminating
factors: first, tracers or weakly inertial particles; second,
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vanishing or finite sedimentation in the limit of small inertia;
third, steady or time-dependent flows.

The paper is organized as follows. In Sec. II we recall
the relevant equations for the problem under consideration
from the existing scientific literature. Section III is devoted
to present the bounds on the parameters for the presence or
absence of anomalous diffusion. Conclusions and perspectives
follow in Sec. IV. The Appendix shows the regularization
procedure and the relation between the scaling exponents.

II. EQUATIONS

Let us consider a dilute suspension of identical, spherical
inertial particles (of radius R and mass density ρp), subject to
the gravity acceleration g and to the Brownian diffusivity κ ,
advected by an incompressible d-dimensional (d = 2,3) zero-
mean fluid flow of mass density ρf and kinematic viscosity
ν. Under some simplifying approximations (discussed, e.g.,
in Ref. [8] and references therein), their position X (t) and
covelocity V(t) ≡ Ẋ (t) − βu[X (t),t] evolve according to
[14,15]:

Ẋ (t) = V(t) + βu[X (t),t]

V̇(t) = −V(t)−(1−β)u[X (t),t]

τ
+ (1 − β)g +

√
2 κ

τ
η(t),

(2)

where η(t) is the standard white noise and τ = R2/3νβ is the
Stokes response time. Here, we have defined the adimensional
coefficient β ≡ 3ρf/(ρf + 2ρp) based on the density ratio,
ranging from β = 0 for very heavy particles to β = 3 for
very light ones (with β = 1 for neutrally-buoyant particles,
such as tracers). We can also introduce the Stokes number
St ≡ τ/(�/U ) − � and U being the characteristic length and
speed scales of the carrier flow, which measures the importance
of the relative inertia between particles and fluid. Notice that
the real particle velocity Ẋ (t) = V(t) + βu[X (t),t] equals
the covelocity only for very heavy particles, while in the
other cases the discrepancy simply represents an easy way
to take the added-mass effect into account. The other two
relevant nondimensional numbers of the problem are due
to Péclet, Pe ≡ �U/κ , and to Froude, Fr ≡ U/

√
g�. In still

fluids, the particle bare settling velocity is w∗ = (1 − β)gτ

[= (1 − β)StFr−2, in units of U , along the vertical].
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Straightforward from (2), the generalized Fokker-Planck
(or Kramers, or forward Kolmogorov) equation for the phase-
space particle density ρ(x,v,t) reads [16–19]:{

∂

∂t
+ ∂

∂xμ

(vμ + βuμ) + ∂

∂vμ

[
(1 − β)uμ − vμ

τ

+ (1 − β)gμ

]
− κ

τ 2

∂2

∂vμ∂vμ

}
ρ = 0. (3)

Let us denote with L the differential operator specified by
the curly brackets in (3), so that the equation becomes
Lρ(x,v,t) = 0 endowed with the appropriate initial condition
ρ(x,v,0). In the presence of a flow, the particle terminal
velocity is simply the particle velocity averaged on the phase
space with this weighting density,

w ≡
∫ T

0

dt

T

∫
dx

∫
dv [v + βu(x,t)]ρ(x,v,t). (4)

We are now interested in analyzing the problem at a spatial
scale L 	 � and at a very long temporal scale, say 	 T ,
where T can be thought of as the typical advective time scale
�/U . By means of a multiple-scale expansion [20–22] in the
scale-separation parameter, ε ≡ �/L 
 1, it was shown in
Refs. [7,8] that, in the frame of reference moving with the
terminal velocity w, the large-scale, long-time behavior of the
particle concentration can be described by means of a diffusion
equation. Namely, introducing the slow variables X ≡ εx and
T ≡ ε2t [which are to be considered as independent from
the corresponding fast variables x and t , and become O(1)
only for very large values of these latter], and factorizing the
particle concentration as ρ(x,X,v,t,T ) = p(x,v,t)P (X,T ), it
was proved that the slow component P (X,T ) satisfies:

∂

∂T
P (X,T ) = Kλμ

∂2

∂Xλ∂Xμ

P (X,T ). (5)

The effective-diffusivity tensor K in (5) is given by

Kλμ = −
∫ T

0

dt

T

∫
dx

∫
dv [vμ + βuμ(x,t) − wμ]

× σλ(x,v,t) + symm.(λ ↔ μ), (6)

with the auxiliary vector σ in (6) satisfying the cell problem

Lσ (x,v,t) = − [v + βu(x,t) − w] p(x,v,t) (7)

endowed with vanishing initial condition σ (x,v,0) = 0. A
complete solution of the problem would thus require us to
solve (3) for ρ(x,v,t), to plug it into (4) in order to find the
correct frame of reference in which to investigate diffusion as
free from any ballistic degree of freedom [7], then to solve (7)
for σ (x,v,t), and finally to plug this latter into (6).

In Ref. [8] an expansion at small particle inertia was also
performed, i.e., when the inertial particles weakly deviate
with respect to the underlying fluid trajectories (St 
 1). The
diffusivity tensor was thus expressed through an expansion in
the Stokes number:

Kλμ = K
(0)
λμ + StK (1)

λμ + O(St2). (8)

A perturbative expansion in Pe was made in Ref. [10] in a
different asymptotics.

Now, two situations may emerge, according to the constitu-
tive relationship assigned between sedimentation and inertia.
Let us first consider the case where the nondimensionalized
bare settling velocity, w∗/U , vanishes for vanishing particle
inertia. For parallel flows uμ(x,t) = δμ1u(x2, . . . ,xd,t), it was
found in Ref. [10] (generalizing a result from Ref. [23]) that
the tracer limit K(0) of the eddy diffusivity can be expressed
as:

K
(0)
λμ = κ

[
δλμ + δλ1δμ1

∫
d �q

∫
dωU(�q,ω)

q2

ω2 + κ2q4

]
.

(9)

Here, U(�q,ω) is the energy spectrum density—with dimen-
sions (length/time)2×(lengthd−1 × time) = lengthd+1/time—
obtained via a Fourier transform in both time and the d − 1
spatial coordinates on which the flow depends [so that ω is
the angular frequency, and �q is the (d − 1)-dimensional wave
number vector, which obviously reduces to a scalar in the
two-dimensional case]. Note that we adopt a frame of reference
with the x1 axis pointing along the flow, therefore gravity is in
general not aligned with any of the—two or three—Cartesian
directions. As we focus on isotropic cases, the energy spectrum
density is alternatively defined as

U ′(q,ω) ∝ |�q|d−2U(�q,ω), (10)

in order to take the Jacobian factor into account, and
such that the kinetic energy per unit mass is equivalently∫
d �q ∫

dωU(�q,ω) = ∫
dq

∫
dωU ′(q,ω). Reference [8] further

showed that for this class of flows the leading correction K(1)

at small inertia is

K
(1)
λμ = δλ1δμ1

�

U

∫
d �q

∫
dωU(�q,ω)

(1−β)ω2+(3 − β)κ2q4

2(ω2 + κ2q4)
.

(11)
Notice that (11) is an inertial additive correction to (9) under
a perturbative scheme. If (9) converges and tracers diffuse
normally, a convergent (11) suggests that normal diffusion also
holds for inertial particles, while a divergent (11) may indicate
an inertia-driven anomaly. [We say “may indicate” and not
“does indicate” because a regularizing normalization cannot
be excluded for the full resummation (8).] If (9) diverges
and tracers diffuse anomalously, a convergent (11) means that
inertia does not change this picture at its leading order, while
no conclusion can be drawn a priori for a divergent (11) except
in some specific cases.

An alternative point of view consists in considering sedi-
mentation as a finite effect even for vanishing inertia, which is
the case when the nondimensional bare settling velocity keeps
finite for St → 0 [24]. In this case, for parallel flows, gravity
plays the role of a constant drift already at the zeroth order in
the Stokes number [8]:

K
(0)
λμ = κ

{
δλμ + δλ1δμ1

∫
d �q

∫
dωU(�q,ω)

× q2

[ω + (1 − β)τ g · q]2 + κ2q4

}
, (12)

where q = (0,�q) is a usual d-dimensional vector. This sweep-
ing effect makes the role of the inertial correction K(1) by far
less interesting in this case, therefore we will not investigate it.
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It is worth underlining that, while the activation of inertia for
vanishing sedimentation implies an additive correction (11)
to (9) (which thus remains important), here the activation of
a finite sedimentation means that (12) completely replaces
(9), so that the latter is not relevant any longer. This case
can be compared to the one investigated in Ref. [25] about
tracer diffusion in the presence of a large-scale sweeping
flow. The role of parallel streaming flows was also studied in
Ref. [26]. A finite sedimentation thus corresponds to a constant
large-scale flow, except for the fact that this latter is clearly
not originated from inertia. Its interplay with inertia, i.e., the
study of the leading impact of inertia on eddy diffusivity, could,
e.g., stem from the analysis of the aforementioned correction
K(1), which is not done here for the sake of simplicity. On
the other hand, a different picture could arise if a space-time-
dependent large-scale flow is added to the right-hand side of
(2), which might be interesting for applications in the realm of
large-eddy simulations. If this new component is concentrated
on spatial and temporal scales Sspat and Stemp, respectively, a
preasymptotic regime is then met when studying the problem
at scales 	 (�,T ) and 
 (Sspat,Stemp); a full homogenization
into a purely diffusive (normal or anomalous) problem—with
a consequent new renormalization of the eddy diffusivity into a
finite or infinite value—is generally possible when considering
scales sufficiently larger than (Sspat,Stemp) themselves.

III. ANOMALOUS DIFFUSION

Let us now consider the behavior of the particle effective
diffusivity as a function of the fluid velocity spectrum. The
crucial point is how the latter behaves near the origin, i.e., the
possible presence of long-range correlations in both the spatial
and the temporal domains. Notice that we are not interested in
the behavior at large wave number nor at high frequency, where
ultraviolet cutoffs will take place, but only in the infrared one.

It is worth noticing that the analysis of possible anomalies
here relies on the presence of a spatial velocity spectrum
unbounded in the infrared region, i.e., with wavelengths
extending to infinity. This poses two problems, namely the
definite nonperiodicity of the fluid flow under investigation,
and the impossibility of defining an observation length much
larger than any spatial scale possessed by the velocity field.
The first difficulty can be overcome by recalling that the
results of Refs. [8,10] also apply for nonperiodic but random
(stationary and homogeneous) velocity fields, by appropriately
reformulating the space-time integrals as statistical averages
[2]. The second point requires the use of a regularization
procedure, as explained in Ref. [10]: this is investigated in
the Appendix.

A. Steady flows

Let us start with the case of steady flows, for which the
temporal part of the spectrum is simply a centered Dirac δ. Let
us then assume a power-law form for the spatial part (isotropic
in the relevant d − 1 dimensions) with scaling exponent α, for
|�q| small enough, say |�q| < Q for a suitable Q:

U(�q,ω) ∼ |�q|αδ(ω). (13)

If the modified spectrum from (10) is used, then U ′(q,ω) ∼
|�q|α′

δ(ω) with

α′ = α + d − 2. (14)

See Ref. [27] for an interesting analysis of the role played by
velocity fields with power-law spectra in modeling turbulent
flows.

Our task now consists in replacing (13) into the expressions
of the eddy diffusivity tensor, namely in the K11 component,
and to study the behavior of the corresponding integrals for
small values of q. The smaller the exponent α, the heavier the
relevance of long-range spatial correlations, i.e., the higher the
probability of anomalous diffusion. The temporal integrals are
of course trivial because of the Dirac δ, therefore one can just
study the spatial form of the integrand with ω = 0.

1. Case of vanishing terminal velocity

In the case of vanishing terminal velocity, (9) reproduces
a well-known result [10]: in cylindrical/spherical coordinates,
the integral (whose Jacobian is ∝qd−2 and whose eventual
angular part is trivial) takes the form

κ

∫ Q

0
dq qd−2qα q2

κ2q4
∝

∫ Q

0
dq qα+d−4,

which exists for

α > 3 − d. (15)

Smaller values of α denote anomalous diffusion, namely a
superdiffusive behavior of the particles. Note that, here and
in what follows, the inequalities are strict, in the sense that
if the parameter exactly equals the bound then logarithmic
divergences (anomalies) occur. All these bounds can also be
found more elegantly and rigorously by means of the Mellin
transform, but here we prefer to present them in a more physical
and easier to interpret fashion.

The additive [see (8)] leading correction due to inertia, i.e.,
the integral

�

U

∫ Q

0
dq qd−2qα (3 − β)κ2q4

2κ2q4
∝

∫ Q

0
dq qα+d−2

from (11), gives a threshold

α > 1 − d, (16)

which is less restrictive than (15), because the right-hand side
1 − d is always smaller than 3 − d. In other words, for values
of α larger than 1 − d this is a finite correction to a finite
or infinite leading order, which makes no change in terms of
normality or anomaly. On the contrary, for smaller α this is
an infinite correction to an infinite leading order, therefore
no ultimate conclusion could be drawn a priori because one
might not exclude the possibility of having a renormalization
upon taking into account all the terms in expansion (8) (as
in asymptotic series); however, if we remind that anomaly is
more and more likely for smaller and smaller exponents α, we
can deduce that the activation of inertia does not modify the
anomalous character of diffusion in this range.
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2. Case of finite terminal velocity

For finite terminal velocity, on the other hand, one has
to study (12). [Let us exclude the cases where the flow is
aligned vertically (g ⊥ q ∀�q) or the particles are neutrally
buoyant (β = 1), which would exactly give back (9) and
thus (15).] The term at denominator containing gravity can
radically change the power balance in q as long as it is nonzero,
because for finite prefactors q2 	 q4 at small q, and thus the
term containing Brownian diffusivity may simply be seen as a
regularization [10] acting only to avoid zeros at denominator. It
is therefore crucial to investigate in detail the geometric aspect
of the problem, in particular if and how the integration domain
spans q’s perpendicular to g. In d = 2 this orthogonality never
occurs, because the integral is in fact one dimensional, and its
rewriting in radial (i.e., absolute-value) form,

κ

∫ Q

−Q

dq qd−2|q|α q2

(1 − β)2τ 2g2 cos2(π/2 − �)q2 + κ2q4

∼ 2κ

(1 − β)2τ 2g2 sin2(�)

∫ Q

0
dq qα,

simply results in twice an overall factor in terms of the
angle � �= 0 between the flow and the vertical direction.
The Brownian-diffusivity regularization at denominator can
safely be neglected, and the power balance for the consequent
integration on q shows an integrand proportional to qα+d−2 =
qα at small q. The bound is thus α > −1.

On the contrary, for d = 3, we introduce polar coordinates
(q,θ ) in the �q integration plane, which is by definition
perpendicular to the flow, and we denote with θ the integration
angle computed starting by the projection of g onto this plane.
The cosine of the angle between g and q, which appears
in the denominator of (12), is given by the standard for-
mula cos(�) cos(ϑ) + sin(�) sin(ϑ) cos(θ ) �→ sin(�) cos(θ ),
with variable 0 � θ < 2π and fixed � �= 0 and ϑ = π/2, this
latter being the angle between q and the flow. The actual
angular integration in θ must be performed keeping into
account the regularizing term because the contribution from
gravity vanishes at θ = π/2,3π/2:

κ

∫ Q

0
dq

∫ 2π

0
dθ qd−2qα

× q2

(1 − β)2τ 2g2 sin2(�) cos2(θ )q2 + κ2q4

= 2π

∫ Q

0
dq

qα√
(1 − β)2τ 2g2 sin2(�) + κ2q2

.

The result is that, after the angular integration, the integrand
for the radial integral behaves as qα+d−3 = qα for small
q. Consequently, we obtain the following boundary for the
presence of normal diffusion:

α > −1 (17)

(i.e., the same critical value for both the two- and the three-
dimensional case). Such a threshold is less restrictive than
(15), but it is important to point out that now inequality (17)
replaces (15), differently from the case of inertial particles
with vanishing terminal velocity, for which (16) is imposed on
an additive term which sums up with the one ruled by (15). The

upshot is that some anomalously diffusive cases for vanishing
settling in (15) (such as, e.g., for α = −1/2 for d = 2,3) can
be turned into normal-diffusion processes by the activation of
a finite sedimentation.

B. Unsteady flows

Let us now turn to the case of time-dependent flows, for
which (for |�q| < Q and |ω| small enough, say |ω| < � for a
suitable �) we impose a power-law form also in the temporal
part with scaling exponent ζ :

U(�q,ω) ∼ |�q|α|ω|ζ

[or equivalently U ′(q,ω) ∼ |�q|α′ |ω|ζ along with (14)].
The smaller the exponent ζ , the heavier the relevance

of long-time correlations, i.e., the higher the probability of
anomalous diffusion. Now also the time integrals in the
expressions of the eddy diffusivity must be performed with
care.

1. Case of vanishing terminal velocity

At the tracer level for vanishing sedimentation, (9), the
double integral now takes the form

κ

∫ Q

0
dq

∫ �

−�

dω qd−2qα|ω|ζ q2

ω2 + κ2q4
,

which is finite for

α > −1 − d & ζ > −1 & α + 2ζ > 1 − d. (18)

These three constraints define an open region in the upper
right part of the plane ζ vs α, as shown in Fig. 1. In any
case, comparing (18) with (15), the constraint on α is always

αα

ζζ −1−1

11

−1 − d−1 − d 3 − d3 − d

A

B

C

FIG. 1. Sketch of diffusion anomaly for tracers, in the plane ζ vs
α [see (18)]. Diffusion is normal only in meshed areas. The coarse-
mesh area A has normal diffusion also for steady flows, while in the
fine-mesh area B the normality is induced by the time dependence.
The union of A and of the gray area C indicates the normal zone for
time-independent flows [see (15)].
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less restrictive now: α > max{−1 − d,1 − d − 2ζ } (where the
right-hand side is always smaller than 3 − d if the constraint
ζ > −1 is satisfied). This means that the introduction of a time
dependence in the flow always causes anomalous diffusion
for tracers in the presence of strong temporal coherence
(ζ � −1), but otherwise contributes to reduce the ensemble
of anomalously diffusive situations, as long as ζ > −1. Such
a reduction vanishes for ζ → −1 (because there the constraint
becomes again α > 3 − d), and saturates to a maximum for
ζ � 1 (⇒ α > −1 − d).

The presence of inertia requires the study—as an additive
contribution—of the integral in (11),

�

U

∫ Q

0
dq

∫ �

−�

dω qd−2qα|ω|ζ 2(1 − β)ω2 + (3 − β)κ2q4

2(ω2 + κ2q4)
,

which (for β �= 1,3) establishes the following constraints for
the scaling exponents:

α > 1 − d & ζ > −1 & α + 2ζ > −1 − d. (19)

The situation is sketched in Fig. 2. Some of these bounds,
namely the last one, are overshadowed by stricter constraints
from (18). One can conclude that, neglecting higher orders
in the Stokes-number expansion, for time-dependent flows

situations do exist where tracers diffuse normally but inertial
particle can diffuse anomalously: an example is provided by
the case α = −d & ζ = 1,1 which satisfies (18) but not (19).
[We say “can diffuse” and not “do diffuse” because we cannot
exclude a regular renormalization for the full sum in (8).] In
other words, the introduction of inertia may induce anomaly,
but only for the cases ζ > 0, because then 1 − d − 2ζ < 1 − d

and the inertial bound on α in the first of (19) is more restrictive
than the tracer counterpart from the last of (18).2

2. Case of finite terminal velocity

As a last point, let us investigate the case of finite
sedimentation for time-dependent flows. Even excluding the
trivial cases of vertically aligned flow and of neutrally buoyant
particles, which would give back (9) and (18), here the picture
is complicated by the fact that the denominator of the integral
in (12) shows finite values of the parameters q and ω for
which the contribution in square brackets vanishes even for
d = 2, and the integrand thus changes its functional form (see
discussion above).

The result reduces to twice a double integral in the two-
dimensional case:

κ

∫ �

−�

dω

(∫ 0

−Q

dq qd−2|q|α|ω|ζ q2

[ω + (1 − β)τg cos(π/2 − �)|q|]2 + κ2q4

+
∫ Q

0
dq qd−2|q|α|ω|ζ q2

[ω + (1 − β)τg cos(π/2 + �)|q|]2 + κ2q4

)
= 2κ

∫ �

−�

dω

∫ Q

0
dq

qα+2|ω|ζ
[ω + (1−β)τg sin(�)q]2+κ2q4

.

For d = 3 the full triple integral is (with � denoting the real part):

κ

∫ �

−�

dω

∫ Q

0
dq

∫ 2π

0
dθ qd−2qα|ω|ζ q2

[ω + (1 − β)τg sin(�) cos(θ )q]2 + κ2q4

= 2π

∫ �

−�

dω

∫ Q

0
dq qα+1|ω|ζ�

{
1√

[(1 − β)τg sin(�)q]2 − (ω + iκq2)2

}
.

In both cases, we obtain the following constraints:

α > −3 & ζ > −1 & α + ζ > −2. (20)

As different comparisons are now possible, let us analyze sepa-
rately the effects of time dependence and finite sedimentation.

(i) Focusing on cases of particle finite sedimentation, let
us investigate the role of the flow time dependence, by
comparing (20) with (17). Both thresholds are independent
of the dimension: see Fig. 3. (Notice that both thresholds
would become dimension dependent if expressed in terms
of α′ rather than α.) If the temporal coherence is strong
(ζ � −1) the diffusion is always anomalous. As long as
ζ > −1, the activation of a time dependence in the flow
can transform anomalously diffusive cases into standard ones:
take, e.g., α = −2 and ζ = 1. The same remark had already
been made when comparing (18) with (15), and thus holds for
both vanishing and finite sedimentation. In other words, the
introduction of a time dependence always induces anomaly

in the presence of strong temporal coherence, but in the lack
thereof it reduces the width of the anomalous region.

(ii) Focusing on cases of time-dependent flows, let us
investigate the role of the particle sedimentation, by comparing
(20) with (18). The comparisons for d = 2 and d = 3 are
depicted in Figs. 4 and 5, respectively. [Notice that all the
thresholds not involving geometric arguments, (15), (16),
(18), (19), become independent of the spatial dimension if
expressed in terms of the modified spectral exponent α′.] The
activation of a particle finite sedimentation can both transform
anomalously diffusive situations into normal ones (take, e.g.,

1For the sake of simplicity, let us call it N-to-A situation.
2From (11), it appears that different bounds hold for the specific

cases β = 1 and β = 3. In the former case, the first bound in (19)
becomes α > −3 − d , and the aforementioned N-to-A situation is
no longer possible. In the latter case, the second bound in (19)
becomes ζ > −3, and the width of the normal region increases
because temporal correlations are less crucial in causing anomaly.
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αα

ζζ −1−1

00

11

−1 − d−1 − d 1 − d1 − d 3 − d3 − d

A

B

Z

Y

C

FIG. 2. Sketch of diffusion anomaly for inertial particles, in the
plane ζ vs α [see (19) coupled with (18)]. Diffusion is definitely
normal only in meshed areas. The coarse-mesh area A has normal
diffusion also for steady flows, while in the fine-mesh area B the
normality is induced by the time dependence. In lined areas either of
the integrals (18), (19) diverges; namely, in zone Z only the inertial
correction converges and anomaly is likely, while in zone Y only
the tracer contribution converges and an inertia-driven anomaly is
possible. The union of A and of the gray area C indicates the definitely
normal zone for time-independent flows [see (16) coupled with (15)].

α = −1 and ζ = −3/4, for d = 2,3), and vice versa (take,
e.g., α = −7/2 and ζ = 1, only for d = 3). Only the former
possibility had been remarked when comparing (17) with (15).
This means that, not only for time-independent flows but also

αα

ζζ −1−1

11

−3−3 −1−1

A

B

C

FIG. 3. Sketch of diffusion anomaly for particles with finite
terminal velocity, in the plane ζ vs α [see (20)]. Diffusion is normal
only in meshed areas. The coarse-mesh area A has normal diffusion
also for steady flows, while in the fine-mesh area B the normality is
induced by the time dependence. The union of A and of the gray area
C indicates the normal zone for time-independent flows [see (17)].

α

ζ −1

1

−3 −1 1

A
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FIG. 4. Sketch of diffusion anomaly for two-dimensional time-
dependent flows, in the plane ζ vs α: comparison between the
situations of vanishing and finite sedimentation [see (18) and (20),
respectively, i.e., Figs. 1 and 3 for d = 2]. The coarse-mesh area A
has normal diffusion in both cases, while in the fine-mesh area B
normality only holds for finite sedimentation (no vice versa occurs).

for two-dimensional time-dependent ones, the introduction of
a finite sedimentation reduces the width of the anomalous
region. However, for three-dimensional time-dependent flows,
a finite settling modifies the shape of the anomalous region, so
that areas of anomaly appear and others disappear.
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FIG. 5. Sketch of diffusion anomaly for three-dimensional time-
dependent flows, in the plane ζ vs. α: comparison between the
situations of vanishing and finite sedimentation [see (18) and (20),
respectively, i.e., Figs. 1 and 3 for d = 3]. The coarse-mesh area A
has normal diffusion in both cases, while in the fine-mesh area B
normality only holds for finite sedimentation, and vice versa in the
gray area C normality only holds for vanishing sedimentation.
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IV. CONCLUSIONS AND PERSPECTIVES

In the context of the transport of weakly inertial particles by
a parallel flow, we have investigated their effective diffusivity
to discriminate situations of normal or anomalous diffusion.
In particular, we have studied the role of long-range spatial
and temporal correlation in the fluid velocity spectrum, in
terms of two parameters that determine the infrared behavior
of the flow energy density. We have found different bounds
identifying regions of anomaly or lack thereof, according to
the properties of the particles (tracer or inertial), of the flow
(steady or time-dependent), and of the suspension as a whole
(vanishing or finite settling velocity).

An interesting comparison arises between the present work
and the formalism of fractional diffusion, where the equation
under consideration is not our (5) but rather

∂η

∂T η
P (X,T ) = D

∂�

∂X�
P (X,T ),

with real coefficients η,�, and suitable definitions of the
Caputo and Riesz-Feller derivatives [28–34]. The underlying
concept is that anomaly, in the sense of non-normality or non-
Gaussianity, can be thought of as stemming from a gray noise,
as opposed to the white noise corresponding to Brownian
motion and ordinary diffusion. This point is not tackled here.

In this work we have only focused on the eddy diffusivity,
i.e., the second-order moment of the particle dispersion.
It would be interesting to also investigate higher-order
moments, with the aim of understanding whether the
anomalous diffusion is weak or strong. Namely, this latter
adjective refers to the fact that not only the second moment
is not asymptotically proportional to time, but also that
higher moments exhibit different exponents, which cannot
be captured via a simple rescaling [12,13]. For instance, in
relation to particle dispersion in the terrestrial environment,
no explicit parametrization for non-Gaussian behavior seems
to be currently available in the state-of-the-art numerical
modeling of this problem in the atmosphere. This paper might
motivate new research toward this relevant direction.

One limitation of our work lies in the fact that its pertur-
bative spirit makes it impossible to understand what happens
when, in the small-inertia expansion truncated at the first order,
either or both integrals diverge. In particular, in some occasions
we could only assert that anomaly may arise due to this or that
effect, but these simple hints should be verified or confuted by
more in-depth analyses (using renormalization techniques) or
by numerical simulations of the particle dynamics. Therefore,
this paper represents a first step in the comprehension of
anomalous diffusion when different physical effects are taken
into account or neglected. In any case, we can assert that
bounds (15), (18), as well as (17), (20) if settling is considered
as independent of inertia, are exact results, and to our
knowledge the last three are original in the scientific literature.

On the other hand, we are now developing a Lagrangian
formalism to compute the effective diffusivity in parallel
Kolmogorov flows without resorting to small-inertia expan-
sions. In this way, at least for a specific class of flows, one
can aim at generalizing the present results to inertial particles
away from our perturbative limit of small Stokes number.

Numerical simulations seem to represent the main tool for
attacking nonparallel (for instance, cellular [8]) flows.
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APPENDIX: REGULARIZATION PROCEDURE
AND RELATION BETWEEN EXPONENTS

A power-law infrared spectrum denotes the presence of
excitations on scales arbitrarily large, which may put into
question the validity of the multiple-scale formalism. A reg-
ularization procedure [10] is then necessary, and is presented
here for the case of steady flows. This consists in introducing
an infrared cutoff length, Cspat, and in replacing [in the integrals
(9), (11)–(12)] the original spectrum U with

Ū(�q,ω) = U(�q,ω)H
(|�q| − C−1

spat

)
, (A1)

where H denotes the Heaviside step function, killing the wave
numbers smaller than the cutoff. The limit Cspat → ∞ is then

taken only after performing the integrals, all of the type
∫ Q

C−1
spat

.

This procedure has two important consequences. First, it
may represent a way to reproduce this problem numerically,
by studying the dependence of the (finite, for all finite Cspat)
eddy diffusivity on the cutoff length, and by performing the
simulations in a box of such—larger and larger—size.

Second, it is now possible to study the relation between
the exponents γ in (1) and α in (13). The key point is the
observation of the fact that the regime (1) is now expected at
scales much larger than � but sufficiently smaller than Cspat (po-
tentially extending back to infinity in the aforementioned limit)
[35–38], while at spatial scales 	 Cspat, and temporal scales,

t 	 t̄ ≡ C2
spat/κ, (A2)

a truly diffusive behavior holds:

〈|r(t) − r(0)|2〉 ∼ Kλλ(Cspat)t. (A3)

By equating the mean square separations from (1) and (A3)
at the crossover time t̄ in (A2), one gets:(

C2
spat

)γ ∼ K11(Cspat)C
2
spat. (A4)

The bounds (15)–(17) are now rephrased as K
(0)
11 ∝ C

−(α+d−3)
spat

for tracers (and K
(1)
11 ∝ C

−(α+d−1)
spat for the leading inertial

correction), and as K
(0)
11 ∝ C

−(α+1)
spat for finitely settling

particles. Substituting these relations into (A4), at the leading
order in the Stokes number one finally obtains

γ = 5 − d − α

2
(vanishing settling),

(A5)

γ = 1 − α

2
(finite settling),

which are valid only when α � 3 − d and α � −1
respectively, so that γ � 1.

Moving to unsteady flows, in principle one should modify
the regularization procedure for Ū in (A1) by introducing an
infrared cutoff Ctemp also in the frequency domain, but the
relation between γ and α,ζ is now more subtle than (A5) and
is not investigated here.
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