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Breakage of non-Newtonian character in flow through a porous medium:
Evidence from numerical simulation

J. Bleyer and P. Coussot
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We study the flow, through a model two-dimensional porous medium, of Newtonian fluids, power-law fluids,
and viscoplastic fluids in the laminar regime and with moderate or dominant effects of the yielding term.
A numerical technique able to take properly into account yielding effects in viscoplastic flows without any
regularization is used to determine the detailed flow characteristics. We show that as soon as the distance between
the disks forming the porous medium is sufficiently small, the velocity field and in particular the distribution
function of the velocity of these different fluids in a wide range of flow regimes are similar. Moreover, the volume
fraction of fluid at rest is negligible even at low flow rate. Thus the non-Newtonian character of a fluid flowing
through such a complex geometry tends to be broken. We suggest that this is due to the fact that in a flow through
a channel of rapidly varying cross section, the deformation, and thus the flow field, is imposed on the fluid, a
situation that is encountered almost everywhere in a porous medium. These results make it possible to deduce a
general expression for Darcy’s law of these fluid types and estimate the parameters appearing in this expression.
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I. INTRODUCTION

Flows of non-Newtonian fluids are involved in a wide
range of applications [1] such as the injection of cement in
soils, penetration of glue in porous substrates, propagation of
blood through kidney, and hydraulic fracture [2]. One of the
most important applications concerns oil reservoir engineering
in which a wide range of complex fluids (foams, polymers,
and emulsions) is used to improve oil recovery [3]. In these
processes the flow characteristics of such fluids in porous
media remain poorly known due to the complexity of the fluid
behavior and the opacity of the solid structure.

For yield stress fluids (mud, cement, concentrated emul-
sions, or foams), which flow like liquids only beyond a
critical stress and behave as solids otherwise, various analytical
or numerical approaches [4] have been developed in order
to predict the pressure gradient ∇p vs average velocity V̄

through the porous medium, but the validity of their physical
assumptions could not be checked in the absence of any
information concerning the flow characteristics inside the
medium. For Newtonian fluids (of constant viscosity μ) we
know that any element of the liquid network flows and
in the absence of inertia effects the velocity field scaled
by the average velocity V̄ is constant (Stokes flow). As a
consequence, ∇p is proportional to V̄ by a factor μ/K in
which K is a characteristic of the porous medium, namely,
its permeability. Some studies suggested that with yield stress
fluids two critical effects could occur: (i) At the pore scale the
flowing volume increases with the pressure gradient [5] and (ii)
at a macroscopic scale the flow starts as a percolation effect,
i.e., at a critical pressure drop liquid regions exist only along a
specific path throughout the porous medium [5,6] and as ∇p

is increased more flowing paths progressively form within the
porous medium.

Recent simulations [7] of Bingham fluid flow through a
porous medium using a lattice Boltzmann two-relaxation-time
scheme support these assumptions: As the pressure increases
the fluid flows first in only one channel, then new paths
open, and finally all the fluid flows. On the other hand,

a recent experimental study [8] of the flow characteristics
inside a model bead packing provided unexpected results
that contradict the above conclusions. An NMR technique
was used, which provided straightforward information on
the average local flow characteristics, more precisely, the
probability density function (PDF) for the velocity, without
being affected by any spatial resolution problem. It was
shown [8] that the PDF is apparently similar for Newtonian
fluids, power-law fluids, and viscoplastic fluids in the laminar
regime and with moderate or dominant effects of the yielding
term. Moreover, it appears that the fraction of fluid at rest
is negligible even at low-V̄ values. Under these conditions,
all occurs as if the non-Newtonian character of the fluid was
broken.

In the present work we provide a further analysis of
this problem and suggestions for understanding it. From
numerical simulations using a two-dimensional (2D) finite-
element discretization and a second-order cone programming
optimization solver, which are able to take properly into
account yielding effects in viscoplastic flows without any
regularization, we show that the same result (i.e., breakage
of the non-Newtonian character) is obtained in a simple 2D
porous geometry. We suggest that this is due to the fact that in
a flow through a channel of rapidly varying cross section, if the
macroscopic flow rate is imposed, the deformation, and thus
the flow field, is essentially imposed on the fluid, a situation
that is encountered almost everywhere in a porous medium.

II. MATERIALS, GEOMETRY, AND
SIMULATION TECHNIQUE

In this work we develop specific tools for modeling yield
stress fluid flows as this is a complex situation that encom-
passes simpler cases such as Newtonian or shear-thinning
fluid flows. The constitutive equation of simple yield stress
fluids (with negligible thixotropic character) in simple shear
can be very well represented by a Herschel-Bulkley (HB)
model: τ < τc ⇒ γ̇ = 0 (solid regime) and τ < τc ⇒ τ =
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τc + kγ̇ n (liquid regime), in which τ is the shear stress, γ̇

is the shear rate, τc is the yield stress, and k and n are
two material parameters [9]. In laminar conditions the flow
is governed by the Bingham number Bi = τc/kγ̇ n, where γ̇

is a characteristic shear rate that can be written as the ratio
of a characteristic velocity V to a characteristic length l of
the system. This dimensionless number estimates the ratio
of the constant (plastic) to the rate-dependent (viscous) parts of
the constitutive equation and finally gives an idea of the relative
importance of the solid and liquid regions in the sample.
Thus flows through similar porous media at different average
velocities and with different pore sizes (but with similar size
distributions when rescaled by a characteristics length) or
different yield stress values, have similar flow characteristics
(after appropriate rescaling using the characteristic length and
velocity) as soon as they have the same Bingham number.
Varying Bi in a wide range makes it possible to include almost
purely plastic flows (Bi � 1), flows with both plastic and
viscous effects playing a significant role (Bi ≈ 1), and simple
power-law fluid flows (Bi = 0). We also did simulations for
Newtonian fluids (Bi = 0 and n = 1).

Since the effects described above concerning the PDF have
been observed in a specific porous medium, namely, a granular
packing, we first have to discuss their generality for any porous
medium. We can consider that a typical porous medium is
basically made of (possibly interconnected) channels in which
the fluid can flow throughout the system. In general, the cross
section of these channels widely varies (from one pore to
another) and they are not straight (tortuosity). The geometry of
a granular packing effectively contains these basic ingredients.

However, numerical simulations of flows through a 3D
bead packing pose several problems. It is difficult to make
precise simulations in a volume including more than a few
beads, due to the high computational cost of adopting a very
dense 3D mesh to properly describe the porous geometry as
well as the potential interfaces in the fluid domain between
flowing and arrested regions in the case of yield stress fluids.
In addition, it is rather difficult to compare the local flow
characteristics (in the form of 3D velocity fields) obtained
when varying some parameters, so people generally tend to
focus on possible preferential flow regions or macroscopic
properties (i.e., permeability) [10]; however, there is concern
that in a disordered system observed at a relatively small scale
these characteristics are greatly influenced by the specificities
of the geometrical region under consideration.

In order to avoid these problems and in particular obtain
readily comparable data for different fluid types under different
flow regimes we carried out 2D numerical simulations of
flow through an ordered array of disks (which may be seen
in three dimensions as cylinders perpendicular to the plane
of observation). More precisely, the geometry consists in
identical circles of diameter d situated at equal distance b

(between centers) from each other (see Fig. 1). In this way we
represent interconnected tortuous channels of rapidly varying
cross sections and we avoid the problem of preferential flows
induced by heterogeneities observed at a local scale. Moreover,
the velocity fields can now be studied and compared in
detail. Note that it may be considered that an apparently large
difference between such a geometry and a real 3D bead packing
is the absence of contacts between the disks. Actually, a 2D

b

d

V

FIG. 1. Scheme of the flow geometry.

image of the section of a bead packing is a similar picture,
namely, a set of disks of various sizes dispersed in the plane
with only a very small fraction of them in contact (this fraction
increases with the thickness of the section). This means that in
a 2D planar section through the bead packing the flow can be
considered to have general trends close to that through our set
of similar disks except that there are additional flows entering
or leaving this section due to the 3D structure.

The simulations are carried out assuming a similar flow field
in each similar area of this periodic array. The only imposed
condition is a constant average velocity V through the porosity
[V = V̄ /ε, where ε is the porosity, which here is expressed as
ε = 1 − (π/2

√
3)(d/b)2]. Here we will focus on the velocity

fields for different values of the ratio b/d, namely, 10/6, 10/8,
and 10/9, which correspond to a minimum relative distance
between solid surfaces [a = (b − d)/d] equal to 2/3, 1/4,
and 1/9. This range thus encompasses situations for which
the particles are at a distance from the order of their size to
situations for which they are at a distance much smaller than
their size.

Simulation of yield stress fluid flows is a challenging task
from a numerical point of view due to the nonregular nature
of the constitutive relation between stresses and strain rates.
A simple approach, which can be classified as a regularizing
method, consists of approximating the viscoplastic behavior
by a more regular constitutive relationship, generally involving
a so-called regularizing parameter. The regularizing model
consists in assuming that at low-shear rates the material
exhibits a high viscosity (e.g., the biviscous model and
Papanastasiou model) [11]. However, the distinction between
rigid and flowing regions is much harder since rigid regions are
approximated as liquid regions flowing at a very low rate. In
addition, the solution process can deteriorate when changing
the regularization parameter. It is not clear whether such a
technique can provide relevant results in the case of complex
flows.

The other category of numerical methods, namely, nonreg-
ularizing methods, aims at solving the original nonsmooth
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viscoplastic problem using a variational formulation and
efficient optimization techniques. The present work falls into
this category so as to keep the true viscoplastic nature of the
yield stress fluid without introducing any artificial parameter. It
uses a second-order cone programming (SOCP) formulation of
the arising minimization problem, for which dedicated interior
point solvers are available. It has been suggested quite recently
[12] that such state-of-the-art numerical tools are extremely
efficient for the simulation of yield stress fluid flows and offer
some computational advantages over traditional techniques
such as the augmented Lagrangian approach [13].

More precisely, the simulations rely on a finite-element
discretization of the 2D fluid domain using a quadratic
interpolation of the velocity field inside each triangular
element. The energy-minimum principle is then discretized
and the minimization problem is reformulated in a form
suitable for the SOCP solver MOSEK [14]. An interesting
feature is that the strain compatibility and incompressibility
equations are directly enforced at the element level so that
there is no need to introduce any auxiliary mechanical fields
as Lagrange multipliers. In addition, the optimization solver is

tailored so that there is no need to tune any algorithmic input
parameter. More details on the numerical implementation and
the validation of the technique can be found in [12].

III. RESULTS

In Figs. 2–4 we present the velocity fields obtained in the
Newtonian case (n = 1) and in the case n = 0.4 for a series
of Bi number values in the range 0–100. We thus cover the
Newtonian case, a typical pure shear-thinning case (n = 0.4,
Bi = 0), a typical Herschel-Bulkley behavior (n = 0.4) with
comparable effect of the yielding and the shear-dependent
terms (Bi = 1), the dominant effect of the yielding term
(Bi = 10), and almost purely plastic flow (Bi = 100). Here
the Bingham number is computed using V for the velocity and
l = b − d for the characteristic length.

For a = 2/3, the velocity fields are clearly different (see
Fig. 2) in the different situations. The contours of the field
are similar for the different values of n for Bi = 0, except
for the highest velocity range. In contrast, these contours
significantly evolve for a fixed n value when Bi increases from

FIG. 2. (Color online) Field of the velocity modulus in the model porous medium (here a = 2/3) scaled by the average velocity through
the void volume V and represented in color scales for different materials and flow regimes: (a) Bi = 0 (n = 1), (b) Bi = 0 (n = 0.4),
(c) Bi = 1, (d) Bi = 10, and (e) Bi = 100.
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FIG. 3. (Color online) Field of the velocity modulus in the model porous medium (here a = 1/4) scaled by the average velocity through
the void volume V and represented in color scales for different materials and flow regimes: (a) Bi = 0 (n = 1), (b) Bi = 0 (n = 0.4),
(c) Bi = 1, (d) Bi = 10, and (e) Bi = 100.

0 to 100: The region along the mean flow direction separating
two neighboring particles progressively takes a shell shape, the
region of almost constant velocity in the diagonal flow channel
widens, and the size of the stagnant region (dark blue) above
and before a particle increases. For a = 1/4 the same effects
are observed (see Fig. 3) but they are slightly less marked: The
region between two particles has already almost a shell shape
for Bi = 0 and the width of almost constant velocity in the
diagonal flow does not vary significantly when Bi increases.

For a = 1/9 these evolutions are much less marked (see
Fig. 4): At first sight the velocity fields appear similar. In
fact, there are still some slight local differences: The stagnant
region below and above the particle grows with Bi and tends
to a small cone that approximately represents about 1/20 of
the total fluid volume and the extent of the region of almost
constant velocity in the diagonal channel decreases with the
Bingham number. In addition, it is interesting to remark that
now the Newtonian case yields a velocity field with a global
aspect rather close to those for the shear-thinning or plastic
cases.

It finally appears that the velocity fields observed for
the different fluids and under different flow regimes exhibit
differences that for most of them tend to disappear when a

tends to 0. In order to more precisely appreciate this effect it is
necessary to have a quantified characterization of the velocity
fields.

To that aim we can compute the PDF for each of the two
components of the velocity (vertical and transversal). This
PDF, often called a 1D velocity propagator, which is denoted
by f , is such that the fraction of fluid having a velocity between
v and v + dv is f (v)dv. In order to appreciate the data in
a straightforward way we think it more appropriate to look
at the distribution function defined as F (v) = ∫ v

−∞ f (u)du.
For example, for the flow through a capillary, F is a straight
line between 0 and the maximum velocity. For a yield stress
fluid there is an unsheared region (plug) around the center
of the duct that is associated with a vertical jump at the end
of the distribution (i.e., for the maximum velocity) [8]. The
height of this step varies from 0 to 1 when Bi varies from 0 to
infinity, so in the latter extreme case the velocity distribution
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FIG. 4. (Color online) Field of the velocity modulus in the model porous medium (here a = 1/9) scaled by the average velocity through
the void volume V and represented in color scales for different materials and flow regimes: (a) Bi = 0 (n = 1), (b) Bi = 0 (n = 0.4),
(c) Bi = 1, (d) Bi = 10, and (e) Bi = 100.

has the form of a single peak situated at the maximum velocity.
In contrast, if the fluid is arrested in a region of volume
fraction φA the distribution globally starts by a jump to a finite
level [F (0) = φA] [8]. This illustrates how the distribution
function can be an identifying characteristic of the flow
behavior.

Our results for the vertical and transversal components
of the distribution function show that they are significantly
different in the different regimes or for the different values
of n (see Fig. 5) for a = 2/3: In particular for increasing
Bi two steps form in the distribution, situated around v = 1
and 2, which correspond to the growth of the two regions of
almost constant velocity (see Fig. 2) (orange area between two
particles and blue area in the diagonal channel). There are
also some differences between the distributions obtained for
a = 1/4 but they are less marked, which is consistent with the
observations of the velocity field (see Fig. 3).

Finally, the most striking result is that obtained for a = 1/9.
The distributions now appear almost identical for Bi ranging
from 0 to 100, and with n equal to either 0.4 or 1, both for
the longitudinal and the transversal components (see Fig. 6).
These results are consistent with our observations of almost

FIG. 5. (Color online) Distribution function for the vertical ve-
locity in the model porous medium for a = 1/4 (upper curves) and
a = 2/3 (lower curves): Bi = 0 (n = 1) (thin solid orange line), Bi = 0
(n = 0.4) (thick solid black line), Bi = 1 (dashed light blue line), Bi =
10 (red dotted line), and Bi = 100 (dark blue dash-dotted line). The
inset shows the distribution function for the transversal component
when a = 2/3.
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FIG. 6. (Color online) Distribution function for the vertical ve-
locity in the model porous medium for a = 1/9: Bi = 0 (n = 1) (thin
solid orange line); Bi = 0 (n = 0.4) (thick solid black line), Bi = 1
(dashed light blue line), Bi = 10 (red dotted line), and Bi = 100 (dark
blue dash-dotted line). The inset shows the distribution function for
the transversal component.

identical velocity fields (see Fig. 4). Moreover, the arrested
volume above and below the particles, which corresponds to
the small step at the bottom of these curves, slightly increases
with Bi, but at its maximum only represents a volume of
the order of 5% (see Fig. 2), a result that is also consistent
with our above estimation from the velocity field. Finally,
we have a kind of breakage of the non-Newtonian character
of the fluid flowing through such a geometry: The impact of
the rheological behavior or flow regime on the velocity field
appears negligible.

IV. DISCUSSION

We now focus on the effect of velocity field similarity
observed in the case a = 1/9. In view of identifying the origin
of this phenomenon we can review the main characteristics
of a porous medium as we have listed them above and see
how they can have an impact on the flow characteristics. By
itself the tortuosity of the geometry, i.e., the fact that the fluid

has to turn around a solid region, does not seem to be able
to explain the effect. Indeed, for the flow of a large volume
of fluid around a single object we have strongly different
flow characteristics depending on the flow regime: At high
Bi we have a liquid region close to the object while the rest
of the fluid remains in its solid regime [15], whereas for a
Newtonian fluid (Bi = 0) the flow intensity decreases slowly
with the distance from the object [16]. On another side the
connectivity between the pores of the porous medium does
not play a role in the effect here since, due to the symmetry,
it simply creates a frontier with perfect slip between the basic
areas. These conclusions are further supported by the fact
the velocity fields are significantly different for a = 2/3
and 1/4, whereas we already have a connectivity between
the pores and a tortuosity that are very close to those in the
case a = 1/9.

Finally, it seems that the characteristic of the porous
medium that plays a major role in the breakage of the
non-Newtonian character is the rapid variation of the cross
section of the flow channels. For a = 1/9 the maximum
distance (scaled by d) between a fluid element and a solid
surface varies between 0.14 and 0.055 along the flow over a
distance of 0.33. Actually, we have seen that if we increase the
distance between the beads the effect progressively disappears:
The distribution function significantly changes when the
Bingham number varies. At the same time the variation of
distance between solid surfaces along the flow is smoother:
For a = 1/4 the maximum distance between fluid and solid
varies from 0.22 to 0.125 over a distance 0.36 and for a = 2/3 it
varies from 0.46 to 0.33 over a distance of 0.48. As the value of
a tends to zero, we have a stronger reduction of the section over
a shorter distance. Thus the breakage of the non-Newtonian
character occurs only if the variations of the cross section of
the flow channels are sufficiently rapid.

Here we suggest that through the rapid variations of the
channel cross section we more or less impose the deformation,
and thus the velocity field, which explains the similarity of
the velocity distribution in very different flow regimes. In
order to further prove this effect let us consider the flow
through the simplest geometry with a linearly varying cross
section, i.e., a trapezoidal geometry (see Fig. 7). At the
entrance we impose the velocity field associated with the

FIG. 7. (Color online) Field of the velocity modulus through a trapezoidal geometry scaled by the average velocity at the entrance (V ) and
represented in color scales for different materials and flow regimes: (a) Bi = 0 (n = 1), (b) Bi = 0 (n = 0.4), (c) Bi = 1, (d) Bi = 10, and
(e) Bi = 100.

063018-6



BREAKAGE OF NON-NEWTONIAN CHARACTER IN FLOW . . . PHYSICAL REVIEW E 89, 063018 (2014)

FIG. 8. (Color online) Profile of the longitudinal velocity (scaled
by V ) as a function of the distance from the central axis scaled by
the width for different distances from the entrance in the trapezoidal
channel: x = 0 (red, lower), x = 0.7 (blue, middle), and x = 0.9
(black, upper) and different flow regimes: Bi = 0 (n = 1) (thin solid
line), Bi = 0 (n = 0.4) (thick solid line), Bi = 1 (dashed line), Bi =
10 (dotted line), and Bi = 100 (dash-dotted line).

uniform flow of the fluid at the same Bingham number in
a conduit of same diameter, while the flow is free at the exit.
This leads to very different velocity profiles at the entrance
(see Fig. 8).

We find that the corresponding velocity fields in our range of
Bi are similar at first sight (see Fig. 7). In fact, the significant
difference around the entrance induces some difference up
to about half the channel distance. Moreover, the velocity
fields differ close to the exit where the fluid is no longer
constrained. Thus the effect of imposing the deformation may
be seen after some distance of flow through this trapezoid.
This may be seen more precisely from a series of profiles
of the longitudinal velocity taken at different distances from
the entrance (see Fig. 8): The velocity profiles are initially
obviously completely different for the different Bi values. As
we advance in the channel they keep this difference essentially
along the wall while the rest of the fluid exhibit similar profiles
for the different Bi values. Finally, the difference along the
wall also disappears at the approach of the exit where we
have an almost unique velocity profile (with still some slight
difference along the wall). Once again we see that the rapid
variation of the channel cross section has apparently broken
the non-Newtonian character of the fluid. This effect occurs
more rapidly when the deformation undergone by the fluid is
larger, i.e., if the angle is larger, but it obviously disappears if
the channel length or the angle is sufficiently small.

V. DARCY’S LAW FOR YIELD STRESS FLUIDS

For a yield stress fluid the usual 3D form of the consti-
tutive equation [9], which leads to a HB model in simple
shear, is τII < τc ⇒ d = 0 (solid regime) and τII > τc ⇒
τ = τc d/dII + 2nkdn−1

II d (liquid regime), in which τ is the
deviatoric stress tensor, d is the strain rate tensor, and dII =√

trd2/2. The viscous dissipation inside a bead packing (of
volume �) is P = ∫

�
tr(d · τ )dω. Introducing the constitutive

equation in this expression, we deduce P = τc

∫
2dIIdω +

k
∫

(2dII)n+1dω, which may be rewritten as

P = ατcε�(V/D) + βnε�(V/D)n+1

with α = (1/ε�)
∫

2D
V

dIIdω and βn = (1/ε�)
∫

(2D
V

dII)n+1dω.
The above results concerning the approximately uniquely

scaled velocity field obtained for different flow regimes lead
us to conclude that (D/V )dII can be considered as a unique
dimensionless function weakly dependent on the effective
behavior of the material or velocity and mainly depending
on the structure of the porous medium. In this context α

and βn are two dimensionless coefficients depending on only
this distribution of shear rate intensity and the coefficient n.
Since the viscous dissipation may also be expressed through a
macroscopic approach as �∇p · V̄ = ε�∇p · V , we deduce
Darcy’s law for yield stress fluids (which includes power-law
and Newtonian fluids):

∇p = α
τc

D
+ βnk

1

D

(
V

D

)n

. (1)

The form of this law is consistent with the analysis of a series
of measurements of ∇p as a function of V for different yield
stress fluids and pore sizes [17].

It is interesting to test the consistency of this description
within the frame of the flow through the model 2D porous
medium. As expected from our conclusion that the velocity is
approximately independent of the flow regime, the distribution
function for the second invariant is very close for different
Bingham number values (see Fig. 9). Note, however, that
the distribution function for the Newtonian case significantly
departs from these curves at a low-shear rate. This tends to
suggest that in this case the shear-thinning character of the
fluid introduces a distinction in the flow characteristics. The
two coefficients (α and βn) can be computed by integration
from the results of these simulations. We find almost constant
values for each of these parameters (see the inset of Fig. 9).

FIG. 9. Distribution function for the second invariant of the strain
rate tensor (scaled by V/d) for different flow regimes: Bi = 0 (n =
1) (thin solid line), Bi = 0 (n = 0.4) (thick solid line), Bi = 1 (dashed
line), Bi = 10 (dotted line), and Bi = 100 (dash-dotted line). The
inset shows the corresponding values of α (circles) and βn (squares).
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Note that the value for α in the Newtonian case is slightly
different (48.6) from the average value in the shear-thinning
case with n = 0.4 (21).

Let us now analyze the implications of these results on the
description of flow through porous media. For a Newtonian
fluid (τc = 0, k = μ, and n = 1) the permeability (K =
μV̄ /∇p) is defined as K = εD2/β1. Measurements of K for
a bead packing gives K ≈ D2/1500 [17], which implies that
β1 ≈ 500. Since we do not know the details of the distribution
of dII in the fluid we cannot immediately deduce α and βn from
the value of β1 determined from a measurement of K with
a Newtonian fluid. This means that the previous approaches
in the literature that consider that Darcy’s law for a yield
stress fluid can be inferred through the Newtonian form and
using the apparent viscosity of the complex fluid are a priori
erroneous.

The distribution function for the second invariant in our
2D porous medium (for the shear-thinning fluid) can rather
well be fitted by the function 1 − exp −x/A (where we now
write the dimensionless second invariant x) in which A is a
parameter depending on the flow characteristics. The shape
of the distribution function for the longitudinal velocity of
the flow through a bead packing (see [8]) can well be fitted
by the same type of function. Thus it seems probable that
the distribution function for the second invariant can also
be represented well by the same type of function as in
the case of an a priori unknown but single parameter A

for both the Newtonian and the shear-thinning fluids at any
Bingham number value. Since now βn may be expressed as
(2A)n+1

∫ ∞
0 (n + 1)un(exp −u)du, we deduce from the above

experimental value for β1 (500) that A should be equal to 8,
thus leading to α = 16, which is not too far from the value
found for simple yield stress fluids [17], i.e., Carbopol gels
(α = 12). [Note that a smaller value for α (5.5) was found
from a more limited and finally much less robust set of data
with an emulsion.] Moreover, we can now also compute βn

in that case: It is equal to 50, a value that is very close
to that found from the same series of tests (βn = 58, with
n = 0.36).

VI. CONCLUSION

Our results from numerical simulations show that in a flow
through a complex geometry with rapid variations of cross
section the fluid properties do not play a significant role in the
velocity field. These results are consistent with those obtained
from NMR measurements with different fluid types flowing
through granular packing. This suggests that in those flows
the deformation field is more or less imposed, so the fluid
specificities are forgotten in the velocity field. Note, however,
that the local viscous properties of the fluid still play their
fundamental role in the mechanical resistance to flow.

These results also make it possible to infer the general
form of Darcy’s law for yield stress fluids, which relies
on parameters deduced from the distribution of the second
invariant of the strain rate tensor. This suggests that this
distribution is a fundamental characteristics of the flow through
porous media, which may be considered as slightly varying
with the fluid type or flow regime but varying strongly with
the structure of the medium.

It remains that these results are in contradiction with those
inferred from conceptual analyses [5,6] or from other types
of simulations [7]. This contradiction might be due to the fact
that in our approach the flow rate is clearly imposed: In the
NMR experiments of [8] there is a piston pushing the fluid
from upstream and for a slow flow the fluid advances as a
plug up to a very short distance from the sample entrance; in
the present simulations there is no disorder and the flow rate
is impose in the same way through every entrance channel.
In contrast, for the previous analyses this is the pressure that
is controlled, so the fluid might have more possibilities of
preferential channels in which to flow. This difference can
easily be understood from the simple case of a model porous
medium made of two parallel ducts with different radii: If
the yield stress fluid is pushed from upstream by a piston
close to the cylinder entrance it will flow through both ducts;
if the pressure is progressively increased the fluid will first
flow through the largest duct for a critical pressure and then
through the second one only when the pressure will be higher
than a second critical value.
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