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Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic
effects
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We report various regimes of capillary filling dynamics under electromagneto-hydrodynamic interactions, in
the presence of electrical double layer effects. Our chosen configuration considers an axial electric field and
transverse magnetic field acting on an electrolyte. We demonstrate that for positive interfacial potential, the
movement of the capillary front resembles capillary rise in a vertical channel under the action of gravity. We
also evaluate the time taken by the capillary front to reach the final equilibrium position for positive interfacial
potential and show that the presence of a transverse magnetic field delays the time of travel of the liquid
front, thereby sustaining the capillary motion for a longer time. Our scaling estimates reveal that the initial
linear regime starts, as well as ends, much earlier in the presence of electrical and magnetic body forces, as
compared to the corresponding transients observed under pure surface tension driven flow. We further obtain a
long time solution for the capillary imbibition for positive interfacial potential, and derive a scaling estimate of
the capillary stopping time as a function of the applied magnetic field and an intrinsic length scale delineating
electromechanical influences of the electrical double layer. Our findings are likely to offer alternative strategies
of controlling dynamical features of capillary imbibition, by modulating the interplay between electromagnetic
interactions, electrical double layer phenomena, and hydrodynamics over interfacial scales.
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I. INTRODUCTION

Capillary filling dynamics has its applications in many
diverse areas, ranging from lab-on-a-chip based micro–total
analysis systems [1] to the transport of biological fluids in flora
and fauna [2]. Since the pioneering contributions of Lucas and
Washburn [3,4], several researchers have attempted to describe
the problem of microcapillary filling in terms of a lumped
(reduced-order) model [3–15], relying on an interplay between
the driving surface tension forces and the resistive viscous
forces, resulting in the filling length being proportional to the
square root of the filling time (the so-called Washburn regime)
[4–7,16–20]. Of late, researchers have probed deep into the
early (inertial) regimes of capillary filling and demonstrated
that there also exists a linear regime prior to the much
celebrated Washburn regime, where the capillary forces and
the inertial forces balance each other [5,8,9,21–26]. This
results in a linear variation in the filling length with time, which
has also been reported in the previous experiments conducted
on capillary filling by Quere [7]. Extending the underlying
considerations towards capillary filling in a vertical channel,
researchers have further demonstrated that the linear regime
at the initial stages of capillary filling is universal, irrespective
of the orientation of the channel. Interestingly, under this
scenario, the liquid front can enter either the Washburn or an
oscillatory regime, depending on the strength of the viscous
forces and the other opposing forces [7,9].

Despite significant advancements towards understanding
the various regimes of capillary filling dynamics delineated as
above, investigations on the underlying consequences under
combined electromagneto-hydrodynamic effects have been
relatively scarce [11]. The underlying physical issues are likely
to become significantly more involved when there is a non-
trivial interplay between applied electric and magnetic fields,
induced electric field due to electrical double layer (EDL)
formation (i.e., inception of a charged interfacial layer due
to complex electrochemical interactions), and hydrodynamic

effects (such as surface tension, viscous, or inertial effects)
over interfacial scales [11]. Such situations, however, are
omnipresent in many of the modern day lab-on-a-chip based
applications in which electrical and magnetic fields may
be judiciously employed to modulate the resultant capillary
dynamics.

Here we investigate various regimes of capillary filling
dynamics as modulated by electromagneto-hydrodynamic
interactions in the presence of EDL effects. Our chosen
configuration considers axial electric field and transverse
magnetic field acting on an electrolyte solution. In essence,
we bring out a nontrivial interplay between the external
forcing parameters and interfacial phenomena over small
scales towards influencing the resultant capillary dynam-
ics. Interestingly, we delineate a gravitylike influence of
the electrical interactions for interfaces with positive zeta
potential. We further demonstrate that, under the action of
magnetic forces, the time taken for a complete arrest of
the capillary advancement is delayed, although the distance
traversed remains the same, which enables one to impose
critical control over sustaining the capillary motion for a larger
period of time. We also demonstrate that under the present
configuration, although the capillary can theoretically enter
the previously reported oscillatory regime, such paradigms
are practically unphysical in nature. Our scaling estimates also
demonstrate that the linear regime in the capillary filling starts,
as well as ends, much earlier in the presence of electrical
and magnetic body forces, as compared to a simple surface
tension driven capillary flow. We additionally calculate the
long time solution for the capillary imbibition in cases of
positive zeta potential and obtain a scaling estimate of the
stopping time as a function of the strength of the magnetic
field and a characteristic length scale of the EDL. Finally, we
also compare our results to previously reported experiments on
capillary filling [27] of charged nanochannels, in the presence
of electro-hydrodynamic effects.
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II. DYNAMICAL MODEL

We consider slit Hele-Shaw geometry, with the two plates
being separated by a distance H . The spans of the plates in
the other two directions are considered to be much larger than
the height of the channel. We choose our origin at the center
of the channel (see Fig. 1), with the y axis running along the
transverse direction and the x axis running along the channel.
A liquid front is introduced at a location x = 0 at time t =
0. The contact angle at the solid-liquid-gas (air) interface is
assumed to be θ , which remains the same throughout the
motion of the liquid. Additionally, an electric field is applied
in the x direction, with the two electrodes placed at locations
x = 0 and x = L, respectively. A constant voltage of magnitude
V0 is applied between the electrodes, which creates an axial
electric field inside the channel. We further assume that the
electrodes do not interfere with the motion of the fluid and
the electric field is felt by the fluid only in the closed region
0 � x � L. We also introduce a magnetic field of magnitude
By along the transverse (y) axis, in order to assess its effects
on the capillary motion of the liquid front. In addition to
this, we consider the zeta potential at the shear plane of the
substrate-fluid interface to be ζ . Note that this potential can
bear both negative and positive values, and we will consider
both cases in the present analysis. We further introduce ionic
species in the liquid, with a bulk concentration of n∞. Because
of electrochemical interactions between the ionic species and
the substrate, EDL forms in the vicinity of the channel walls,
bearing immense consequences towards dictating the capillary
dynamics.

For mathematical analysis, we consider an average position
(x) of the capillary front at a time t . The equation of motion
for the capillary advancement, following Newton’s second law
of motion, in conjunction with a reduced-order approach [12],
yields

d

dt
[(mc + ma) v] = Fsurface + Felec + Fmag + Fvisc, (1)

where mc is the mass of the fluid in the capillary (per unit
width) as given by ρHx, v is the average velocity of the
capillary (expressed as dx

dt
), and ma is the added mass (per

unit width), which in the present case is represented by [12]

FIG. 1. (Color online) A schematic of the physical problem
under consideration. A voltage difference of V0 is applied along the
x axis. A magnetic field works in the y direction. The contact angle
between the wall and the liquid is θ and the surface tension is σ . The
distance between the electrodes is L.

ma = ρπH 2

8 , ρ being the density of the liquid. On the right-
hand side of the equation, Fsurface, Felec, Fmag, and Fvisc denote
forces due to surface tension, electric field, magnetic field, and
the viscous resistance at the walls, respectively. The surface
tension force, per unit width, can be expressed as

Fsurface = 2σcosθ, (2)

where σ is the liquid-vapor surface tension coefficient.
In an effort to estimate the electrical force in the liquid, it

may be noted that the same can be expressed in terms of the
product of the volumetric charge density (ρe) and the electric
field in the liquid region [12]. The volumetric charge density,
in turn, is related to the EDL potential distribution through the
Poisson equation, which essentially is a differential form of
the Gauss law [12]. Coupled with the Boltzmann distribution
of ionic charges in the EDL, the Poisson equation essentially
leads to the Poisson-Boltzmann equation, which under low
surface potential limits can be suitably linearized through the
Debye-Hückel approximation, to yield [12–13,28]

d2ψ

dy2
= κ2ψ. (3)

Here, ψ is the potential within the EDL, κ is the inverse
of the Debye length λD (characteristic length scale of the
EDL) expressed as κ2 = 1

λ2
D

= 2z2e2n∞
εlkBT

, z being the valency
considering a z:z symmetric electrolyte, e being the protonic
charge, kB being the Boltzmann constant, T being the absolute
temperature, n∞ being the bulk concentration of electrolytes
in the liquid, and εl being the electric permittivity of the liquid.
Equation (3) can be solved with the boundary conditions y =
±H/2, ψ = ζ and at y = 0, dψ

dy
= 0 to obtain a solution for

the potential distribution as [12,29] ψ = ζ
cosh(κy)

cosh(κH/2) . Finally,
one can obtain the volumetric charge density distribution as

ρe = −εl

d2ψ

dy2
= −κ2εlζ

cosh(κy)

cosh(κH/2)
. (4)

In an effort to estimate the electro-osmotic drive on the
liquid in the capillary, we also need to estimate the axial
potential drop across the same. Towards that, we apply our
knowledge of total axial potential drop and continuity of
electric displacement across the liquid-air interface and finally
obtain the equations for electric fields in liquid and air as
[12,14]

V0 = Elx + Ev(L − x), (5a)

εlEl = εvEv. (5b)

Here, the subscripts l and v denote the pertinent quantities in
the liquid and the air, respectively. Equations (5a) and (5b) can
be solved to obtain

El = εvV0

xεv + (L − x)εl

. (6)

One can now evaluate the total electrical body force acting
on the liquid (per unit width) from the expression [13,14]

Felec = 2
∫ H/2

0

∫ x

0
ρe (y) El (x)dsdy. (7)
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Using the charge distribution given in Eq. (4) and the
expression for the electric field given in Eq. (6), Eq. (7) can be
simplified to obtain

Felec = −2κ(E0L)εlεvζ.x

εlL + (εv − εl)x
tanh(κH/2). (8)

In Eq. (8), E0L = V0, where E0 is the reference electric
field, or, in other words, it is the magnitude of the electric field
acting on the liquid, when the space between the electrodes is
completely filled by the liquid.

The body force per unit volume of the liquid, due to the
magnetic field, is given by [10,11]

Fbody, magnetic = σe( �E + �u × �B) × �B. (9)

Here, �u is flow velocity and σe is the electrical conductivity
of the fluid. For an applied magnetic field of magnitude By

in the y direction, this force comes out to be −σeB
2
yu (u

being the axial velocity of flow). In an effort to estimate
the flow velocity, we consider a fully developed flow profile
generated by means of application of external axial electric
(Exex) and transverse magnetic fields (Byey) along with a
pressure gradient, which originates from the capillary forces.
The Navier-Stokes equation then reads [10]

− dp

dx
+ η

d2u

dy2
− σeB

2u − κ2εElζ
cosh(κy)

cosh(κH/2)
= 0, (10)

where μ is the viscosity of the liquid. Note that in Eq. (10),
El is the axial electric field acting on the liquid phase and
σe is the electrical conductivity of the liquid. The solution of
(10) nondimensionalized with the Helmholtz-Smoluchowski
velocity, subject to no-slip boundary conditions at the walls,
reads

ū = u

uHS
= − κ̄2

κ̄2 − Ha2

{
cosh(κ̄ ȳ)

cosh(κ̄/2)
− cosh(Haȳ)

cosh(Ha/2)

}

− P

Ha2

{
1 − cosh(Haȳ)

cosh(Ha/2)

}
. (11)

In Eq. (12), Ha is the Hartmann number [10], given by

Ha = σeB
2
y

μ/H 2 , ȳ = y/H ; P = H 2(dp/dx)
ηuHS

, uHS = −εlElζ

μ
is the

Helmholtz-Smoluchowski velocity and κ̄ = κH . From (11)
one can easily find the average velocity, which reads

ūavg = uavg

uHS
= − κ̄2

κ̄2 − Ha2

{
tanh(κ̄/2)

(κ̄/2)
− tanh(Ha/2)

(Ha/2)

}

− P

Ha2

{
1 − tanh(Ha/2)

(Ha/2)

}
. (12)

Therefore, following (11), the velocity can be expressed in
terms of the average velocity in the following way:

u = (dx/dt)

ūavg

[
− κ̄2

κ̄2 − Ha2

{
cosh(κ̄ ȳ)

cosh(κ̄/2)
− cosh(Haȳ)

cosh(Ha/2)

}

− P

Ha2

{
1 − cosh(Haȳ)

cosh(Ha/2)

}]
. (13)

In (13) we have replaced, uavg with dx/dt, i.e., the velocity
of the liquid front. We can now evaluate the viscous resistance

using the expression [30]

Fvisc = 2xτw = 2xμ
du

dy y=−H/2
. (14)

Using (13) in (14), we can express the total viscous
resistance to the flow in the following way:

Fvisc = −2μx(dx/dt)

H

(F̄1 + GF̄2)

(K1 + GK2)
. (15)

In Eq. (15), the various symbols represent

F̄1 = tanh(Ha/2)/Ha,

F̄2 = − κ̄2

κ̄2 − Ha2
{Ha tanh(Ha/2) − κ̄tanh(κ̄/2)}

K1 = 1

Ha2

{
1 − tanh(Ha/2)

(Ha/2)

}
,

K2 = − κ̄2

κ2 − Ha2

{
tanh(κ̄/2)

(κ̄/2)
− tanh(Ha/2)

(Ha/2)

}
,

and

G = 1/P = ηuHS

H 2(dp/dx)
= −εlE0ζ

H 2(dp/dx)
.

Therefore, the contribution of the pressure gradient in the
viscous resistance comes in the analysis, through the constants
F̄1 and K1 as evident from Eq. (15). It is important here to
investigate typical orders of magnitude of the pressure gradient
(dp/dx). As mentioned earlier, this pressure gradient is mainly
caused by the surface tension force (i.e., the Laplace pressure).
Now, the pressure drop across the liquid-air interface is 
p =
σ/R, where R is the radius of curvature and in the present
case R = H/(2cos(θ )). This drop in pressure occurs over a
distance of x, i.e., the length of the liquid column. Therefore,
the pressure gradient can be taken as − dp

dx
= σ

Rx
in Eq. (15).

Next, we can express the total force acting on the liquid
due to the application of the magnetic field with the help of
Eq. (9), and the magnetic body force (per unit width) finally
takes the form

Fmag = −2
∫ x=x

x=0

∫ y=H/2

y=0
σeB

2
yudsdy. (16)

Using expression (13) for the velocity field and assuming
σe to remain constant throughout the cross section, we obtain
Fmag to be

Fmag = − μ

H
Ha2x

dx

dt
, (17)

where dx
dt

= uavg denotes the average rate of capillary dis-
placement [3–15]. Thus the equation for capillary filling can
be finally expressed as [substituting (2), (8), (15), and (17) in
(1)]

d

dt

[(
ρHx + ρπH 2

8

)
dx

dt

]

= 2σcosθ − 2κ(E0L)εlεvζ.x

εlL + (εv − εl)x
tanh(κH/2) − μ

H
Ha2x

dx

dt

− 2μx(dx/dt)

H

(F̄1 + GF̄2)

(K1 + GK2)
. (18)
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Note that in (18), G is given by G = −εlE0ζ

H 2(dp/dx) . Equation
(18) represents a general description of the capillary filling
process. The advantage of including the pressure gradient in
the description of the viscous forces has been clearly delineated
later in Sec. V. Having derived a general (lumped) description
of capillary filling process, we now attempt to do a simple
scaling analysis, in an effort to deduce the contribution of the
pressure gradient term in the viscous force.

Towards this we note that, by virtue of the linearity of
Eq. (10) one can divide the viscous stress into two parts,
τp and τe, where the subscript “p” denotes the contribution
of the pressure gradient and “e” denotes the contribution of
the electro-osmotic part. One can write the viscous stress
due to pressure as τp ∼ μup/H , where up ∼ H 2(dp/dx)/μ.
Therefore, the stress becomes τp ∼ H (dp/dx) ∼ σ/x. On
the other hand, the velocity profile due to electro-osmotic
flow alone is ue = − εlζE0

η
(1 − ψ

ζ
) (symbols bear the usual

meanings). In the case of electro-osmotic flows the velocity
develops from zero value at the wall to a near constant value
within the Debye layer, i.e., within a length of O(κ−1) of the
wall (κ is the inverse of the characteristic EDL thickness).
Therefore, the viscous stress for electro-osmotic flow is on the
order of τe ∼ εlE0ζκ . Hence it follows that the ratio of the two
stress components is given by r ∼ τp/τe ∼ εlE0ζκx

σ
= Gκ ∼

GF̄2 [note that F̄2 ∼ κ̄ in (15)]. For the present analysis we
have chosen the following values of the required parameters:
H � 10−4 m, μ � 10−3 Pa s, εl � 6 × 1010 F/m, ζ � 0.05 V,
E0 � 106 V/m, and κ � 107–108 m−1 along with x � J

� 0.1 m (J is the equilibrium position, or modified Jurin
height). Putting these values in the aforementioned ratio (r
� G), we get Gκ � Ax, where A � O(103–104). Therefore,
with x in centimeters (x � 0.1), Gκ � O(102–103). This
scaling basically indicates that the order of magnitude of the
contribution of viscous stresses from electro-osmotic flows
outweighs the same due to the pressure gradient driven flow
component. It is quite simple to show that (with a similar
analysis), if the viscous stress from pressure driven flow is
to be as important as those due to electro-osmotic flow, we
must have for the present case dp/dx � O(107) Pa/m, which
is quite large as compared to the Laplace pressure gradient on
the capillary.

Following the previous scaling analysis, we simplify
Eq. (15), when the capillary filling is assisted by external
applied electric field and only take into account the viscous
forces originating from the electro-osmotic flows. Towards
this, we neglect the terms F̄1 and K1 and write (15) as (i.e., we
neglect the effect of pressure gradient on viscous resistance as
well as the average velocity)

Fvisc = −2μx(dx/dt)

H

F̄2

K2
. (19)

Using (18) in (19) we get

d

dt

[(
ρHx + ρπH 2

8

)
dx

dt

]

= 2σcosθ − 2κ(E0L)εlεvζ.x

εlL + (εv − εl)x
tanh(κH/2)

− μ

H
Ha2x

dx

dt
− 2μx(dx/dt)

H

F̄2

K2
. (20)

From here onwards, all our results (except those in Sec. V B)
have been obtained solving Eq. (20). It is important to
mention that a similar approach has previously been adopted
by a number of researchers [12,14] for analyzing capillary
filling in the presence of electrical effects. Equation (20) can
be nondimensionalized using the following reference values

x̄ = x
L

, t̄ = t
t0

, where t0 =
√

ρHL2

2σ
(which has been calculated

from balancing the inertial and the capillary force terms). The
nondimensionalized equation is given by

d

dt

[(
x̄ + πH

8L

)
dx̄

dt̄

]

= cosθ − E0Lεlζ

σH
x̄Ēκ̄tanh(κ̄/2)

− μLHa2

H
√

2σρH
x̄

dx̄

dt̄
− ηL√

2σρH
x̄

dx̄

dt
. (21)

Note that in Eq. (21), Ē = 1
x+(1−x)ε , ε̄ = εl

εv
, and η is

given by

η = 2μ

H

[−κ̄sinh(κ̄/2) + Hacosh(κ̄/2)tanh(Ha/2)][ sinh(κ̄/2)
κ̄/2 − cosh(κ̄/2)tanh(Ha/2)

Ha/2

] .

There are several interesting points to note from Eq. (21).
The first one is that the sign of the second term on the
right-hand side, i.e., the electrical body force, depends on
the sign of the zeta potential, which indicates that in cases
of positive zeta potential, the capillary motion is opposed by
the electric field and in cases of negative zeta potential, the
capillary motion is aided by the electric field. This naturally
indicates that the capillary motion for positive zeta potential is
likely to mimic the dynamics of the same under the action
of gravity. Therefore, the capillary is likely to stop after
traversing a certain distance, which can be inferred to be
dictated by several relevant parameters such as the strength of
the electric field, the EDL thickness, etc. We elaborate more
on this in the next section. Secondly, it should be noted from
Eq. (21) that the magnetic force actually opposes the motion
of the capillary. Quite interestingly, it has the same form as
that of the viscous resistance force, which indicates that the
magnetic force acts as an effective magneto-viscous resistance
against the motion of the capillary. Another important point
to note here is that, for x̄ = 1, i.e., when the capillary
front fills the whole space between the two electrodes, the
electric field takes a value Ē = 1 and remains constant at that
value as the capillary progresses further. This indicates that,
after the capillary crosses the location x̄ = 1, the electrical
body force, acting on the liquid becomes constant, expressed
as F̄elec = −E0Lεlζ

σH
κ̄tanh(κ̄/2).We elaborate further on these

individual forces along with the motion of the capillary, when
we present the detailed solution for the position of the capillary
front as a function of time.

Equation (21) is not analytically tractable, though several
approximate solutions can be determined based on various
simplifying assumptions, the most notable among them being
the short and the long time solutions for the capillary motion.
We represent scaling estimates for the early filling regimes,
derive long time solutions and scaling estimates of the stopping
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time (for positive zeta potential), and compare those with the
corresponding numerical solutions in the subsequent section.

III. SCALING ESTIMATES

In this section, we execute an order of magnitude analysis
for various forces at play and attempt to derive a simple scaling
relation between the filling length and the time of filling. First,
we will attempt to reveal the important forces, dictating the
capillary motion during early times of filling. Later in this
section, we derive a long time solution for the capillary motion
in cases of positive zeta potential (i.e., when the electrical body
force is opposing the motion of the capillary) and present a
scaling estimate for the time required for the capillary to stop.
In the subsequent sections, we attempt to compare our scaling
estimates and the approximate solutions with the full numerical
solutions to Eq. (21).

A. Early transients of capillary filling

1. Inviscid regime

It has been previously demonstrated by Das et al. [8] that at
the beginning of the filling process, the viscous and other body
forces are negligible, which indicates that a balance between
the inertial forces (Finertia) and the capillary forces (Fs.t.) should
be maintained during the motion. This is mathematically
justified by virtue of the fact that the filling length is too small
for the body and viscous forces, which are proportional to the
filling length, to have any significant contribution. Thus

Finertia ∼ Fsurface. (22a)

When the respective forces are expressed per unit width,
Finertia ∼ d

dt
(ρHx dx

dt
) ∼ ρHx2

t2 (where x is the filling length)
and Fsurface ∼ σ , so that

ρHx2

t2
∼ σ ⇒ x ∼ t

√
σ

ρH
. (22b)

Note that the expression in (22b) remains independent of other
body forces and surface forces, characterizing early regimes of
capillary filling [9]. However, we must acknowledge that the
ranges of x and t , over which Eq. (22b) remains valid, cannot
be ascertained from the above considerations alone.

2. Washburn regime

As the capillary progresses along the channel, the viscous
forces gradually increase in magnitude and start to domi-
nate. The viscous force (per unit width) can be scaled as
Fvisc ∼ μ∂u

∂y
x. Since the velocity profile in the capillary is

considered to be dictated largely by the electrokinetic effects
(the electrokinetic effects are designed to be the primary flow
actuation mechanisms considered in this work), the viscous
force comes out to be on the order of Fvisc ∼ μuκx. Note that
here κ = 1/λD is the inverse of the Debye length, which in
turn is the characteristic length scale of the EDL formed. This
estimation is based on the fact that for electro-osmotic flow
(EOF), the velocity attains its highest magnitude at the edge of
the EDL, thus making the shear rate near the wall to be of the
order of � uκ . Note that additionally there is a magnetic force,
which basically acts as an equivalent viscous resistance and is

proportional to the Hartmann number squared (Ha2). However,
we also note that in the channel considered in the present study,
κ � 1, whereas Ha � 1 at best. Therefore, for the scaling of
viscous forces, it is sufficient to consider Fvisc ∼ μuκx. In the
Washburn regime, the balance is between the viscous force
and the forward pulling capillary force, which gives us

Fvisc ∼ Fs.t ⇒ μuκx ∼ σ. (23a)

Again, noting that u � x/t , we finally have

x ∼ √
t

√
σ

μκ
. (23b)

The above expression essentially delineates the capillary
transport characteristics over the Washburn regime, subjected
to electrokinetic effects.

Next, we attempt to answer the question: What is the
temporal instance characterizing the initiation of the Washburn
regime? This is essentially determined by the ratio of the
viscous force and the forward pulling surface tension forces
[8,9], which can be expressed as Fvisc

Fs.t
∼ μκx2/t

σ
. Noting that in

the linear regime x
t

∼ √
σ/ρH , we get

Fvisc

Fs.t
∼ μκx2/t

σ
∼ μ√

ρHσ

x

H
κ̄ ∼ Oh

(
x

H

)
κ̄ . (24)

In Eq. (24), Oh is the Ohnesorge number defined as Oh =
μ/

√
ρHσ . Since in the linear regime viscous forces are small,

it follows that for relation (22b) to hold true, we must have [8]

Fvisc

Fs.t
� 1 ⇒ Oh

(
x

H

)
κ̄ � 1. (25)

Now, for water, μ � 1 mPa s, σ � 0.07 N/m (air water
interface), and ρ � 103 kg/m3. For a channel height of
H � 500 μm (we typically consider micrometer dimensions
or less so that EDL effects may turn out to be important as
compared to other volumetric effects), we get Oh � 0.005.
However, the EDL thickness is, at maximum, of the order of
κ−1 � 100 nm, for salt concentration of the order of 0.1 mM,
which makes κ̄ ∼ 100 − 1000. Hence, Ohκ̄ � 0.5–5. This
indicates that for condition (25) to hold in this particular case,
we must also have x � H in addition to the very low value
of Oh. Here, it is noteworthy that for capillary filling without
electromagneto-hydrodynamic interactions [8], the Washburn
regime starts when Oh( x

H
) ∼ 1. On the contrary, the equivalent

condition here is Oh( x
H

) ∼ 1/κ , which simply indicates that
for electrically driven capillary motion, the Washburn regime
sets in very early (since κ̄ � 1, for the channel dimensions
considered in the present study). The above scaling analysis
further indicates that the linear regime persists for a value
of x � H . This is in sharp contrast to the classical capillary
filling [8], where we have the linear regime prevailing even
for x as high as �H . This shift of paradigm is because of
the influence of the electro-osmotic velocity profile towards
dictating the viscous resistances.

B. Long time solution

We first attempt to estimate the equilibrium length achieved
by the capillary (equivalent to “Jurin” height [7]) under the
action of electrical forces. This can be simply achieved by
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balancing the capillary forces and the electrical body force,
expressed in Eqs. (2) and (8). This equilibrium length takes
the form

L̄s = ε̄
E0Lεlζ

σH
κ̄tanh(κ̄/2)

cosθ + ε̄ − 1

. (26)

Here, L̄s is the position of the capillary front, when the
said forces equilibrate and the front stops advancing. One
interesting point to note from the expression (26) is that the
equilibrium position does not depend on the Hartmann number,
or equivalently, the strength of the applied magnetic field.
This is understandable, since the magnetic field only exerts
a net force on the liquid, when it is moving and hence, the
equilibrium position, where the capillary stops moving, is not
affected by the presence of the magnetic field. Higher values
of θ and κ shorten the equilibrium position, as attributable to
less forward pulling surface tension force and higher opposing
electrical force, respectively. However, it is important to note
that in deriving Eq. (26), we have used the relation (6), which
only remains valid until x̄ � 1 (x̄ is the capillary position).
This indicates that L̄s must satisfy the relation L̄s � 1 in order
for Eq. (26) to be valid, which suggests that the capillary will
always stop between the two electrodes, if it stops at all. Once
the capillary crosses the far side electrode, positioned at x̄ = 1,
the opposing electrical force becomes constant, as mentioned
in the previous section, which finally results in an unarrested
motion of the capillary.

Having derived the equivalent “Jurin” height or the equi-
librium length for the liquid, we now attempt to derive a long
time approximate solution of the governing equation (21), in
an effort to highlight the behavior of the capillary, when it
is close to the “Jurin length.” In such cases, we can assume

x̄ = L̄s − x̄ � 1, again following Lucas [3] and Washburn
[4]. Recasting Eq. (21) in terms of 
x̄, we can write

0 = A − B(L̄s − 
x̄)

a

[
1 − 
x̄(ε̄ − 1)

a
+ O(
x̄2)

]

+ (C + D)L̄s

d
x̄

dt̄
. (27)

In Eq. (27), the constants are given by A = cosθ , B =
E0Lεlζ κ̄tanh(κ̄/2)

σH
, C = μLHa2

H
√

2σρH
, and D = ηL√

2σρH
. In deriving

Eq. (27), we have neglected the inertial forces. This is justified
in that just before the equilibrium height is achieved, the front
velocity becomes negligibly small and so does the inertia of
the liquid column. Additionally, this equation overestimates
the resistive forces as it assumes the wetted area to remain
constant as evident from the last term in the equation. However,
the opposing electrical force is underestimated, since it is
represented in a linearized form as a function of 
x̄. Equation
(27) can be solved for 
x̄, with the initial conditions at t̄ = 0,

x̄ = L̄s to obtain a solution of the type


x̄ = L̄s exp

[ −kt̄

(C + D)L̄s

]
. (28)

Here, k = Bε̄
a2 and a = L̄s + ε(1 − L̄s). Finally, using Eq. (28),

one can obtain an expression for x̄ of the form

x̄ = L̄s

{
1 − exp

[ −kt̄

(C + D)L̄s

]}
. (29)

This analysis predicts an exponential variation in the
capillary rise, when it is close to the equilibrium length. Addi-
tionally, we can also obtain an approximate estimation for the
time taken by the capillary to reach the equilibrium position,
which in the present case turns out to be t̄s ∼ O[ (C+D)L̄s

k
]. It

essentially indicates that the presence of the magnetic field
delays the time taken by the capillary to reach the equilibrium
position, or, in other words, the motion of the capillary is
sustained for a longer time when a transverse magnetic field
is applied. We note that, for small Hartmann numbers, i.e., for
Ha � 1, η ∼ μκ̄

H
, assuming that κ̄ � 1. Hence, C ∼ μLHa2

H
√

σρH

and D = ηL√
2σρH

∼ μκL

H
√

σρH
, again for κ̄ >> 1. Therefore, C +

D ∼ μL

H
√

σρH
(κ̄ + Ha2) ∼ μκL

H
√

σρH
, since κ̄ � 1 and Ha � 1.

Noting that k = Bε
a2 (for κ̄ � 1), we finally can have a scaling

estimate for the filling time, which takes the form

t s ∼ Lsa
2

Bκε

μκL

H
√

σρH
. (30)

Contrary to Eq. (30), for Ha � 1, we get η ∼ μκ̄Ha
H

and
C + D ∼ μL

H
√

σρH
(κ̄Ha + Ha2). This simply indicates that the

filling time takes the form

t s ∼ Lsa
2

Bκε

Lμ

H
√

σρH
(Ha2 + κ̄Ha). (31)

We conclude from estimates (30) and (31) that for low
values of Hartmann numbers the filling time is virtually
independent of the magnetic field strength, whereas for higher
values of the same, the filling time roughly varies quadratically
with Ha. The whole analysis has been executed using κ̄ � 1.
This is well justified, since the EDL thickness at best is �100
nm and hence κ � 107. For a channel height H � 100 μm,
κ̄ ∼ 100 − 1000 � 1.

IV. RESULTS AND DISCUSSIONS

A. Comparison of scaling estimates and actual numerical
solutions

We next attempt to compare the scaling analysis executed in
the previous section with the full scale numerical solutions of
Eq. (21). Towards this, we first compare the scaling estimates
for the early linear regime as reported in Sec. III A, with
the numerical solution. It is important to mention here that
we have taken the electrode spacing to be 10 cm and the
applied voltage difference between the two electrodes to
be 105 V [12], throughout the analysis. Figure 2 depicts
the comparative results of scaling for initial capillary filling
dynamics as given in Eqs. (22b) and (23b) (i.e., the linear and
the Washburn regimes) and the numerical solution to Eq. (21),
while the relevant parameters have been mentioned in the
figure caption. A good agreement can be observed between
the numerical and the scaling estimates. Note that the scaling
estimates have been plotted in the form xinviscid = M1t

√
σ

ρH

and xWashburn = M2
√

t
√

σ
μκ

, where M1 and M2 are constants
with values 1.0204 and 1.1769. As mentioned in Sec. III A 1,
the linear regime lasts for a very short time at the beginning,
where x (filling length) varies roughly as 10−6–10−4 m. This
implies that the majority of the linear regime persists over a
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Washburn Regime

Linear Regime

FIG. 2. Comparison between the scaling estimates and numerical
solutions. We have plotted the linear regime (squares) represented
in Eq. (22b), and the modified Washburn regime (dotted line, with
triangles) in Eq. (23b) along with the full solution of Eq. (20)
(continuous black line). The other relevant parameters have been
taken as κ̄ = 100, Ha = 1, θ = 45°, ζ = 50 mV. The x axis (time, t)
is in seconds (s) and the y axis (displacement, x) is in meters (m).

span much shorter than the channel height (for example, H =
500 μm, as considered throughout the present section). This
linear regime lasts until a time scale of t � 1 ms. Therefore,
a simple comparison of the present figure with the scaling
estimate previously derived by Das et al. [8] clearly reveals
that the linear regime in the present case has a much shorter
span than that realized in gravity-influenced capillary filling.
We also depict the Washburn regime in the same figure, where
the surface tension is balanced by viscous forces. This regime
starts much earlier (around x � 0.1 mm and t � 1 ms) as
compared to simple surface tension assisted capillary filling
demonstrated by Das et al. [8].

Figure 3 depicts the comparison between the approximate
long time solution and the full numerical solution of Eq. (20),
the other relevant parameters being mentioned in the caption.
We observe that these two solutions start matching from t̄ ∼
200, whereas at earlier times the present solution overestimates
the location of the capillary as the higher-order terms neglected

100 200 300 400 5000

0.2

0.4

0.6

0.8

1

t̄

x̄

Numerical Solution
Long − time Solution

FIG. 3. Comparison between the long time approximate solution
of Eq. (27) (black circles) and full numerical solution of Eq. (20)
(continuous black line). The other relevant parameters are given by ζ

= 50 mV, κ̄ = 100, θ = 45°, and Ha = 1.

in the expression for the electric field in Eq. (27) become
important.

B. General solution and stopping time

Having compared the scaling estimates and the numerical
solutions for capillary filling, we now attempt to present the
general solutions of filling distance as functions of time,
obtained from Eq. (21).

1. Implications of positive zeta potential

It has been pointed out earlier that for positive surface
potential on the walls, the capillary might stop after traversing
a certain distance, depending on the strength of the applied
electric field and other relevant parameters such as the
magnitude of the interfacial potential, characteristic EDL
thickness, etc. In this respect, it has also been mentioned
that the electrical forces can be used to oppose the motion,
much in the same manner as gravity, to arrest the capillary
advancement. However, the present method gives us more
precise control over the motion of the capillary, since we can
tune the strength of the electric field and also modify the other
relevant parameters.

In Fig. 4(a), we plot the capillary position (x̄) as a function
of time, for different Hartmann number values. The figure
shows that the capillary stops at a position x̄ ∼ 0.9, where, as

100 200 300 400 5000

0.2

0.4

0.6

0.8

1

t̄

x̄

Ha=0.1
Ha=2.5
Ha=5
Ha=8

100 200 300 400 5000

0.2

0.4

0.6

0.8

1

t̄

x̄

κ̄ = 50
κ̄ = 100
κ̄ = 250
κ̄ = 500

(a)

(b)

FIG. 4. (a) x̄ vs t̄ , for ζ 0 = 50 mV, κ̄ = 100, and θ = 0°, with
varying Hartmann numbers given by: Ha = 0.1, 2.5, 5, and 8. (b) x̄

vs t̄ with Ha = 1, ζ 0 = 50 mV, and θ = 20°, for different values of
κ̄ = 50, 100, 250, and 500.
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explained earlier, the surface tension force and the body force
due to electric field balance each other. While deriving the long
term solution in Eq. (29), we demonstrated that the capillary
filling time increases due to the presence of the magnetic field.
The figure indeed shows that the capillary takes more time
to reach the final equilibrium position, when Ha is increased.
Again, we observe that the equilibrium position is not altered
by the magnetic field, which is in accordance with Eq. (26).
The trend of a delay in the filling can be explained from the
fact that the effect of the magnetic field essentially acts as an
equivalent magneto-viscous force, which opposes the motion
of the capillary, as evident in Eq. (21). Therefore, an increase
in Ha slows down the capillary, which takes more time to reach
the final equilibrium position.

Figure 4(b) depicts the position of the capillary as a function
of time, for different values of characteristic EDL thickness,
the inverse of which is denoted by κ̄ . Again the capillary finally
reaches an equilibrium position, but now this equilibrium
length decreases as we increase the value of κ̄ , which is in
accordance with Eq. (26). We further observe that the time
taken by the capillary to reach the final position also increases
with κ̄ , which can be attributed to the fact that, as we increase κ̄ ,
the opposing body force due to the axial electric field increases,
along with the viscous resistance as expressed in Eq. (19). As
a consequence, the equilibrium length drops and the capillary
is slowed down, which leads to an increase in the time of
movement.

In Fig. 5, we demonstrate the variation in the time taken (t̄s)
by the capillary to reach the final equilibrium position with Ha,
while the other relevant parameters have been mentioned in
the caption. Along with the time obtained from the numerical
solutions, we also plot the scaling estimates for the stopping
time, presented in Eqs. (30) and (31). The scaling estimates are
plotted in the form t s = M3

Lsa
2

Bκε

μκL

H
√

σρH
for Ha � 1 and t s =

M4
Lsa

2

Bκε

Lμ

H
√

σρH
(Ha2 + κ̄Ha) for Ha � 1, where M3 and M4 are

constants, with values 5.4650 and 5.2126, respectively. Quite

10−2 10−1 100 101100

150

200

250

300

350

Ha

t̄ s

Numerical Solution
Ha << 1
Ha >> 1

FIG. 5. Comparison of scaling estimates of the capillary filling
time (ts) with the numerically estimated time from the solution
of Eq. (20). The scaling estimate for the small Ha [Eq. (30)] is
represented by the continuous black line and the same for large
Hartmann numbers [Eq. (31)] is denoted by dot-dash line. Black
circles denote the numerical estimate of ts . Other relevant parameters
are κ̄ = 100, θ = 45, ζ = 50 mV.
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FIG. 6. Stopping time (t̄s) vs κ̄ for varying Ha = 0.1, 1, 2, and
2.5, with θ = 20° and ζ0 = 50 mV.

good agreement is observed between the scaling estimates
and the numerically plotted times. As mentioned in the
previous section, the filling time remains constant for low
values of Hartmann numbers and increases approximately
proportionally to the square of Ha for higher values of the same.
This same feature is qualitatively verified in Fig. 4(a), where
the delay in the time for the capillary to stop is obvious. This
increase in the stopping time (t̄s) indicates that the capillary
motion is sustained for greater extent of time, although the
equilibrium length remains the same.

Figure 6 depicts the variation in stopping time (t̄s) with κ̄

for various values of Ha. It can be observed that the filling
time gets augmented when the Debye layer goes thinner, as
attributable to increased viscous resistance to the flow along
with an increased opposing electrical body force.

In essence, we can state that in cases of positive zeta
potential on the walls, the capillary mimics its motion under
the action of gravity and surface tension, as the capillary stops
rising after traversing a certain distance, when its motion is op-
posed by the external electric field. However, this equilibrium
distance can be intricately controlled, by tuning various pa-
rameters, such as the electric field strength, the Debye length,
and the zeta potential, along with the geometric parameters.
The general trend is that, whenever the capillary slows down,
the equilibrium length L̄s decreases, whereas the time taken
by the capillary to reach the equilibrium position is increased.
This slowing down might stem from different sources, such as
an increase in total drag resistance for increased Ha or κ̄ , or
a drop in the forward pulling force due to increased contact
angle at the interface. It has been demonstrated that, even if
the equilibrium length drops, which will make the capillary
traverse less distance, the time taken always increases for an
even larger decrease in the velocity of the capillary front.

2. Implications of negative zeta potential

Unlike positive zeta potentials, negative zeta potential on
the walls actually aids the capillary motion as evident from
Eqs. (8) and (21). Therefore, the fluid does not stop in such
cases and essentially witnesses perpetual advancement along
the channel. The liquid front eventually crosses the far side
electrode positioned at x̄ = 1 and experiences a constant
electrical body force from then onwards, as depicted in the
previous section.
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FIG. 7. x̄ (distance traversed by the liquid front after time t̄ =
100) vs Ha for varying θ = 0°, 30°, 45°, and 60°, with ζ = −50 mV
and κ̄ = 100.

Figure 7 demonstrates the variation in the distance reached
by the capillary (x̄) after time t̄ = 100, with Ha, for different
values of the contact angles. We observe a decline in the values
of distance traversed with a corresponding increase in Ha,
which stems from an increased resistance to the flow for an
increase in the magnetic field strength. A sudden change in
the length traversed is observed around x̄ = 1, as electrical
body force becomes constant from then onwards. For relatively
higher Ha, the liquid front is not able to cross the far side
electrode, for the time considered in the present figure.

C. Possibility of existence of oscillatory regime

Previously, researchers have demonstrated [6–9,31] that for
capillary filling with low viscosity fluids, the Washburn regime
can be potentially replaced by an oscillatory regime, where
the capillary front undergoes damped oscillations around
the “Jurin” height and eventually stops. In these cases, the
linear regimes are directly followed by the oscillatory regime,
since the viscous forces are low. Here we also attempt to
investigate the possibility of occurrence of a similar oscillatory
regime by tuning various relevant parameters, most notably the
magnitude of the actuating electric field. Following Das and
Mitra [9], we note that the governing Eq. (21) can be expressed
in the following equivalent form:

d

dt̄

[(
x̄ + πH

8L

)
dx̄

dt̄

]
= A − B

x̄

x̄ + (1 − x̄)ε̄
− Cx̄

dx̄

dt̄
.

(32)

In Eq. (32), A = cosθ , B = (E0L)εlζ κ̄tanh(κ̄/2)
σH

, and C =
L√

2σρH
(μHa2

H
+ η). It was demonstrated by Das and Mitra [9]

that for a choice of C/B � 0.1–0.01, the capillary front
underwent oscillations about the “Jurin” height. Considering
the above range, we plot the positions (x̄) of the capillary front
with time for A = 1 and for the following three values of
the C/B ratios: 0.001 68, 0.003 36, and 0.0168, as shown in
Fig. 8. Quite intuitively, a small C/B ratio indicates that the
viscous forces are quite small as compared to the electrical
body forces acting on the liquid front. We observe from the
present figure that for C/B � 1, the capillary front undergoes
clear oscillations about the equilibrium height. As we increase
the value of this ratio, oscillations slowly tend to die down and
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/
L̄
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C/B = 0.00168

C/B = 0.0168

C/B = 0.00336

FIG. 8. Solution of Eq. (32) with A = 1 and different C/B ratios,
as stated in the inset. We note that for C/B = 0.001 68 we observe
oscillations of the capillary front, whereas for higher values of the
same this oscillation is not so prominent. However, such small ratios
for C/B are not practically possible to achieve for the given setup.

for values of C/B close to 1, the oscillations cease to exist and
the capillary front directly reaches the equilibrium height.

Previously Das and Mitra [9] demonstrated that the condi-
tion for the existence of the oscillatory regime is dictated by the
ratio of the Ohnesorge (Oh) number to the Bond number (Bo),
which typifies the ratios of the viscous force and gravity. In the
present analysis, gravity is basically replaced by the electrical
body force. Therefore, we first attempt to determine the orders
of magnitudes of the viscous and the electrical forces. Towards
this we note that, in Sec. III A 2, we have already shown that
the viscous drag (per unit width) scales as Fvisc ∼ μuκx. The
electrical body force simply scales as Felec ∼ qEref , where q

is the total charge, which, per unit width, which in turn is on
the order of q ∼ εlζκx, thus making Felec ∼ εlζκxEref . The
ratio of the two forces is then Fvisc

Felec
∼ μu

εlζE
. Now, we recall

from the Eq. (22b) that u ∼ x/t ∼ √
σ/ρH , which makes

the ratio Fvisc
Felec

∼ Oh( σ
εlEζ

). Hence it follows that the condition

Oh/β � 1 [β−1 = σ/(εlEζ )] is equivalent to Oh/Bo � 1,
which will lead to the existence of an oscillatory solution. In
the same spirit, for Oh/β � 1 or Oh/β � 1, the capillary front
will witness significant viscous forces which will finally lead
to preclusion of the oscillatory regime. We note from Fig. 8
that Oh/β turns out to be 0.0011 for C/B = 0.001 68, which
is much smaller than unity. However, in the earlier figures, for
example, in Fig. 4(a), the C/B ratio is C/B = 16.82 � 1 (for
C = 163.71 and B = 9.73), which makes Oh/β = 10.7573
and hence no oscillations are observed.

We now investigate the probable values of the applied elec-
tric fields and related parameters for which we can obtain the
oscillatory regime in capillary filling dynamics. As mentioned
earlier, usually for water Oh � 0.005 for channel height on the
order of �10−4 m. Noting that εl ∼ 6 × 10−10, ζ ∼ 50 mV, it
follows that for Oh/β � 1 to be satisfied, E � 107 V/m. In
fact, in Fig. 8, for C/B = 0.001 68, we get E � 1010 V/m,
taking water as the filling liquid. Noting that the breakdown
potential for water is about 7 × 107 V/m, it becomes obvious
that taking water as the filling liquid, it is practically impossible
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to obtain the oscillatory regime. Even for very low viscosity
organic fluids, the field strength needs to be very high in
order to obtain the oscillatory regime. Therefore it can be
inferred from the present analysis that for electrically actuated
capillary motion the oscillatory regime is extremely difficult
and probably practically impossible to obtain, in contrast to
gravity-influenced capillary filling, where the presence of an
oscillatory regime has been experimentally verified [6,7].

V. COMPARISON WITH EXPERIMENTS

In this section we take a brief look at the available
experimental techniques for capillary motion and also compare
our results with the previously reported pertinent experimental
work.

A. A brief review of available experimental techniques for
capillary filling and Electro-Magneto-Hydrodynamics

Experiments on capillary filling are abundant in the litera-
ture, where the filling process has been observed for a number
of different fluids. Lucas [3] was among one of the earliest to
perform experiments on capillary filling for a series of different
fluids. Around the same time, Washburn also performed
experiments on capillary filling [4], in vertical channels. Both
Lucas [3] and Washburn [4] provided theoretical models for the
filling process, which match with the experimental predictions
to a great extent. A detailed review of a standard capillary
filling experimental setup can be found in the seminal work of
Washburn [4].

In more recent years, Quere [7] has done experiments
in vertical capillary filling, for a number of organic and
inorganic fluids. His experimental results revealed oscillation
of a capillary front near the Jurin or equilibrium height, for
fluids with low viscosities. Very recently, these oscillations
have also been obtained from theoretical considerations by
Zhmud et al. [6] and Das and Mitra [9]. Experiments of Quere
[7] have also revealed the existence of a linear x vs t regime
of filling, preceding the much celebrated Washburn regime,
where the x ∼ √

t relation for filling is followed. Existence
of such regime has also been predicted by theoretical [8,9]
as well as molecular dynamics simulations [25] in recent
years. In our analysis we have depicted that in the present
case also, there exists a linear regime; i.e., the x � t relation
is witnessed for the initial times of capillary filling. More
recently, Radiom et al. [32] have performed experiments
on filling in closed capillaries with entrapped gas and have
shown that the capillary comes to an equilibrium position as
it is pressurized by the entrapped gas. Additionally, Ichikawa
et al. [33] have performed experiments on capillary filling in
rectangular microchannels, along with theoretical predictions
through numerical simulations of capillary motion equations.
Barraza et al. [34] have performed experiments on advancing
contact lines of Newtonian fluids, between two parallel plates.

A close review of these and many more studies on
capillary filling suggests that the experimental setup for
studying capillary filling process is a fairly standard one,
the details of which can be found in any of the papers
referenced above. Since our work also involves electrokinetic
and magnetic actuation of liquid, it is desirable to include

a brief review of the previously reported experimental studies
on electro-osmosis and magneto-hydrodynamics. Experiments
on electro-osmotic flows (EOF) are aplenty in the literature
[35–39], dealing with steady EOFs with uniform surface
potential [36] and EOFs with patterned surface potential [37],
which generate recirculation rolls in fluids. In more recent
times, a number of experimental studies on ac electro-osmosis
have been performed [35,38,39], where asymmetric arrays
of electrodes on the surfaces with ac potential generate net
finely tunable flows. Experiments on magneto-hydrodynamics
have also been performed, a number of which are focused
towards designing of magneto-hydrodynamic (MHD) pumps
[40–42]. Previously, Huang et al. [41] have devised a mi-
crofluidic magneto-hydrodynamic pumping apparatus using
conventional machining techniques; a slightly different MHD
micropump was designed and tested by Jang and Lee [42],
where the directions of the fields were changed. A detailed
review of the setup used for the experiments can, again, be
found in the aforementioned papers. However, experimental
studies on capillary filling with electrical and magnetic effects
are relatively scarce. In recent years, Phan et al. [27] have
performed experiments on capillary filling in open-end and
closed-end nanochannels with electrolyte solutions, where the
walls of the capillary had induced charge or potential. In the
next subsection, we will attempt to match our solutions with
the experimental results of Phan et al. [27].

B. Comparison of present theory with experiments

As mentioned earlier, in this subsection we are going
to compare the results from our present analysis with the
experimental results previously reported by Phan et al. [27].
Their setup consisted of different lengths of nanochannels
(500 μm, 1 mm, 1.5 mm, 2 mm, and 2.5 mm), while the
channels were of two different heights H = 45 nm and 80 nm,
the width of the channel being constant at w = 10 μm. Among
all the results reported by Phan et al., we here (for the sake of
brevity) chose to compare our results for filling of ethanol into
a horizontal closed capillary in the 45-nm channel (Fig. 7(a)
in Ref. [27]). Towards this, we first solve the corresponding
governing equations for capillary filling and then proceed
towards matching the solutions with the experimental data.
In this case, as explained by Phan et al. [27], the electric field
will be an induced one, instead of being externally applied.
In other words, the electric field acting upon the fluid in
the present case is nothing but the streaming electric field.
The basic equation here for capillary filling remains Eq. (18),
with an additional forcing term that comes in because of the
presence of entrapped air [27,32]. Including this force, the
equation for capillary filling becomes [27,32]

d

dt

[(
ρHx + ρπH 2

8

)
dx

dt

]

= 2σcosθ − Fe − V x
dx

dt
− p0Hx

L0 − x
. (33)

The last term in (33) is the contribution of the entrapped air
in the channel [27,32], assuming that the gas follows Boyle’s
law. Here, Fe is the body force generated from the streaming
potential, given by Fe = ∫ x

0 Esds
∫ H/2
−H/2 ρe(y)dy, where Es is
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the streaming electric field. In Eq. (33), V is given by V =
2μ

H

(F̄1+GF̄2)
(K1+GK2) , while the rest of the symbols have already been

mentioned in the discussion following Eq. (15). From this
form of the viscous force we can appreciate the advantage
gained by the general formulation of the viscous forces that

was done previously (please refer to Sec. II). Here, we must
take the pressure gradient into account, since the streaming
electric field is directly proportional to the pressure gradient
and hence the term F1 (which bears the effect of the pressure
gradient) cannot be neglected. The constants are given by

F̄1 = lim
Ha→0

tanh(Ha/2)/Ha = 1/2,

F̄2 = − lim
Ha→0

κ̄2

κ2 − Ha2
{Hatanh(Ha/2) − κ̄tanh(κ̄/2)} = κ̄tanh

(
κ̄

2

)
,

K1 = lim
Ha→0

1

Ha2

{
1 − tanh(Ha/2)

(Ha/2)

}
= 1

12
,

and

K2 = − lim
Ha→0

κ̄2

κ̄2 − Ha2

{
tanh(κ̄/2)

(κ̄/2)
− tanh(Ha/2)

(Ha/2)

}
= 1 − tanh (κ̄/2)

κ̄/2
.

Now, to specify G, we need to calculate the streaming potential. This is done by making the total current, i.e., the sum of
streaming and conduction current zero [43]. This can be expressed in the following form:∫ H/2

−H/2
ρeupdy +

∫ H/2

−H/2
ρeuedy + σeEsH = 0. (34)

In (34) Es is the streaming electric field, and up (y) = − 1
2μ

dp

dx
(H 2

4 − y2) and ue (y) = − εlEsζ

μ
[1 − cosh(κy)

cosh(κH/2) ], while the charge
density is given by Eq. (4). Equivalently, one can write

⇒ dp

dx
Ip + EsIe + σeEsH = 0, or

Es

dp/dx
= − Ip

Ie + σeH
= G1. (35)

In (35), the Ip and Ie are given by

Ie = C1(κ̄ + sinh(κ̄))
2κcosh(κ̄/2)

− 2C1

cosh(Ha/2)

[
(Ha/H )sinh(Ha/2)cosh(κ̄/2) − κcosh(Ha/2)sinh(κ̄/2)

(Ha/H )2 − κ2

]
,

C1 = − ε2
l ζ

2H 2κ4

ηcosh(κ̄/2)(κ̄2 − Ha2)
,

Ip = 2C2sinh(κ̄/2)

κ
− 2C2

cosh(Ha/2)

[
(Ha/H )sinh(Ha/2)cosh(κ̄/2) − κcosh(Ha/2)sinh(κ̄/2)

(Ha/H )2 − κ2

]
,

C2 = − εlζκ2H 2

ηHa2cosh(κ̄/2)
.

The electrical body force is then given by

Fe =
∫ x

0
Esds

∫ H/2

−H/2
ρe(y)dy = −2xG1

dp

dx
κεlζ tanh(κ̄/2). (36)

We further note that the average velocity in the present case
can be expressed as

dx

dt
= −H 2

η

dp

dx
(K1 + GK2). (37)

Therefore, in conjunction with (37), the electrical body force
in (36) can be expressed as

Fe = G1Q

(−H 2/η)(K1 + GK2)
x

dx

dt
, where

G = −εlζ

H 2
G1 and Q = −2κεlζ tanh(κ̄/2). (38)

Combining all the forces, as derived earlier, the final equation
for the motion of the liquid front can be written as

d

dt

[(
ρHx + ρπH 2

8

)
dx

dt

]

= 2σcosθ − (E + V )x
dx

dt
− p0Hx

L0 − x
,

E = G1Q

(H 2/η)(K1 + GK2)
. (39)

Since the channel dimension is small, the effect of inertia can
be safely neglected [4,27], based on the fact that the liquid
mass in the capillary will be very small. Therefore, we recast
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Eq. (39) in the following form, neglecting the inertial effects:

dx

dt
= N1A

x
− N2B

L0 − x
, where

A = 2σcosθ

β1
, B = p0H

β1
, and β1 = E + V. (40)

In Eq. (40) we have multiplied the forward pulling capillary
force and the resistive forces with prefactors N1 and N2,
respectively. The significance of these prefactors is discussed
subsequently. The solution to Eq. (40) can easily be obtained
in the form t = f (x) with the initial condition x(t = 0) = 0 in
the following form:

t = − N1N2ABL2
0

(N1A + N2B)3
log

(
1 − N1Ax + N2Bx

N1AL

)

− N2BLx

(N1A + N2B)2
+ x2

2(N1A + N2B)
. (41)

From (41), one can easily compute the position of the capillary
front (x) as a function of time through any numerical method
(for example, the Newton-Raphson method). Note that with
N1 = N2 = 1, the form of the solution is identical to that
obtained by Phan et al. [27]. Figure 9 shows the experimental
data of Phan et al. [27], along with the theoretical predictions
based on Eq. (41), for capillary filling of ethanol. The other
relevant parameters have been mentioned in the caption of the
figure. It can be noted from the figure that good agreement
between the theory and experiment is observed for all the
reported cases, i.e., channel lengths. It is important to mention
here that the relevant liquid properties along with the Laplace
pressure have been taken from the paper of Phan et al. [27]
and the zeta potential (ζ ) has been taken to be 25 mV.

Finally, it is important to mention the significance of
the factors N1 and N2. Similar prefactors have previously
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FIG. 9. (Color online) Plot showing comparison of experimental
results with the theoretical model for capillary filling of ethanol
under streaming potential field. The fluid property values are εl =
2.16 × 10−10 F/m, μ = 1.0036 × 10−3 Pa s, ρ = 789 kg/m3,
σ = 0.0224 N/m, Laplace pressure = 9.96 × 105 N/m2. Other
simulation parameters are N2 (viscous drag factor) = 2.5 and N1

(Laplace pressure factor) = 1.2. The zeta potential is ζ = 25 mV and
κH = 26.6.

been used by Phan et al. (through augmentation of apparent
viscosity [27]) and Das and Mitra [9] for comparison with
experimental data. A detailed discussion on these factors
can thus be found in the later work [9]. However, for the
sake of completeness, we briefly mention here the physical
significance of these constants. The factor N1 basically
alters the forward pulling capillary force. Therefore, this
constant signifies the effect of dynamically evolving contact
angle [9,12,32]. Additionally, we have used a parallel plate
geometry for the present theoretical predictions, although in
the experiments rectangular channels were used. Therefore,
the resulting capillary force will be larger in case four walls
are bounding the surface instead of two walls. Hence N1

can be considered as a combination of all these factors,
augmenting the capillary force in the process. On the other
hand, N2 primarily signifies augmented viscous and resistive
forces. It is based on the fact that typical capillary filling
is characterized by three regimes [12,44], entry, Poiseuille,
and meniscus traction regime. We have mainly considered the
second regime, i.e., the Poiseuille regime, for our study and
accordingly have calculated the drag as shown in Eq. (15).
However, the other two regimes, specifically the meniscus
traction regime, offers greater viscous drag to the advancing
liquid front and therefore the net viscous drag increases. Apart
from this, the viscous drag is also somewhat augmented due to
the presence of sidewalls, in a rectangular microchannel, used
in the experiments. Therefore, the constant N2 is a combination
of all these factors, which results in higher viscous drag.

VI. CONCLUSIONS

In the present study, we have assessed the capillary
filling dynamics in microfluidic channels in the presence
of electromagneto-hydrodynamic interactions, simultaneously
subjected to EDL effects. We have considered an axial electric
field and transverse magnetic field acting on an electrolyte in
a parallel plate channel configuration. We have delineated the
consequences of magneto-viscous effects on various regimes
of the capillary filling dynamics. We have demonstrated that
for positive zeta potential on the channel walls, the liquid
front can mimic its motion under the action of equivalent
gravitational force. We have executed a scaling analysis of the
relevant forces and have also derived a long term solution for
the cases of positive zeta potential. Our scaling estimates reveal
that the initial linear regime in the capillary filling also exists
in the present case, but for a very short duration of time, since
the viscous forces start dominating within a very short distance
of capillary imbibition. The present scaling analysis along with
the semianalytical approach also reveals the occurrence of a
modified Washburn regime.

We have further investigated the time taken by the capillary
to reach the equilibrium height for different combinations of
parameters, and have shown that the filling time increases with
corresponding increase in the values of Hartmann number and
inverse of the characteristic EDL thickness. We have addi-
tionally executed a scaling analysis to estimate the capillary
filling time as a function of the Hartmann number and worked
out two different regimes of variations in the filling time with
the same. Our analysis also points out that the previously
reported oscillatory capillary filling regime can be obtained
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only under extreme conditions, which become impossible to
realize in experimental practice. In the penultimate section we
have presented a review of some of the previous experiments
performed on capillary filling, under various conditions. We
have also compared our results to a relevant experiment in
capillary filling and found good agreement between theoretical
prediction and experimental data.

The practical significance of the present study can be far
reaching. Following the inferences drawn from the present
study, it can be concluded that interplay between the induced

electric field due to EDL effects and the externally applied
electrical and magnetic fields may alter the classical notion
of capillary filling dynamics in a rather interesting and
scientifically intriguing manner. From a more application
oriented perspective, the external electric and magnetic fields
can be judiciously employed as tuning parameters towards
modulating the dynamics of capillary filling in a rather intricate
manner, bearing immense consequences towards designing
on-chip micro–total analysis systems for medical diagnostics
and other important applications.
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