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Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow
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We numerically investigate the saturation of the hydromagnetic instabilities of a magnetized spherical Couette
flow. Previous simulations demonstrated a region where the axisymmetric flow, calculated from a 2D simulation,
was linearly unstable to nonaxisymmetric perturbations. Full, nonlinear, 3d simulations showed that the saturated
state would consist only of harmonics of one azimuthal wave number, though there were bifurcations and
transitions as nondimensional parameters (Re, Ha) were varied. Here, the energy transfer between different
azimuthal modes is formulated as a network. This demonstrates a mechanism for the saturation of one mode and
for the suppression of other unstable modes. A given mode grows by extracting energy from the axisymmetric
flow, and then saturates as the energy transfer to its second harmonic equals this inflow. At the same time, this
mode suppresses other unstable modes by facilitating an energy transfer to linearly stable modes.
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I. INTRODUCTION

Two spheres, one inside the other, in differential rotation
with a layer of fluid between will generate a broad array of
possible dynamics in the enclosed fluid, depending on the
aspect ratio, the rotation rates of the spheres, and the viscosity
of the fluid. If the fluid is electrically conducting and permeated
by a magnetic field, applied and/or self-excited, the array of
possible dynamics broadens further. The configuration, known
as magnetized spherical Couette flow, was first studied numer-
ically by Hollerbach [1] as an extension of the nonmagnetic
spherical Couette problem [2,3]. Since then the flow has been
investigated, numerically [4–10] and experimentally [11–14],
under a variety of imposed fields and magnetic boundary
conditions with sometimes surprising results. For example, in
the case of a conducting inner boundary an applied magnetic
field can induce a flow rotating faster than the inner sphere or
rotating in the opposite direction to the inner sphere, depending
on the applied field configuration [5]. The superrotating case
was experimentally demonstrated in the Derviche Tourneur
Sodium (DTS) experiment [10]. A compendium of magnetized
spherical Couette results can be found in Ref. [15].

A long, albeit contentiously, discussed result of mag-
netized spherical Couette flow is the observation of an
angular momentum transporting instability in a turbulent
(Re ≈ 107) liquid metal flow, induced by an applied axial
magnetic field, that was described in Ref. [14] as the long
sought after magnetorotational instability (MRI). This would
be momentous as the MRI is commonly considered the
mechanism by which angular momentum is removed from
accretion disks around black holes, allowing matter to fall
into the center. This is also potentially relevant to angular
momentum transport in protoplanetary disks. The instability
is driven by magnetic tension, which links together fluid
parcels so that a parcel that moves outward is azimuthally
accelerated, thus being pushed farther outward, and a parcel
that moves inward is azimuthally decelerated, thus being
pulled farther inward [17]. In contrast to the MRI as usually
described [18,19], the instability measured in Ref. [14] was
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nonaxisymmetric and demonstrated an equatorial symmetry
whose parity depended on the strength of the applied magnetic
field. Subsequent numerical investigations [4,6] turned up a
collection of inductionless instabilities—related to the hydro-
dynamic jet instability, the Kelvin-Helmholtz-like Shercliff
layer instability, and a return flow instability—that replicated
these parity transitions, as well as the torque on the outer sphere
(the proxy measurement of angular momentum transport).
Figure 1 shows the streamlines of meridional circulation
and isocontours of angular momentum for the axisymmetric
background flow over contours of the energy densities of the
various instabilities. These instabilities were found by first
evolving a two-dimensional (axisymmetric) flow to steady
state at a given (Re, Ha), and then applying a linearized Navier-
Stokes (LNSE) calculation to find the fastest-growing/slowest-
decaying eigenmode (in a manner similar to [6]). A more mod-
estly scaled (Re < 105), but more comprehensively diagnosed
[ultrasonic Doppler velocimetry (UDV), electric potential
measurements], spherical Couette experiment is being carried
out at the Helmholtz-Zentrum Dresden-Rossendorf in order to
better characterize these instabilities, their criteria, and their
saturation. Towards that end, the Hollerbach code [20] is being
run to predict the signatures of the various instabilities in the
available diagnostics. Presented here is a spectral analysis of
the simulations, whose intent is to explicate the saturation and
transition of Shercliff and return flow instabilities through a
comparatively small number of nonlinear interactions. Table I
lists dimensional and nondimensional parameters of the under
construction experiment, the simulations presented here, and
two other spherical Couette experiments for comparison.

The flow is driven by the rotating inner sphere and evolves
according to the incompressible Navier-Stokes equation:

∇ · U = 0,

∇ × U = ω, (1)

∂ω

∂t
= ∇ × F + ∇2ω.

The body force F is given by

F = Re(∇ × U) × U + Ha2(∇ × B) × B, (2)

with U and B vector fields of the velocity and magnetic fields
respectively, Re the fluid Reynolds number (r2

1 �/ν, r1 inner
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FIG. 1. Profiles of the energy density of the most unstable
eigenmode from an LNSE analysis of flows at three different
Hartmann numbers at Re 1100. (a)–(c) show streamlines of the
meridional flow over the energy density of the m = 2 harmonic.
(d)–(f) show contours of the angular momentum over the same.
(a) and (d) show the equatorially antisymmetric jet instability (Re
1100, Ha 10). (b) and (e) show the equatorially symmetric return
flow instability (Re 1100, Ha 30). (c) and (f) show the equatorially
symmetric Shercliff layer instability (Re 1100, Ha 70).

radius, � inner sphere rotation rate, ν bulk viscosity of the
fluid), and Ha the Hartmann number (B0r1

√
σ/ρν, B0 applied

field strength, σ electrical conductivity, ρ mass density).
The magnetic field is split into an applied (B0) and an

induced (b) component, where the applied field is curl free
within the flow domain. The Lorentz force is then given by

(∇ × B) × B = (∇ × b) × B0 + (∇ × b) × b, (3)

where b is given by the magnetic induction equation in the
(so-called inductionless) limit where diffusion (∇2b) exactly
balances advection [∇ × (U × B0)]:

0 = ∇2b + ∇ × (U × B0). (4)

The (∇ × b) × b term in Eq. (3) is taken to be small. The
inductionless limit is valid at low magnetic Reynolds number

Rm ≡ τdiff

τeddy
= L2/η

L/U0
� 1,

where τdiff is the magnetic diffusion time, τeddy is the large
eddy turnover time, L is the characteristic scale length, η is
the magnetic diffusivity, and U0 is the characteristic velocity.
This implies that magnetic fields diffuse away on such rapid
time scales, relative to the flow dynamics, that they can only
take the shape/value at a given instant in time that the flow
would induce in that instant alone. Because the field generated
in that instant must take its energy from the flow, the field
generation acts as an extra drag on the development of the
flow (akin, if not identical, to viscosity).

The flow is simulated using a code, described in Ref. [20],
that defines the magnetic and velocity fields spectrally, in
terms of vector spherical harmonics divided into toroidal and
poloidal components. The magnetic boundaries are taken to
be insulating (zero toroidal magnetic field outside the flow,
zero jump in poloidal field at the boundaries); the flow is
taken to be no-slip at the inner and outer boundaries. This
paper concerns itself with only the azimuthal component of
the spectral decomposition, and with interactions between
different azimuthal flow modes. The simulations presented
herein were run with spectral resolutions of 60 radial modes,
200 latitudinal modes, and 20 longitudinal modes, consistent
with other publications [21] on the topic.

The code treats (1) pseudospectrally, with the spectra being
expanded out into real space to calculate (2) and (4) and
then transformed back. This is a quite normal method and
usually the most efficient way to go about solving the problem
(multiplications are easy in real space, derivatives are easy
in spectral space). If the problem were treated spectrally,
the computer time per time step would increase, but the
flow would evolve identically to the pseudospectral code.
The analysis presented below takes individual time steps of
the pseudospectral code, and then interprets the dynamics
at these time steps in terms of three-wave coupling of spectra.
See Appendix A for a detailed explanation of this process.

The rest of the paper will proceed as follows. Section II
provides the definition of the nonlinear interactions and an
introduction to the nomenclature used to describe them.
Sections III and IV below contain analyses based on networks
of nonlinear interactions for the Shercliff layer instability and
the return flow instability, respectively. Section V concludes
the paper.

TABLE I. List of typical dimensional and nondimensional parameters for the first Maryland experiment [14], DTS [11], the (under
construction) HZDR experiment, and the simulations performed here. Fluid parameters for liquid sodium and GaInSn are taken from [16].

Maryland [14] DTS [11] Dresden simulations

fluid Na Na GaInSn
ν, viscosity (m2 s−1) 7.4 × 10−7 7.4 × 10−7 2.98 × 10−7

ρ, density (kg m−3) 927 927 6360
σ , conductivity (ohm−1 m−1) 1.0 × 107 1.0 × 107 3.1 × 106

r1, inner radius (cm) 5 7.4 3 or 4.5
r2, outer radius (cm) 15 21 9
�, inner sphere rotation (rad s−1) 8 25 0.01
B0, applied magnetic field (mT) <90 axial 62 dipole <160 axial axial
η, aspect ratio 0.33 0.35 0.33 or 0.5 0.33 or 0.5
Re, Reynolds number (�r2

1 /ν) 1.3 × 106 105 103 �1500
Rm, magnetic Reynolds number (μ0σ�r2

1 ) 4 10 10−3 0, by construction
Ha, Hartmann number (B0r1σ

1/2ρ−1/2ν−1/2) 5 × 102 5 × 102 <1.6 × 102 <100
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II. CHARACTERIZING INTERACTIONS

When considering the solution to a nonlinear differential
equation one typically looks for some characterizing value
from which a meaningful interpretation of the evolution can
be made. Previous magnetized spherical-Couette studies [4,5]
drew their conclusions from the torque on the outer sphere, in
part because a physical experiment would have access to that
measurement directly. Other studies [6,21] used the energies
contained in individual azimuthal modes to demonstrate
transitions between different states as the nondimensional
parameters were varied. Here, we are going to propose the
three-wave coupling between azimuthal modes, complex as
it may be to fully consider, as the relevant characterization.
A similar characterization was done in Ref. [22] for a
kinematic dynamo problem. There the velocity field catalyzed
the interactions of magnetic modes, but was itself unaffected
(as per the definition of kinematic dynamo problem); here the
velocity modes are the catalysts and the reactants.

We start by defining an inner product, which mode energies
and energy transfers will be defined with, by the volume
integral of two vector fields dotted together:

〈A,B〉=
∫ 1/η

1
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ A(r,θ,φ) · B(r,θ,φ).

(5)

From this we define the energy contained in each mode

Em = 1
2 〈Um,Um〉, (6)

with the change in energy in a given mode from some small
change given by the Taylor expansion:

δEm = 〈Um,δm〉, (7)

where δm is a small perturbation to the velocity field of
azimuthal mode m.

The individual δms to be considered come from the forcing
Eq. (2), which can be broken up into a collection of interactions
between individual m modes represented by the effect of the
coupling on the target mode:

(a,b → c) = 〈[(∇ × Ua) × Ub + (∇ × Ub) × Ua],Uc〉; (8)

i.e., the addition or reduction of energy in mode c from the
beating of modes a and b defines (a,b → c). The energy
dynamics can also be considered in terms of a transfer from one
mode to another, mediated by a third. This is represented by

(a
b−→ c), which represents energy being removed from mode a

and deposited in mode c through the interaction with mode b.

To use the language of graph theory,
b−→ is an edge connecting

two nodes a and c. Typically (c
a−→ b) and (b

c−→ a) are also
nonzero. Throughout this paper, interaction will be used as a
general term for both beats and edges.

This analysis assumes that the change in energy in a given
mode during a given time step is well represented by the linear
sum of individual nonlinear interactions between modes

γ c ≡ ∂Ec

∂t
≈ Ec(t + δt) − Ec(t)

δt
≈

∑
a,b

(a,b → c)

δt
; (9)

that the interactions between a given triplet of modes (a, b,
and c) only act to redistribute energy among them,

(a,b → c) + (b,c → a) + (c,a → b) = 0; (10)

and that energy is only added to or removed from the instability
through interaction with the axisymmetric background,

∂
∑

m Em

∂t
=

∑
m

(m,0 → m), (11)

where all other interactions only act to redistribute energy
between the various modes. All three assumptions are checked
numerically as the analysis code is run and have heretofore held
to within one percent.

The consequence of (10) is that any given triplet of beats
can be represented entirely by two edges. For a triplet with
a 
= b 
= c, one beat of (a,b → c), (b,c → a), and (c,a → b)
will have a larger magnitude than and opposite sign to the
others. For (a,b → c) > 0, mode c is acting as an energy sink,
and drawing energy (unevenly) from modes a and b. This can
be represented by two edges

(a
b−→ c) = −(b,c → a),

(b
a−→ c) = −(c,a → b),

where (m1
m2−→ m3) is the energy drawn from m1 and deposited

in m3 from the triplet. For (a,b → c) < 0, mode c is acting as
an energy sink and depositing energy (unevenly) into modes a

and b, which is represented as

(c
b−→ a) = (b,c → a),

(c
a−→ b) = (c,a → b).

The transfer from m1 to m2 or vice versa is accounted for by
the difference between (m1

m2−→ m3) and (m2
m1−→ m3).

When describing the edges, all diffusive effects are included

with the axisymmetric flow, i.e., as a part of (a
0−→ a). While

viscous diffusion as accounted for in the code communicates
energy between radial modes/nodes, it does not communicate
between different latitudinal or azimuthal modes. In the
discussion to follow, magnetic effects will also be included as a

part of (a
0−→ a). Because B0 is axisymmetric in all simulations

presented, both ∇ × (Ua × B0) and (∇ × ba) × B0 have zero
projection onto any mode m 
= a. Similarly, if quadratic effects
of the induced magnetic field [the (∇ × b) × b term in Eq. (3)]
were included, they would be folded into the (a

a−→ 2a) and
(a

a−→ 0) edges.
The purpose of these assumptions is to allow the nonlinear

dynamics of the flow to be represented in terms of a network
of interactions. This network formulation is applicable for any
system where there is some global quantity, such as energy
or helicity, for which the presence in a given mode of a
dynamic system is quantifiable, and for which the transfer
of this quantity between modes is also quantifiable. Once a list
of edges and nodes has been generated, there are open source
tools to visualize the graph. Here we make use of GRAPHVIZ

[23].
Sections III and IV below contain analyses based on such

networks. In these analyses there is sometimes reference made
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to λm. This represents a guess of the growth rate of mode m

based on

λm = emEm, (12)

where em is the eigenvalue of the fastest-growing/slowest-
decaying eigenmode of the LNSE analysis. The guess assumes
that the flow found for the given m in the fully 3d calculation
is identical to that eigenmode. This is a good assumption only

if (m
0−→ m) = λm = γm.

As the Shercliff layer instability has the simplest network,
that is where we shall begin.

III. SATURATION OF THE SHERCLIFF LAYER
INSTABILITY

The Shercliff layer is a shear layer that arises in spherical
Couette flows where the magnetic field is strong enough to
force the fluid inside the inner sphere’s tangent cylinder to
corotate with the inner sphere. The fluid outside the tangent
cylinder is in corotation with the outer sphere (i.e., at rest in our
simulations). The instability that can arise in this context [see
Figs. 1(c) and 1(f)] is akin to a Kelvin-Helmholtz instability,
and was studied fairly extensively in Ref. [5].

Figure 2 shows the energy content of each azimuthal mode
for a run with η = 0.5, Re = 1000, Ha = 70. This is where
the m = 2 mode is unstable, but the m = 3 mode is (just
barely) still stable. The bulk of the energy lives in the m = 2
azimuthal mode, which grows exponentially and then begins
to asymptote around t = 80. The higher harmonics of m = 2
grow alongside the first harmonic, and begin to saturate at
the same time. The energies in the odd modes are all much
much smaller than those in the even modes, and as the even
modes asymptote, the odd modes begin to decay roughly
exponentially.

Figure 3 shows the network of interactions at a point
during the saturation phase of the instability. This is made
up only of the harmonics of m = 2. Herein lie examples
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FIG. 2. (Color online) Time series of energies contained in each
azimuthal mode for a simulation with η = 0.5, Re = 1000, Ha =
70. The vertical line indicates the time slice the network diagram in
Fig. 3 is made from.

FIG. 3. (Color) Network of interactions for the time indicated in
Figs. 2, 4, and 5. The diagram should be interpreted as follows. The

color of each arrow indicates b in (a
b−→ c). Here the interactions

are also written out explicitly along the edges. The size of each box
scales with the logarithm of the energy in the mode at the given
time step. The numbers indicated by nlin and axi are, respectively,
the ∂Em

∂t
of the mode for the full simulation and the influence of the

axisymmetric component (m
0−→ m). The strength of the connection

a
b−→ c is written along the edge. The width of each edge scales with

the logarithm of the connection strength. The black border of each

node is scaled with the logarithm of the magnitude of (m
0−→ m), with

dashed lines indicating an energy sink and a solid line indicating an
energy source. The nodes are limited to a,c ∈ {2,4,6,8}; the edges
are limited to b ∈ {2,4,6}.

of most of the types of edges that will be of interest. For

example, (2
2−→ 4) and (4

4−→ 8) represent modes interacting
with themselves nonlinearly and depositing energy into their
second harmonic. Modes m = 6 and m = 8 are both acting as

sinks [(2
4−→ 6

2←− 4),(2
6−→ 8

2←− 6)]. The vast majority of the

dynamics are contained in the (2
0−→ 2),(2

2−→ 4), and (4
0−→ 4)

edges. This dominance is demonstrated more clearly in Fig. 4,

where the growth of m = 2 is indistinguishable from (2
0−→ 2)

until t ≈ 80. At this point (2
2−→ 4) is on the same order of

magnitude as (2
0−→ 2), and from there on out the two edges

asymptote towards each other. The energy being deposited in
m = 4 is almost completely dissipated by the background flow.

The next largest edge [(4
2−→ 6), not shown] has an impact an

order of magnitude weaker than (4
0−→ 4).

The odd modes are even simpler. Figure 5 shows a time
series of the edges relevant for m = 3, and there are few. Until

t ≈ 60 the decay rate is indistinguishable from (3
0−→ 3), at

which point (1
2←− 3

2−→ 5) is large enough to notice on the log
scale. However, once the m = 2 harmonics start saturating the
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FIG. 4. (Color online) Time series of a subset of the edges from
the simulation of Fig. 2 on a semilog plot. The dotted lines indicate
a negative value. The bold lines labeled γ 2 and λ2 represent the
growth rates defined by Eqs. (9) and (12), respectively. The interaction

(4
0−→ 4) represents a decay slightly faster than that predicted by λ4

(not pictured). The vertical dashed line indicates the time step Fig. 3
was made from.

modd modes crash, and the decay rate returns to being a near

match of (3
0−→ 3).

IV. SATURATION OF THE RETURN FLOW INSTABILITY

At lower Ha, the equatorial jet is no longer suppressed, but
neither does it reach the edge of the sphere. Instead it returns
somewhere in between r1 and r2 with a stagnation point on
the equator. The return flow instability arises in this stagnation
region [see Figs. 1(b) and 1(e)].

The two dynamics that the network characterization seeks
to describe are the saturation of the dominant mode, and the
suppression of the subdominant modes that are still linearly
unstable. In both cases it can be shown that the network of
interactions transfers energy from the unstable modes (wherein
it is created) to stable modes (wherein it is destroyed). Figure 6
shows the evolution of the flow from an initial state (found
by evolving an axisymmetric flow with Re = 1000, Ha = 30,
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FIG. 5. (Color online) Time series of a subset of the edges from
the simulation of Fig. 2 on a semilog plot. The dotted lines indicate a
negative value. The bold lines labeled γ 3 and λ3 represent the growth
rates defined by Eqs. (9) and (12), respectively. The vertical dashed
line indicates the time step Fig. 3 was made from.

time, inner sphere rotation periods
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FIG. 6. (Color online) Time series of energies contained in each
azimuthal mode for a simulation with η = 0.5, Re = 1000, Ha =
30. The vertical line indicates the time slice the network diagram in
Fig. 7 is made from.

η = 0.5 to steady state), seeded with random nonaxisymmetric
noise, to what is taken to be saturation. Up until t ≈ 15, m ∈
[2,6] seem to all be growing exponentially. Until about t ≈
25, m ∈ [3,5] continue to grow roughly exponentially. From
t ≈ 25 on several changes can be observed. First m = 5 rolls
over and begins to decay, then m = 3 rolls over and begins to
decay as m = 4 begins to saturate.

This is where the network formulation comes into play.
Figure 7 shows the network of interactions at a single point
in time. Several dynamics are visible here. The m = 4 mode
is sourcing energy and depositing much of it in its second

harmonic via (4
4−→ 8). The m = 3 mode sources energy as

well, but it is a net loser of energy as more is being sent to

energy dissipating modes via (7
4←− 3

4−→ 1). The m = 1 mode
dissipates energy but is likely more significant as a path for
energy to move between m = 3,4, and 5.

From the diagram we choose interesting edges to track over
time. Figure 8 shows the dominant edges which transfer energy
to or from the m = 4 mode, with the addition of the total growth

rate, and the (8
0−→ 8) and (1

0−→ 1) edges. Up until t ≈ 25, there
is exponential growth which is almost entirely identical to the

(4
0−→ 4) term. Until t ≈ 40, the growth is still almost entirely

identical to the (4
0−→ 4) term, but this edge has begun to roll

over and asymptote. There are 4 edges between t ≈ 40 and
the end of the simulation that account for the vast majority of

the dynamics of the m = 4 mode: (4
3−→ 1) initially draws the

largest part of the energy from m = 4; (4
4−→ 8) dominates at

long times; (4
5−→ 9) and (1

5−→ 4) are roughly equal, indicating

that they are better considered as a single action (1
5−→ 4

5−→ 9)
which does not matter much in the energy dynamics of m = 4
itself. All but a small, and diminishing, component of the

energy transferred to m = 8 is removed by (8
0−→ 8). There

is, on the other hand, a rather stable relationship between
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FIG. 7. (Color) Full network of interactions from the time step indicated in Fig. 6. The diagram should be interpreted as in Fig. 3. The
nodes are limited to a,c ∈ [1,9]; the edges are limited to b ∈ [2,7]. A tabular form of the information is in Appendix B; Table II contains the
information contained in the nodes; Table III contains a list of edge strengths.

the amount of energy transferred into m = 1 by (4
3−→ 1), the

amount removed by (1
0−→ 1), and the total growth rate ∂Em=4

∂t
.

The rest of the story is contained in Fig. 9. Like m = 4, m =
3 grows exponentially until t ≈ 25 from (3

0−→ 3). However, a
gap opens up between the total growth rate and the energy
drawn from the axisymmetric flow here, and from t ≈ 40
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FIG. 8. (Color online) Time series of a subset of the edges from
the simulation of Fig. 6 on a semilog plot. The dotted lines indicate
a negative value. The bold lines labeled γ 4 and λ4 represent the
growth rates defined by Eqs. (9) and (12), respectively. The vertical
line indicates the time slice the network diagram in Fig. 7 is made
from.

onward there is a net loss of energy from the m = 3 mode, de-
spite the fact that the mean flow is a constant source of energy.

The majority of the energy flow out of m = 3 is described

by (3
4−→ 7) and (3

4−→ 1). The m = 7 mode is very stable, and
loses more energy to the background flow than is deposited

by (3
4−→ 7). The m = 1 mode is also stable, but its energy

time, inner sphere rotation periods

En
er

gy
 T

ra
ns

fe
r (

ar
b.

 u
ni

ts
)

FIG. 9. (Color online) Time series of a subset of the three-wave
couplings from the simulation of Fig. 6 on a semilog plot. The dotted
lines indicate a negative value. The bold lines labeled γ 3 and λ3
represent the growth rates defined by Eqs. (9) and (12), respectively.
The vertical line indicates the time slice the network diagram in Fig. 7
is made from.
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dissipation tends to match the energy deposited by (3
4−→ 1)

almost exactly.

V. CONCLUSIONS

The saturation of the Shercliff layer (η 0.5, Re 1000, Ha
70) and return flow (η 0.5, Re 1000, Ha 30) instabilities are
characterized by the three-wave coupling between azimuthal

modes (m). In both cases energy is generated by (m
0−→ m),

dissipated by (2m
0−→ 2m), and transferred between the two

by (m
m−→ 2m). Furthermore, in the case of the return flow

instability, the dominant mode suppresses other unstable
modes by facilitating a transfer of energy into higher order
modes which then dissipate the energy. This suppression is a
possible candidate for the hysteresis cycles of [6].

The network diagram is instrumental in this form of
analysis. For a simulation with 20 azimuthal modes, there are
400 possible interactions satisfying c = |a ± b|. The diagram
provides a snapshot of interactions meeting certain criteria
(nodes or edges as members of a chosen set, displayed edges
accounting for 90% of the total energy flow). Interactions
can be picked from this snapshot and tracked throughout the
simulation to see how they evolve and how they relate to the
final saturated state.

This formulation can be extended, at a price. Here we
defined the nodes only by azimuthal order m; in Ref. [22] the
nodes were further divided into degree (l), phase (sine and
cosine), and toroidal/poloidal character. This was sensible
there because the number of distinct edges was limited
to the (four) harmonics of the defined flow, and because
individual edges or series of edges could be connected
to the α and � effects of dynamo theory. The case of
magnetized inductionless spherical Couette flow would most
likely not benefit from the full decomposition. However, it
may still be meaningful to distinguish between equatorially
symmetric (l ∈ [m,m + 2, . . . ,lmax]) and antisymmetric
(l ∈ [m + 1,m + 3, . . . ,lmax − 1]) modes, as these classes of
flow modes are excited or suppressed in different regions of
the (Re, Ha) phase space.

The work presented here and that presented in Ref. [22] only
cover the cases where energy transfer is facilitated by velocity
modes (here between the velocity modes themselves, in
Ref. [22] between magnetic modes). This network formulation
is applicable for any system where there is some global
quantity, such as energy or helicity, for which the presence in a
given mode of a dynamic system is quantifiable, and for which
the transfer of this quantity between modes is also quantifiable.
As a further example, one could consider a saturating dynamo.
A typical simulation, such as those in Ref. [24], will show
anticorrelations between the energies in the velocity and
magnetic fields, which implies that there is energy being
transferred between them. The primary decisions are how the
modes are defined and how the edges are calculated.

ACKNOWLEDGMENTS

The author would like to thank Rainer Hollerbach for
providing the source code from [20]; Rainer Hollerbach and
Andre Giesecke are also thanked for acting as “round 0”

reviewers for the manuscript. This work was supported as
part of the DRESDYN project [25] under Frank Stefani at
the Helmholtz-Zentrum Dresden-Rossendorf. This work is
supported by the Deutsche Forschungsgemeinschaft under
Grant No. STE 991/1-2.

APPENDIX A: TAYLOR EXPANSION OF NONLINEAR
INTERACTIONS

Hollerbach [20] describes the time evolution of the velocity
field in terms of a modified second-order Runga-Kutta method,
with

Xṽ(t + δt) = Yv(t) + δtDV, (A1)

Xv(t + δt) = Yv(t) + δt

2

(
DV′ + DV

)
, (A2)

with v comprising both the toroidal and poloidal modes (e
and f in Ref. [20]), X and Y operators that only connect k

terms in the spectra with the same l and m, and DV and DV′

representing the forcing on a given k,l,m spectrum. For the
purposes of the Taylor expansion we are only going to deal
with the predictor term. The forcing is given by

Fa,b(r,θ,φ) = Re[∇ × Ua(r,θ,φ)] × Ub(r,θ,φ)

+ Re[∇ × Ub(r,θ,φ)] × Ua(r,θ,φ). (A3)

There are three transformations to get from the spectral
representation the flow is stored in to the spatial representation
the force is calculated in:

Um
l (r) =

∑
k

Tk,l(r)vm
k,l, (A4)

Um(r,θ ) =
∑

l

P m
l (θ )Um

l (r), (A5)

U(r,θ,φ) = F−1{Um(r,θ )}, (A6)

whereF−1 is an inverse Fourier transform, P m
l is an expansion

in associated Legendre polynomials, and Tk,l is an expansion
in Chebyshev polynomial that may be slightly modified to cal-
culate the curl of the spectrum. After the forcing is calculated
in real space it is reverted to the spectral representation through
another 3 transformations:

Fm(r,θ ) = F{F(r,θ,φ)}, (A7)

Fm
l (r) =

∑
l

Pm
l (θ )Fm(r,θ ), (A8)

DVm
k,l =

∑
k

Tk,l(r)Fm
l (r), (A9)

where F is a Fourier transform, and Pm
l and Tk,l transform

the spatial function into Chebyshev and Legendre spectra
with some curls of F included. The only place where there is
communication between m modes is between (A6) and (A7),
which allows us to treat the predictor step [Eq. (A1)] as

Xṽm(t + δt) = Yvm(t) + δt
∑
a,b

DVa,b,m, (A10)

where DVa,b,m is the forcing from (A3), projected onto m. The
three-wave coupling defined in Eq. (8) is given by

(a,b → m) = δtX−1DVa,b,m,

which is nonzero only for m = |a ± b|.
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TABLE II. Tabular form of network diagram of Fig. 7. List of
nodes and their associated energies, nonlinear growth rates, and the
action of the axisymmetric flow. The entries are sorted by azimuthal
mode number.

mode energy nonlinear axisymmetric

1 1.01 × 10−5 −2.20 × 10−5 −1.72 × 10−3

2 2.70 × 10−6 2.55 × 10−4 1.74 × 10−4

3 4.09 × 10−4 −3.50 × 10−3 1.93 × 10−4

4 1.47 × 10−3 2.63 × 10−3 6.27 × 10−3

5 1.31 × 10−4 −6.95 × 10−4 −1.50 × 10−3

6 2.42 × 10−5 1.24 × 10−3 1.16 × 10−3

7 6.34 × 10−5 −1.52 × 10−3 −3.80 × 10−3

8 2.70 × 10−5 4.40 × 10−4 −8.78 × 10−4

9 1.02 × 10−5 −1.88 × 10−4 −9.58 × 10−4

APPENDIX B: NETWORK OF INTERACTIONS
IN TABLE FORM

The networks of Figs. 3 and 7 are difficult to read. They are,
however, a good graphical snapshot of where energy is moving
in a nonlinear process where there is no obvious hierarchy of
interactions. Table II could be sorted by mode index, as it is, or

TABLE III. Tabular form of network diagram of Fig. 7. List of
edges and their strengths. The entries are sorted by source, edge, and
target.

edge strength edge strength edge strength

1
4−→ 5 1.40 × 10−3 3

4−→ 1 1.69 × 10−3 6
3−→ 3 1.15 × 10−4

1
5−→ 4 9.80 × 10−4 3

4−→ 7 2.13 × 10−3 6
7−→ 1 5.23 × 10−5

1
5−→ 6 1.70 × 10−4 3

5−→ 2 3.63 × 10−4 7
2−→ 9 1.18 × 10−5

1
6−→ 5 1.24 × 10−4 3

7−→ 4 3.78 × 10−5 7
5−→ 2 7.87 × 10−5

2
2−→ 4 3.32 × 10−5 4

3−→ 1 2.32 × 10−3 7
6−→ 1 1.12 × 10−4

2
3−→ 1 3.20 × 10−5 4

4−→ 8 1.57 × 10−3 8
5−→ 3 3.89 × 10−4

2
4−→ 6 1.39 × 10−4 4

5−→ 9 6.66 × 10−4 8
7−→ 1 6.59 × 10−5

2
6−→ 4 3.90 × 10−4 5

3−→ 2 1.28 × 10−4 9
6−→ 3 4.31 × 10−5

2
6−→ 8 8.03 × 10−6 5

4−→ 9 1.12 × 10−4

3
2−→ 1 7.79 × 10−5 5

7−→ 2 1.42 × 10−4

by any of the entries in the table and still be easily interpreted;
there is no hierarchy of keys in Table III that reveals multistep

interactions (a
b−→ c

d−→ e) as completely as Fig. 7.
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