
PHYSICAL REVIEW E 89, 063008 (2014)

Dynamics of liquid drops coalescing in the inertial regime
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We examine the dynamics of two coalescing liquid drops in the “inertial regime,” where the effects of viscosity
are negligible and the propagation of the front of the bridge connecting the drops can be considered as “local.”
The solution fully computed in the framework of classical fluid mechanics allows this regime to be identified,
and the accuracy of the approximating scaling laws proposed to describe the propagation of the bridge to be
established. It is shown that the scaling law known for this regime has a very limited region of accuracy, and,
as a result, in describing experimental data it has frequently been applied outside its limits of applicability. The
origin of the scaling law’s shortcoming appears to be the fact that it accounts for the capillary pressure due only
to the longitudinal curvature of the free surface as the driving force for the process. To address this deficiency, the
scaling law is extended to account for both the longitudinal and azimuthal curvatures at the bridge front, which,
fortuitously, still results in an explicit analytic expression for the front’s propagation speed. This expression is
shown to offer an excellent approximation for both the fully computed solution and for experimental data from a
range of flow configurations for a remarkably large proportion of the coalescence process. The derived formula
allows one to predict the speed at which drops coalesce for the duration of the inertial regime, which should be
useful for the analysis of experimental data.
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I. INTRODUCTION

The rapid motion that ensues after two drops of the same
liquid come into contact (Fig. 1) is the key element of a wealth
of processes, notably in micro- and nanofluidic devices such
as “3D printers,” where structures are built using microdrops
as building blocks. It is clear, therefore, that understanding
the physical mechanisms that govern the drops’ coalescence,
and being able to predict the motion of the drops during
this process, is key for the development of these emerging
technologies.

Due to recent advances in both experimental and com-
putational techniques, there has been a surge in the number
of publications studying the coalescence of liquid drops in
an ambient gas (air) [2–7]. The experimental aspects of
the problem have been driven by the application of both
ultra-high-speed imaging techniques [3] and a novel electrical
method [6], which has circumvented fundamental issues with
optical measurements. From a computational perspective,
specially designed codes have been used to capture all scales
in the problem and to resolve a flow that is known to be
singular [1,8]. Notably, most of the aforementioned works
have focused on the different “regimes” encountered and the
“transitions” between them, typically shown on log-log plots,
with the main attention given to formulating or using the
correct “scalings” in each regime.

It has now been established that the crossover from the
“viscous” or “inertially limited viscous” [1] regime to an
“inertial regime,” in which viscous forces are negligible
compared to inertial ones, occurs when the dimensional radius
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rb of the bridge (Fig. 2) connecting the coalescing drops in the
early stages of the process satisfies r̄b = rb/R ∼ Re−1

i [6,8],
where Rei =

√
ρσR/μ2 is the Reynolds number in the inertial

regime for a drop of radius R, density ρ, surface tension
σ , and viscosity μ. This Reynolds number is related to the
Ohnesorge number Oh sometimes used in coalescence studies
via Oh = Re−1

i .
Consider now the bridge radius at which water drops will

enter the inertial regime. If the drops are millimeter-sized,
R = 1 mm, as is often the case in experiments, we have
Rei = O(102) so that the drops enter the inertial regime when
rb/R = O(10−2). If instead microdrops are considered with,
say, R = 10 μm, then Rei = O(10) and the bridge radius still
needs only to reach rb/R = O(10−1) before the inertial regime
is entered. In other words, for low-viscosity liquids such as wa-
ter, the majority of the dynamics of the bridge (defined, crudely,
as rb/R > 0.1) of the coalescence event occurs in the inertial
regime, even for the drops encountered in microfluidics. This
is the regime that will be considered in this paper.

The inertial regime has previously been studied experimen-
tally, using ultra-high-speed cameras [1–5]; analytically, by
developing scaling laws [9] and asymptotic theory [10]; and
computationally, considering either the local problem [11],
where the initial stages of bridge front propagation are
studied independently from the overall flow configuration,
or the global dynamics of the drops [2,12], where the entire
geometry is accounted for. It has been shown theoretically [9],
computationally [1,8,11], and experimentally [1–5] that, in
this regime, the bridge front propagates with a square root in
time scaling. In particular, in [9], the driving capillary pressure
σκ due to the surface tension and based on the longitudinal
curvature κ ∼ 1/d(t) obtained from the undisturbed free-
surface shape of the drops, d(t) ∼ r2

b (t)/R, is balanced by
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FIG. 1. A typical coalescence event comparing our computations,
with free spheres, against experiments in [1] conducted using 1cP
pendent drops of silicone oil (one unit of length is R = 1.1 mm and
one unit of time is Ti = 8 ms).

the dynamic pressure, ρ(drb/dt)2. As a result, one has
rb/R = Ci(t/Ti)1/2, where Ci is a constant of proportionality,
so that, once nondimensionalized by our characteristic scales
in this regime, that is, R for length and Ti =

√
ρR3/σ for time,

the scaling law takes the form

r̄b = Ci t̄
1/2. (1)

Here, and henceforth, all quantities with an overbar are
dimensionless.

Our approach here will be to establish the existence of a
well-defined inertial regime, to study the accuracy of scaling
laws in this regime using the corresponding numerical solution
of the full-scale mathematical problem, and to compare their
predictions to experimental data from the literature. This will
lead us to an improved scaling law for the regime that will be
shown to describe experimental data for a much larger period
of time than (1) and will allow us to identify previous works
where the wrong value of Ci in (1) has been chosen.

FIG. 2. A definition sketch for the coalescence of two identical
“pinned hemispheres” grown from syringes (left) and a sketch of
coalescing “free spheres” (right) showing the bridge radius r̄b and
apex height h.

II. PROBLEM FORMULATION

In this work, we will consider both the typical experimental
setup in which hemispherical drops are grown from syringes as
well as the case of most practical interest, where free spheres
coalesce (Fig. 2). Assuming that gravity can be ignored, which
is reasonable for mm-sized drops and below [8], the problem
becomes symmetric and can be reduced to determining the
motion of one drop in the (r̄ ,z̄) plane of a cylindrical coordinate
system with the symmetry conditions on the z̄ = 0 plane at
which the drops initially touch. The syringe, when considered,
is taken to be a semi-infinite cylinder with zero-thickness walls
located at r̄ = 1,z̄ > 1. The precise far-field conditions, i.e.,
those associated with the syringe head, have a negligible effect
on the initial stages of coalescence [8].

To nondimensionalize the system of the governing equa-
tions for the bulk variables, we use the drop radius R as the
characteristic length scale, Ui = √

σ/(ρR) as the scale for
velocities, Ti =

√
ρR3/σ as the time scale, and μUi/R as

the scale for pressure. Then, the continuity and momentum
balance equations take the form

∇ · u = 0, Rei

[
∂u
∂t

+ u · ∇u
]

= ∇ · P,

P = −pI + [∇u + (∇u)T ], (2)

where P, u, and p are the (dimensionless) stress tensor,
velocity, and pressure in the fluid, and I is the metric tensor
of the coordinate system. As before, the Reynolds number
Rei =

√
ρσR/μ2.

The conventional boundary conditions used for free-surface
flows are the kinematic condition, stating that the fluid particles
forming the free surface stay on the free surface at all time
and the balance of tangential and normal forces acting on an
element of the free surface from the two bulk phases and from
the neighboring surface elements:

∂f

∂t̄
+ u · ∇f = 0, (3)

n · P · (I − nn) = 0, n · P · n = Rei∇ · n. (4)

Here f (r̄ ,z̄,t̄) = 0 describes the a priori unknown free-surface
shape, with the unit normal vector n = ∇f/|∇f | pointing into
the liquid, and the tensor (I − nn) extracts the component of a
vector parallel to the surface with the normal n.

At the plane of symmetry z̄ = 0, the standard symmetry
conditions of impermeability and zero tangential stress are
applied,

u · ns = 0, ns · P · (I − nsns) = 0, (5)

where ns is the unit normal to the plane of symmetry. In the
conventional model we are studying here, the free surface is
assumed to always be smooth so that where it meets the plane
of symmetry we have n · ns = 0.

On the axis of symmetry, r̄ = 0, the standard normal and
tangential velocity condition state that the velocity has only
the component parallel to the z̄-axis, and the radial derivative
of this component is zero (the velocity field is smooth at
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the axis),

u · na = 0,
∂

∂r̄
[u · (I − nana)] = 0, r̄ = 0, (6)

where na is the unit normal to the axis of symmetry in the (r̄ ,z̄)
plane.

For the case of coalescing free spheres, the free surface
is assumed to be smooth at the apex, r̄ = 0,z̄ = h(t̄), so that
n · na = 0 there, while the case of coalescing pinned hemi-
spheres requires more conditions to account for the presence
of the syringe. Specifically, at the point in the (r̄ ,z̄) plane where
the (initially hemispherical) free surface meets the syringe tip,
we have a pinned contact line,

f (1,1,t̄) = 0 (t̄ � 0). (7)

It is assumed that in the far field, the liquid inside the syringe
is at rest, so that

u → 0 as r̄2 + z̄2 → ∞, (8)

while on the cylinder’s surface, no-slip is applied,

u = 0 at r̄ = 1, z̄ � 1. (9)

Computations are started from a finite initial bridge radius
r̄min, and the details of the initial conditions can be very
important when considering the initial stages of motion [8].
However, when considering the global motion of the drops, so
long as r̄min is sufficiently small, say r̄min < 10−2, the subtleties
surrounding the implementation of the initial conditions are
unimportant. Our computations are started from r̄min = 10−4,
and as an initial condition for the free surface we take a
shape that provides a smooth free surface at r̄ = r̄min (which
a truncated sphere would not), while far away from the
origin (i.e., from the point of the initial contact) it is initially
the undisturbed hemispherical or spherical drop. A shape
that satisfies these criteria can be taken from [13], i.e., the
analytic two-dimensional solution to the problem for Stokes
flow. In parametric form, the initial free-surface shape is
taken to be

r̄(θ ) =
√

2(1 + m)H cos θ,

z̄(θ ) =
√

2(1 − m)H sin θ, (10)

H = {(1 − m2)(1 + m2)−1/2[1 + 2m cos(2θ ) + m2]−1}
for 0 < θ < θu, where m is chosen such that r̄(0) = r̄min is the
initial bridge radius, which we choose, and θu is chosen such
that r̄(θu) = z̄(θu) = 1 for hemispherical drops and r̄(θu) = 0
for spherical ones. Notably, for r̄min → 0 we have m → 1 and
r̄2 + (z̄ − 1)2 = 1, i.e., the drop’s profile is a semicircle of
unit radius that touches the plane of symmetry at the origin, as
required.

Finally, we assume that the fluid starts from rest:

u = 0 at t̄ = 0. (11)

III. COMPUTATIONAL APPROACH

The coalescence phenomenon requires the solution of a
free-boundary problem with effects of viscosity, inertia, and
capillarity all present, so that a computational approach is

unavoidable. To do so, we use a finite-element framework
that was originally developed for dynamic wetting flows
and has been thoroughly tested in [14,15] as well as being
applied to flows undergoing high free-surface deformation
in [16], namely microdrop impact onto and spreading over
a solid surface. Notably, the method implemented in our
computational platform has been specifically designed for
multiscale flows, so that the very small length scales associated
with the early stages of coalescence can be captured alongside
the global dynamics of the two drops’ behavior. In other
words, all of the spatiotemporal scales present in electrical
measurements [6], as well as the scales associated with later
stages of the drop’s evolution, which are of interest here,
can be simultaneously resolved. A user-friendly step-by-step
guide to the implementation of the method can be found
in [14,15], while benchmark coalescence simulations are
provided in [8].

IV. RESULTS

A. Identifying an inertial regime

In Fig. 3, our computed solutions show that for Rei � 102

(curves 2, 3a, and 3b) the evolution of the bridge between the
drops becomes insensitive to further increase in the Reynolds
number until the dimensionless radius of the bridge, r̄b ≈ 0.75.
Deviations for very small bridge radii, r̄b < Re−1

i � 10−2,
caused by viscous forces being non-negligible and usually
observed on a log-log plot, will not be important in the regime
upon which we are focusing. In this regime, hemispheres
pinned to the rim of the syringe needles and free spheres
(curves 3a and 3b, respectively) give the same results [17].
This suggests that we are truly in an “inertial regime” in which
(a) the effects of viscosity are negligible and (b) the process
can be considered as “local,” i.e., independent of the far-field
geometry. It is in this regime that scaling law (1) is expected
to approximate the exact solution and has often been used to
interpret experimental data [4–6].
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FIG. 3. (Color online) Identification of the “inertial regime”
showing that above a critical Reynolds number, there is a period in
which the bridge’s evolution is independent of the value of Rei or of
the flow configuration. Pinned hemispheres are used in computations
for 1: Rei = 10, 2: Rei = 102 (in red), 3a: Rei = 103, while curve 3b
is for a free sphere with Rei = 103.
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FIG. 4. (Color online) Comparison of the computed solution
(solid line) to Eq. (1) with Ci = 1.5 (curve 1 in blue) and Ci = 1.25
(curve 2 in green).

B. Standard scalings

In Fig. 4, we can see that scaling law (1) with Ci = 1.5
(curve 1) provides a good approximation of the computed
solution (solid line) for r̄b < 0.15. However, the scaling
law quickly begins to overshoot the numerical solution.
Worryingly, most comparisons between this scaling law and
experimental data have been in the range accessible to optical
observation, r̄b > 0.1 (which for a millimeter-sized drop is
rb = 100 μm), whereas our computations show that the scaling
law greatly overshoots the computed solution. In other words,
it has been used outside the region where it gives a reasonable
approximation of the solution of the mathematical problem it
is supposed to mimic.

If instead we look to “fit” the whole of the computed curve
in the region 0.1 < r̄b < 0.75 as best as we can, ignoring large
errors for r̄b < 0.1, then the result is that the prefactor must
have a much smaller value of Ci = 1.25 (curve 2 in Fig. 4), the
value that is closer to those obtained in previous experimental
works [4,5] that fitted (1).

The upshot of the discrepancy between the scaling law
and the computed solution in the experimental range is that
reported values of Ci have been too small. Although a value of
Ci = 1.25, consistent with those obtained from experimental
analysis [4,5], provides a “best fit” (curve 2 in Fig. 4) for 0.1 <

r̄b < 0.75 to the exact solution (solid line), and hence also to
the experimental data (Fig. 6), as can be seen from Fig. 4,
this solution completely fails to capture the correct behavior as
r̄b → 0, where the scaling law should asymptotically approach
the exact solution (solid curve).

The failure of the “best fit” approach is confirmed in Fig. 5,
where the relative percentage error Eb(t̄) = 100|r̄sc − r̄co|/r̄co

of the scaling laws r̄b = r̄sc(t̄) from the computed solution
r̄b = r̄co(t̄) is plotted as a function of time. One can see that
the scaling law (1) with Ci = 1.5 approximates the computed
solution well, with Eb < 3% for t̄ < 2 × 10−2, while during
the same time period Eb > 15% for curve 2, which is the
“best fit” attempt Ci = 1.25 in (1). The error also confirms that
while (1) with Ci = 1.5 captures the correct behavior in the
inertial regime for small times, this solution rapidly departs
from the computed solution, with Eb > 12% for t̄ > 0.1.
If, as a crude estimate, we require a scaling law to satisfy
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FIG. 5. (Color online) The relative percentage error Eb of the
scaling laws from the computed solution. Curve 1 (in blue) is for (1)
with Ci = 1.5, curve 2 (in green) is (1) taking Ci = 1.25, and curve
3 (in red) is (15) with Ci = 1.5.

Eb < 5%, then we see that curve 1 meets this criterion for
t̄ < 0.03 while curve 2 fails in the initial stages and is only
valid for 0.12 < t̄ < 0.36. Thus, neither of the current scaling
laws provides satisfactory approximations to the computed
solutions that could be used for a quick comparison between
experimental and theoretical predictions.

Here, we will look to rectify the aforementioned inconsis-
tencies by extending the scaling law (1), using the approach
initiated in [3], to account for the azimuthal curvature, which
reduces the capillary pressure and hence acts to slow down the
evolution of the bridge, as well as the longitudinal curvature
that drives the process. Although, as we shall see, the latter
dominates as r̄b → 0, it is anticipated that, by including the
azimuthal curvature in the scaling law, we will be able to
increase the region of applicability of our scaling to within the
optical range. This should give a more accurate representation
of the bridge evolution in the inertial regime, and it can be used
to predict the speed of coalescence without having to resort to
computations.
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FIG. 6. (Color online) Comparison of the computed solution
(solid black curve) of free spheres coalescing with Rei = 103 to
Eq. (1) with Ci = 1.5 (curve 1 in blue) and the new scaling (15)
also with Ci = 1.5 (curve 2 in red). Data have been obtained from
the lowest viscosity drops considered in the following publications:
circles, Fig. 3 F in [1]; squares, Fig. 6 in [3]; triangles, Fig. 3 a in [5];
diamonds, Fig. 6 in [2]; and stars, best-fit to Fig. 4 in [4].
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C. An improved scaling

Including the curvature at the bridge front in the azimuthal
direction, i.e., κ̄2 = −1/r̄b, which acts to resist the bridge’s
outward motion, into our expression for the full curvature κ̄ is
simple; however, as a consequence of this extension, we must
specify how the longitudinal curvature κ̄1 scales as the bridge
propagates, since we are no longer able to “absorb” this scale
into the constant of proportionality. Thus, we now have

κ̄ = κ̄1 + κ̄2 = A

r̄2
b

− 1

r̄b

, (12)

where the constant A must be specified to account for
the longitudinal curvature behavior as the bridge expands.
Previously, i.e., in (1), the second term on the right-hand side
was neglected and this constant was simply absorbed into Ci .
If the undisturbed free-surface height at r̄b is taken as the
radius of curvature at that point, then, for small r̄b, we have
A = 2. However, in [3], it is argued that A ≈ 1 gives a better
agreement with experiments as with this value the radius of
curvature is the distance between the two undisturbed free
surfaces rather than the distance from the plane of symmetry
to one of them, and hence it accounts for the “bulb which
develops at the end of the advancing interface.” This assertion
is confirmed by our computations shown in the Appendix,
and so, henceforth, we assume A = 1 and, if needs be, we
can later consider whether more accurate representations of A

are required. In [3], the resulting equations, which considered
drops of different sizes, were solved using a numerical method
and seen to give good agreement with the experimental data.

In the case of the coalescence of two identical liquid drops,
with curvature given by (12), it will be shown that an analytic
solution can be obtained that, now that A has been specified,
still contains only one free constant. As proposed in [9],
balancing (dimensionless) inertial forces with the (driving)
surface tension force gives

(
d r̄b

dt̄

)2

= C4
i

4

(
1

r̄2
b

− 1

r̄b

)
, (13)

where the coefficient of proportionality has been chosen so
that if the azimuthal curvature is ignored, we recover r̄b =
Ci t̄

1/2. Integrating (13), assuming that r̄b = 0 at t̄ = 0 [18],
and rearranging, we obtain a cubic polynomial in r̄b with t̄ as
a parameter:

r̄3
b + 3r̄2

b + 3C2
i t̄

4

(
3C2

i t̄

4
− 4

)
= 0. (14)

We can see immediately that if only the leading-order terms
in r̄b and t̄ are kept, we have 3r̄2

b − 3C2
i t̄ = 0 so that the usual

scaling (1) is recovered. The solution that we require is given
by

r̄b = s

4
+ 4

s
− 1, s = [−64 − 18d2 + 96d + 2(2880d2

− 3072d + 81d4 − 864d3)1/2]1/3, d = C2
i t̄ , (15)

where we take the root with the positive imaginary part for
s [19], which results in r̄b being real.

D. Comparison of the improved scaling
law to simulations and experiments

The explicit form of (15) allows for a quick comparison with
a computed solution or experiments, with no additional fitting
parameters, in order to determine whether this is a significant
improvement on (1). In the inset of Fig. 6, it can be clearly
seen that for the same value of Ci = 1.5, the new scaling
law (curve 2) gives results indistinguishable from those given
by (1) (curve 1) for r̄b < 0.15 but for 0.15 < r̄b < 0.8 (shown
in the main plot), i.e., for the range usually used in experimental
works to fit a scaling law to the data, the new expression
agrees far better with the simulation of the full system (solid
line computed for free spheres) than the expression (1). This
is confirmed in Fig. 5, where it can be seen that the new
scaling law is within 5% of the computed solution at least up
to t̄ = 0.5. Although curve 2 is not indistinguishable from the
numerical result for r̄b > 0.4 in Fig. 6, as one may expect from
the simplifications made, as an approximating formula it is a
significant improvement on the previous result and is close to
the numerical solution for a remarkably large proportion of the
coalescence process.

In Fig. 6, it can be clearly seen that the new “universal
curve” (curve 2) is able to capture experimental data for the
inertial regime collected from the literature for completely
different geometric configurations (hanging pendent drops,
pinned hemispheres, and spheres supported by a hydrophobic
solid) and thus provides the sought-after extension to (1)
required to approximate the coalescence dynamics in this
regime while retaining a simple analytic expression.

In Fig. 1, we can see that the initial dynamics of coales-
cence in the inertial regime is genuinely “local,” as the two
different geometries used for experiments (pendent drops) and
simulations (free spheres) agree for the initial stages of motion,
i.e., the deformed free surface in both the experiment and the
simulation agree perfectly even though their entire shapes, by
construction, do not. It is only around t̄ = 0.3 that the free
surface shapes in the bridge region start to feel their entire
geometry, so that the inertial regime is essentially over as the
bridge’s propagation is no longer “local.” Despite this, it is
seen from Fig. 6 that the estimates for the bridge radius stay
close to the exact solution and the experimental data for a
considerably longer time, remaining relatively accurate until
at least t̄ = 0.5, at which point r̄b ≈ 0.8.

A shortcoming of the obtained expression is that it does not
include the influence of gravity on the drops’ evolution, which
manifests itself most strongly by altering the initial shape of
drops. This effect will be significant for drops larger than the
capillary length, which for water is of the order of millimeters.
However, for smaller low-viscosity drops, particularly those
from around R = 10 μm to R = 1 mm, where inertial effects
still dominate viscous ones, the expression in (15) will provide
an excellent approximation to their evolution.

APPENDIX: COMPUTATION OF THE
LONGITUDINAL CURVATURE

Figure 7 shows the free-surface shape obtained from the
computed solution for free spheres coalescing at Rei = 103 in
the range 0.1 � r̄b � 0.7. Marked with crosses are the point on
the free surface at which the longitudinal curvature κ̄1 changes
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FIG. 7. Snapshots of the coalescence process showing crosses at
the inflection point on the free surface.

sign, i.e., the crosses mark an inflection point in the free-surface
profile. The height of this inflection point, z̄ = z̄inf , can be
used to define the effective longitudinal curvature of the bridge
connecting the coalescing drops as κ̄1 = 1/z̄inf . This allows
us to test the assumption that κ̄1 ≈ 1/r̄2

b , or alternatively that
κ̄1r̄

2
b ≈ 1.
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FIG. 8. Evolution of the computed effective longitudinal curva-
ture of the bridge connecting the coalescing drops κ̄1 multiplied by
the square of the bridge radius r̄2

b . It can be seen that κ̄1r̄
2
b ≈ 1 as

assumed.

In Fig. 8, it can be seen that in the range 0.1 � r̄b � 0.7 we
have κ1r̄

2
b approximately constant, so that the assumed scaling

behavior sufficiently accurately reflects the exact solution: over
the period considered, it is in the range κ1r̄

2
b ∈ (0.8,1.2), so

that its average value will be close to 1. Slight improvements
could potentially be achieved by using a linear approximation
for the curvature, but given the good agreement between the
new scaling and the fully computed results, this does not seem
necessary.
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