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Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes
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The effect of the secondary fluid enclosed in the indentations of a superhydrophobic surface on electro-osmotic
flow is investigated. We derive analytical expressions for the net electro-osmotic flow over periodically structured
surfaces, accounting for the influence of dissipation within the secondary fluid as well as for the role of charges
at the fluid-fluid interfaces that are generated by auxiliary electrodes. Specifically, for a surface with rectangular
grooves, the electro-osmotic flow velocity is related to the geometric parameters of the surface and the viscosity
of an arbitrary secondary fluid filling the grooves. The results suggest that on specific superhydrophobic surfaces
a flow enhancement by more than two orders of magnitude compared to unstructured surfaces can be expected.
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I. INTRODUCTION

Micro- and nanostructured surfaces in the Cassie state
can exhibit an effective slippage significantly facilitating
flow along the surface, an effect that especially applies to
superhydrophobic surfaces. While this effect has been widely
explored for shear- or pressure-driven flow (see, e.g., [1–6]),
the question is to what extend this is also true for electro-
osmotic flow (EOF). Previous work has addressed this question
rather theoretically, modeling the fluid-fluid interfaces span-
ning the surface indentations by a given, yet unspecific, local
slip length and local surface charge [7–9]. It has been shown
that structured surfaces can only lead to a flow enhancement if
the fluid-fluid interfaces carry a net charge [7,8]. However,
strong doubts remain about whether it is reasonable to
assume that such a net charge exists a priori. Within an
electrolyte, any charge at an interface should attract an opposite
charge forming a Debye layer. Consequently, the interface is
effectively neutral over a scale of the Debye layer thickness.
The electrokinetic movements of the charges at a fluid-fluid
interface should cancel each other. Additionally, the size of
the local slip length is unknown for specific surfaces. To
tailor specific surface characteristics and to predict the EOF on
classic superhydrophobic surfaces as well as on surfaces with
arbitrary liquids filling the indentations [10], these points are
essential.

In this work, a scenario that should allow for a giant
amplification of electro-osmotic flow along superhydrophobic
surfaces is analyzed. Based on a specific principle for charge
generation at the fluid-fluid interfaces, analytical expressions
for the EOF velocity over a structured surface are derived that
take into account the actual geometric structure of the surface.

II. EFFECTIVE BOUNDARY CONDITIONS
FOR TWO-DIMENSIONAL PERIODIC SURFACES

In the following, expressions for the net electro-osmotic
flow along two-dimensional (2D) periodic surfaces are derived.
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It is assumed that an electrolyte wets the surface in the
Cassie state. The fluid filling the grooves is assumed to be
nonconductive. The calculations are performed for a surface
with a striped surface pattern, such as the grooves of width b

and periodicity L depicted in Fig. 1. However, the resulting
equations are not limited to rectangular grooves, but are
correspondingly valid for all 2D periodic surfaces, where
the fluid-fluid interface can be modeled by a constant-shear
condition.

To eliminate the shortcoming of a vanishing net charge
density at the fluidic interface, electrodes are assumed to be
embedded within the surface. Upon application of a potential
difference between the electrodes and the electrolyte, charges
will be drawn to the fluid-fluid interfaces to shield the electric
field [11], resulting in a net charge of the interface of [12,13]

σ = −ε2Ey,2|y=0. (1)

Here, ε2 is the permittivity of fluid 2, which fills the
indentations, and Ey,2 is the y component of the electric field
in fluid 2. It is furthermore assumed that the Debye length
of the shielding layer developing at the interfaces is much
smaller than the groove width, so that the equilibrium charge
distribution can be employed within the charge layer. At small
Péclet numbers and in the thin Debye layer limit, solely the
classic electro-osmotic flow determines the velocity, whereas
contributions due to ion concentration gradients along the
surface are negligible [14,15]. Such surface conduction effects
may occur in principle in the case of transverse flow, since the
surface charge varies in the flow direction. They are absent in
the longitudinal case. The capillary number is supposed to be
small enough for the fluid-fluid interfaces to be flat.

To compute the net EOF velocity, the Lorentz reciprocity
theorem [16] is employed. It reads∫

S

(pû − p̂u) · n dS

= η

∫
S

(û × ∇ × u − u × ∇ × û) · n dS, (2)

where S is the surface of an integration volume V (cf. Fig. 1)
and n is the respective normal vector. p is the pressure and
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FIG. 1. (Color online) Schematic of the structured surface with
embedded electrodes at the bottom of the grooves.

η is the viscosity. u = (u,v,w) refers to the EOF of fluid 1
and û = (û,v̂,ŵ) refers to a shear-driven flow along the same
surface. Both flow fields fulfill the Stokes equations. The shear
flow shall be driven by a shear stress τ∞ at y → ∞. If not stated
otherwise, variables without a subscript refer to fluid 1.

The fluid volume V to be integrated over is chosen to extend
over a spatial period in the x direction, and in the y direction
from the interface at y = 0 to y → ∞, or at least far enough
away from the surface for the flow to be considered uniform.
In the z direction, translational invariance is assumed, so the
z extension of V is of no relevance. We consider flow in the
longitudinal and transverse directions relative to the grooves.
In the following, the derivation is presented for transverse
flow, however all arguments apply to longitudinal flow
as well.

At the wall, the velocity is given by the no-slip condition
û = 0 for the shear flow and by the Helmholtz-Smoluchowski
equation for the EOF. In the framework of the Debye-Hückel
approximation, the ζ potential at the surface can be related
to the charge in the diffusive part of the double layer σw by
ε1ζ = −σwλD [17,18], so that the Helmholtz-Smoluchowski
equation reads u = σwλDEx/η1, with the Debye length λD,
the electric field driving the electro-osmotic flow Ex , and the
viscosity of fluid 1 η1. The subscript w refers to the wall
sections.

At the fluid-fluid interface, without loss of generality, a
Navier slip condition for fluid 2 is introduced via

u2(x,0) = γt(x)
∂u2

∂y

∣∣∣∣
y=0

(3)

with the local slip length distribution γt(x). In the case of
longitudinal flow, a corresponding distribution γl(x) applies.
For the shear-driven flow, continuity of velocity and shear
stress at the interface lead to

û(x,0) = Nγt(x)
∂û

∂y

∣∣∣∣
y=0

, (4)

where N = η1/η2 is the viscosity ratio of the two fluids. Re-
garding the EOF, in the thin Debye layer limit the charge layer
can be represented by a jump condition for the velocity u1 −
u2 = σfλDEx/η1, resembling the Helmholtz-Smoluchowski
equation at the wall (cf. [12,13]). Correspondingly, σf denotes
the area charge density representing the Debye layer at the
fluid-fluid interface, that is, the net charge of the interface.
It could be induced via embedded electrodes as discussed in

the context of Eq. (1). The corresponding jump condition for
the shear stress at the interface is η1 ∂u1/∂y − η2 ∂u2/∂y =
−σfEx , so that the condition for the electro-osmotic velocity
at the interface reads

u(x,0) = σfλDEx

η1

(
1 + N

γt(x)

λD

)
+ Nγt(x)

∂u

∂y

∣∣∣∣
y=0

. (5)

Taking into account the symmetries of the problem, integration
of the Lorentz reciprocity theorem (2) analogously to [7,19]
yields a relation between the electro-osmotic velocity far from
the surface and the flow field at the surface in the shear-driven
case.

Here, we model the velocity û as a superposition of a
Couette flow and flow over patches with infinite local slip
length within a no-slip wall:

û = (1 − s) uC + suP. (6)

Both uC and uP shall be driven by the same shear stress τ∞
at y → ∞. In this case, the parameter s can be interpreted as
an imperfection factor characterizing the difference between a
real surface and an idealized one with an inviscid fluid enclosed
in the indentations. Accordingly, the effective slip length is
given by the respective fraction of effective slip length in the
perfectly slipping case: βeff = sβP. In [20] it was shown that an
ansatz of Eq. (6) is able to represent the flow field over a surface
with rectangular grooves very well. The ansatz may also be
suited for other types of surfaces geometries. Unlike typical
assumptions of a piecewise constant local slip length, this
ansatz ensures a continuous local slip length distribution γ (x)
along the surface. For rectangular grooves, the imperfection
factor is given by

s =
{

st = Ct
1+Ct

in the transverse case,

sl = Cl
1+Cl

in the longitudinal case,
(7)

with

Ct = 4πaDtN

ln
( 1+sin( π

2 a)
1−sin( π

2 a)

) and Cl = 2πaDlN

ln
( 1+sin( π

2 a)
1−sin( π

2 a)

) . (8)

The maximum of the local slip length γ (x) is denoted by D

and can be modeled as a function of the slipping interface
a = b/L and the aspect ratio of the grooves, A = h/b [20].
The velocity in the perfectly slipping scenario uP is that of
Philip [21,22].

Utilizing the ansatz (6) in the integrals of the Lorentz
reciprocity theorem yields the EOF velocity far from the wall.
For transverse flow,

uEOF = σwλDEx

η1
[1 − (1 − st)a]

+ σfλDEx

η1

(
(1 − st)a + st

βt, P

λD

)
. (9)

In a completely analogous manner, the longitudinal flow is

wEOF = σwλDEz

η1
[1 − (1 − sl)a]

+ σfλDEz

η1

(
(1 − sl)a + sl

βl, P

λD

)
. (10)
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These equations provide the possibility to determine the
effects of the surface geometry, specifically of the fluid-fluid
interface fraction and of the aspect ratio of the grooves, as
well as of the viscosity of the enclosed fluid on the net EOF.
The form of Eqs. (9) and (10) is not restricted to rectangular
grooves, but applies to all surfaces with an arbitrary, periodic
structure, for which the flow can be modeled as a superposition
of a Couette flow and flow over alternating no-slip and no-shear
patches. Consequently, if for a certain surface the effective
slip length is known (e.g., through experiments), s can be
determined though βeff = sβP, and the net EOF at this surface
follows accordingly. Several results for flow over no-slip and
no-shear patches are available, such as Philip’s for grooves [21]
or Davis’ and Lauga’s for posts [23].

For specific choices of the imperfection parameters st and sl ,
Eqs. (9) and (10) reduce to known solutions [7,9] in which the
boundary conditions at the fluid-fluid interface are introduced
in a schematic manner. For example, in the case of perfectly
slipping fluid-fluid interfaces (s = 1), Eq. (9) reduces to

uEOF = σwλDEx

η1
+ σfλDEx

η1

βt, P

λD
. (11)

In the opposite case of a vanishing slip (s = 0), the effective
velocity resulting from Eq. (9) is

uEOF = −ε1ζwEx

η1
(1 − a) − ε1ζfEx

η1
a. (12)

This is the expected result for flow over a solid wall that
is patterned with stripes of different ζ potential (cf. [24]).
Schematic studies employing a constant local slip length [9]
approach Eq. (12) only asymptotically in the limit of a small
local slip length.

The schematic modeling of structured surfaces may lead
to unrealistic results. In [9], the counterintuitive result is
pointed out that for uncharged air-water interfaces, the attained
EOF is greater for transverse than for longitudinal flow.
By contrast, the equations for the effective electro-osmotic
velocity equations (9) and (10) together with the expressions
for st and sl from (7) and (8) provide the possibility to
investigate specific surfaces. Real grooved surfaces exhibit
an anisotropic local slip [20], which is due to the flow of
the secondary fluid in the cavity, while the usual schematic
assumption is an isotropic local slip length as in [9]. Upon
considering this anisotropy, the behavior reported in [9] can
no longer be observed.

III. ESTIMATION OF THE STABILITY OF THE
CASSIE STATE

Electro-osmotic flow enhancement on superhydrophobic
surfaces relies on the fact that the liquid is in the Cassie state.
In the common case of a purely hydrodynamic flow without
electrical forces, the Cassie-to-Wenzel transition is induced if
the pressure difference across the fluid-fluid interface becomes
too high. Here, we focus on the general properties of the
Cassie-to-Wenzel transition under the influence of electric
fields. In this case, it is the electric field normal to the interface
that leads to a deformation of the same.

Let us estimate the stability limits for a grooved surface. A
corresponding unit cell is depicted in Fig. 2. The deflection of

x
y

b

h

Θ

FIG. 2. (Color online) Schematic of a deflected fluid-fluid
interface.

the interface shall be described by g(x). Then, g(x) is related
to the contact angle (Fig. 2) via

� = 90◦ − 360◦

2π
arctan

(
dg

dx

)∣∣∣∣
x=−b/2

. (13)

For simplicity, we assume the interface has a trigonometric
shape of

g(x) = α cos

(
π

b
x

)
. (14)

During the deflection process, the shape of the interface
may change. More accurate results should be obtained when
extending g(x) to a Fourier series. Here, mainly the basic
principle of the instability is of interest, therefore only the first
element of the series is considered.

A. Electrical breakdown

If the electric field within the groove exceeds the breakdown
electric field of the respective medium filling the groove, the
originally insulating fluid starts to become conducting. Plasma
discharges may occur, for example in the form of sparks. The
breakdown limit is usually given in terms of the breakdown
voltage Ub. For gases, it is given by the Paschen law [25] (see
also [26,27]):

Ub = Bpd

log(Apd) − log
[

log
(
1 + 1

γ

)] , (15)

illustrating the dependence of the breakdown voltage on the
product of the pressure and the gap size pd. The coefficients A,
B, and γ are material parameters originating from the descrip-
tion of different ionization processes. For air at atmospheric
pressure and within the considered range of the electric field,
we may set A = 645 mm−1 bar−1, B = 19 kV mm−1 bar−1,
and γ = 0.02 [27]. Additionally, the breakdown voltage
depends on effects such as the humidity of the air and the
shape of the electrodes. For the present estimation, the gap
size is taken as d = h + α, i.e., the closest distance between
the interface and the bottom of the groove.

The breakdown electric field strength is not the same for
micrometer-sized grooves as for large gaps. At macroscopic
gap sizes, the breakdown electric field strength of air at
atmospheric pressure is about 2.5–3 kV/mm. For gap sizes in
the micrometer range, which is the case for a microstructured
surface, the breakdown electric field strength increases to
about twice this value at a gap size of 100 μm and to about
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five times the value at a size of 20 μm. This behavior is
of course beneficial, as an increased electric field invokes
a greater induced surface charge and ultimately a greater
electro-osmotic velocity. The Paschen law is valid up to
gap sizes of about 4 μm [28,29]. For liquids, corresponding
theories for the breakdown voltage exist [30].

B. Depinning

Without the application of an electric field, the fluid-fluid
interface is ideally flat. The contact line is pinned at the edges
of the cavity. If the electric field is increased, the interface
deforms, so that the forces due to Maxwell stresses and to
the surface curvature balance. Upon the contact angle of the
fluid-fluid interface exceeding the advancing contact angle of
the specific wall material, the contact line starts to move down
into the groove.

C. Interface instability

Before the interface deforms to an extent that the advancing
contact angle is reached, it might become unstable if the
capillary pressure is no longer able to balance the Maxwell
stress. Then the system may undergo a transition to a config-
uration of lower free energy, similar to processes occurring in
electrospraying. A relation for the maximum deflection α as
a function of the potential between the bottom of the groove
and the electrolyte U as well as a stability criterion for the
interface can be obtained by considering the energy balance of
the system.

Upon deflection, the surface energy varies with the arc
length B of the fluid-fluid interface as

Ws ∼ σB = σ

∫ b/2

−b/2

√
1 +

(
dg

dx

)2

dx

= 2bσ

π
E

(
−π2α2

b2

)
. (16)

In this equation, the function E(m) is the complete elliptic
integral of the second kind and should not be confused with
the electric field. At small deflections, the electric field is
approximately

Ey(x) = U

−h − g(x)
, (17)

with the highest electric field occurring at the point of greatest
deflection, x = 0.

The electrostatic energy can be estimated by

Wel ∼ 1

2
ε2

∫ b/2

−b/2

∫ g(x)

−h

E2
y dx dy

∼ − 2bε2U
2

π
√

h2 − α2
arctan

(√
2h

h + α
− 1

)
.

(18)

Upon application of a potential U , the system reacts with
a deflection α that corresponds to the minimum free energy,
hence to ∂(Ws + Wel)/∂α = 0. This equation yields an implicit

FIG. 3. (Color online) Stability of the Cassie state under the
influence of an electric field normal to the fluid-fluid interface.
Example of a PTFE surface with air filling the grooves of width
× depth: (a) 50 × 30 μm; (b) 50 × 50 μm. Green: deflection with
applied voltage; blue: electrical breakdown limit; red: depinning limit;
black point: surface instability limit.

expression for the deflection,

U=
i
√

2(α2 − h2)
√

σ
[
E

(−π2α2

b2

) − K
(−π2α2

b2

)]
√

αε2
[−α2 − 2α

√
h2 − α2 arctan

(√
2h

α+h
− 1

) + h2
] ,

(19)

with the complete elliptic integral of the first kind K(m).
Equation (19) exhibits a stable branch, corresponding to the
energy minima, and an unstable branch, corresponding to
the maxima. The system follows the stable branch until, at the
point of instability, it meets the unstable branch. The overall
energy is then monotonically decreasing with increasing
deflection.

The present estimation of the free energy follows principles
similar to those employed by Oh et al. [31] for circular
cavities. They assumed a parabolic shape of the interface
and restricted their analysis to the depinning and interface
instability mechanisms. Here, the electrical breakdown limit
has also been taken into account. Equation (19) is an estimation
and demonstrates the principle of the stability limits.

Examples of the stability limits for two superhydrophobic
surfaces with rectangular grooves are shown in Fig. 3. The wall
material is taken to be polytetrafluoroethylene (PTFE) with
an advancing contact angle of 118◦. Generally, the specific
groove geometry determines which limiting curve or point the
deflection curve crosses first. The estimation rather overesti-
mates the actual deflection. Varying the geometry shows that
electrical breakdown is a major limit. The comparatively large
contact angle of PTFE avoids depinning, a threshold that would
vary correspondingly with the substrate material. In practice,
further effects such as impurities or rounded corners would
of course additionally influence the wetting behavior, at least
locally.

IV. EOF ENHANCEMENT FOR RECTANGULAR
GROOVES

Overall, Eqs. (9) and (10) allow a rather universal investi-
gation of EOF on different types of structured surfaces with
a fluid in the Cassie state. We will now specifically examine
rectangular grooves. The EOF enhancement factor is defined
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FIG. 4. (Color online) Enhancement factor for the longitudinal
electro-osmotic velocity over a grooved surface relative to that over
a plain wall for A = 1, L/λD = 104: (a) water flowing over air (N ≈
55.56); (b) water flowing over a viscous liquid (N ≈ 0.056).

as

uEOF

uref
= 1 + (1 − st) a

(
σf

σw
− 1

)
+ σf

σw

L

λd
st β

∗
t, P, (20)

where uref is the EOF velocity along an unstructured, planar
wall of the same material as the structured surface. Here, β∗

t, P =
βt, P/L is the normalized effective slip length of Philip [22].
The enhancement factor in the longitudinal case wEOF/wref

follows analogously.
Figure 4 illustrates the effect of a net charge at the

fluid-fluid interface and the area fraction of this interface
on the flow enhancement factor in the longitudinal case,
exemplarily for the cases of air (η2 = 1.8 × 10−5 Pa s) and
a viscous liquid (η2 = 1.8 × 10−2 Pa s) filling the grooves.
The aspect ratio of the grooves was set to A = 1, where the
slip length has generally reached its maximum value for the
respective a, and the ratio of period and Debye length was
L/λD = 100 μm/10 nm = 104.

For a standard superhydrophobic surface [Fig. 4(a)], quite
high enhancement factors are predicted already for very low
net charge densities at the fluid-fluid interface. It is obvious
that a high fluid-fluid interface fraction is essential for a
large amplification of the velocity. At high a, the velocity
strongly increases with the magnitude of σf/σw, whereas at
low a, the charge density can virtually be arbitrarily increased
without a significant effect. At vanishing interface charge, the
relative velocity is closely below 1, as the viscosity ratio is
high. If σf takes the opposite sign of σw, the flow may be
reversed. With increasing fluid-fluid interface fraction, the flow
in the opposite direction over the wall is negligible. In this
regime, the diagrams are nearly symmetric with respect to the

line σf/σw = 0. Transverse flow behaves fully analogously.
The amplification factors are close to twice as large in
the longitudinal case compared to the transverse case. This
corresponds to the relation between the effective slip lengths
for shear-driven flow in these two cases.

A typical scenario considered with the schematic models is
the case in which the fluidic interface has the same ζ potential
as the wall. Within the Debye-Hückel approximation (i.e.,
ε1ζ = −σλD), this corresponds to σf/σw = 1. Figure 4 shows
that large EOF enhancement factors are already achieved for
much smaller interface charge densities. Besides that, real
interfaces will usually not support charge densities as high
as σf/σw = 1. Referring to the scheme for charge generation
depicted in Fig. 1, Maxwell stresses may deform the fluidic
interface and eventually destroy the Cassie state as described
in the previous section.

The maximum achievable net surface charge density σf

depends on the maximum electric field in the groove. If
we assume this to be given by the breakdown electric field
strength, typical values for the maximum charge density ratio
at a classic superhydrophobic surface with wall potential
ζw = −50 mV are about σf/σw ≈ 0.1 for 10 μm deep grooves
and σf/σw ≈ 0.015 for 100 μm deep grooves. At such a
surface, grooves of b = 50 μm, h = 20 μm, and a = 0.9
would lead to a maximum enhancement factor of about 250.
With lower values of ζw, the enhancement factor increases
further. At greater a, which in particular might be achieved
with alternative surfaces geometries (see, e.g., [32]), even
greater enhancements are expected.

Another influencing factor is that a curved interface may
also reduce the slip length. Since the parameter s characterizes
the effective slip length of a real surface relative to that
of the ideal surface, it can be estimated from the reduction
in effective slip length obtained in previous work on flow
over surfaces with curved interfaces. For a surface with an
advancing contact angle of 118◦, Ref. [33] suggests a value
of st of the order of 0.8. However, in most of the cases the
electrical breakdown limit will not allow for such a large
deformation. Correspondingly, st ≈ 0.95 for the geometry of
Fig. 3(b), where the deflection is probably still overestimated.
From Eq. (20), a reduction of the EOF of the same order of
magnitude results. For longitudinal flow over the same surface,
the losses due to interface deformation are expected to be even
smaller.

At a less favorable viscosity ratio than that of a classic
superhydrophobic surface, the achievable EOF enhancement
factor is much lower [Fig. 4(b)]. At zero fluid-fluid interface
potential, the velocity is strongly reduced for real fluids
compared to an EOF along a planar wall. The higher the
viscosity of the medium filling the grooves, the greater σf/σw

must be to achieve considerable velocity amplifications. This
agrees with experiments on influencing electro-osmotic flow
by embedded electrodes underneath a solid wall [34–37],
i.e., the limiting case of very high viscosity, where very
high voltages are needed in order to have any impact on the
flow. Although the maximum charge density at the fluid-fluid
interface may be higher for liquid-filled than for gas-filled
grooves by the ratio of the permittivities of the groove-filling
media, fluid permittivities are usually not large enough to
compensate for the effect of viscosity.
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V. CONCLUSIONS

In summary, Eqs. (9) and (10) provide effective boundary
conditions for the transverse and longitudinal electro-osmotic
flow along periodically structured surfaces with an arbitrary
dielectric fluid filling the indentations. They are valid for
flow over all periodic surface structures that can be modeled
by a superposition of Couette flow and flow over no-slip
and no-shear patches. Specifically, for a surface with rect-
angular grooves, the influence of the groove dimensions
as well as the viscosity of the fluid inside the grooves
is taken into account. High amplification factors for the
electro-osmotic velocity are predicted already for low charge
densities at the fluid-fluid interfaces. On a suitably designed

superhydrophobic surface with auxiliary electrodes, an ampli-
fication of the EOF by more than two orders of magnitude
can be expected. The expressions for the net electro-osmotic
velocity provide a basis for the investigation and understanding
of such flows as well as for the development and design of
novel surfaces, e.g., with alternative fluids filling the surface
indentations.
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