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Scaling of far-field wake angle of nonaxisymmetric pressure disturbance
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It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance
of finite size can be significantly narrower than the maximum value αK = sin−1(1/3) � 19.47◦ predicted by
the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson
initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α � Fr−1

L ,
where FrL = U/

√
gL is the Froude number based on the disturbance velocity U , its size L, and gravity g. In this

paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that,
for intermediate Froude numbers, the wake angle follows an intermediate scaling law α � Fr−2

L , in agreement
with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a
critical Froude number, which scales as A1/2 (where A is the length-to-width aspect ratio of the disturbance), the
asymptotic scaling α � Fr−1

B holds, where now FrB = A1/2FrL is the Froude number based on the disturbance
width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake
angle as a function of parameters (A,FrL).
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I. INTRODUCTION

Lord Kelvin was the first to explain why a ship moving at
constant velocity in deep water generates waves confined in a
triangular wedge [1,2]. He demonstrated that the stationary
wave pattern is composed of a transverse and a divergent
wave system delimited by a cusp line making a constant
half angle αK = sin−1(1/3) � 19.47◦ with the ship trajectory
[3–7]. Recently, airborne images of ship wakes showing an
angle of maximum wave amplitude significantly smaller than
the Kelvin prediction have been analyzed [8], renewing the
interest in this classical subject [9–13]. We propose here to
extend the phenomenological approach introduced in Ref. [8]
to nonaxisymmetric disturbances, providing a more realistic
description of elongated boats.

For pure gravity waves in deep water, the governing
parameter for the wake angle is the Froude number based
on the hull length L, FrL = U/

√
gL, which is the ratio of the

boat velocity U and velocity of gravity waves of wavelength
of the order of L [5,7]. Ignoring the exact shape of the boat
and retaining L as the unique length scale of the problem,
it is possible to infer the scaling of the wake angle from the
following general property of dispersive waves: A disturbance
of size L mostly excites a wave packet containing wave
numbers kf of order L−1 and propagating at the group velocity
cg = 1

2

√
g/kf . This is the main result of the Cauchy-Poisson

initial-value problem, first analyzed in 1815 [2–5,7]. It follows
that the energy emitted by a disturbance of finite size is
effectively radiated at a constant group velocity. Accordingly,
the maximum amplitude of the waves at large FrL is found
at the Mach-like angle α � cg/U � Fr−1

L (this law does not
apply for moderate FrL because of the cusp in the wave pattern,
which concentrates the maximum amplitude at the Kelvin
angle αK ). This law is compatible with the airborne images
of ship wakes and numerical simulations of Ref. [8], and has
recently received mathematical confirmation by Darmon et al.
[9] for an axisymmetric disturbance.

Recently Noblesse et al. [11] proposed an alternate scaling
for the decrease of the wake angle at large velocity, α � Fr−2

L ,
which turns out to also fit well the airborne data of Ref. [8],

at least in an intermediate range of Froude numbers. Their
analysis relies on the modeling of a real boat as two out-of-
phase point sources separated by a distance of order L. This
simple model classically reproduces the double Kelvin wedge
originating at the bow and the stern of poorly streamlined
boats at small Froude numbers [4]. In their approach the
decrease of the wake angle is described in terms of destructive
interferences between the two Kelvin patterns which occur
when the wavelength of the transverse waves becomes of the
order or larger than the hull length.

The aim of this paper is to investigate the influence of the
aspect ratio of a nonaxisymmetric disturbance on the far-field
angle of maximum wave amplitude, focusing on the case of
pure gravity linear waves in deep water. We consider the
simplest nonaxisymmetric disturbance, a Gaussian pressure
field of elliptic isolevel lines with an aspect ratio A = L/B,
where L and B are the disturbance length and width (beam),
respectively. Of course this crude simplification does not
pretend to reproduce the complexity of real ship wakes.
Hulls are rigid objects that cannot be reduced to a simple
applied pressure disturbance, with a trim being moreover
a function of the ship velocity (the effective aspect ratio
is a decreasing function of the Froude number for rapid
boats in the planing regime). An asymptotic analysis of
the Fourier integral defining the surface elevation in this
linear model can be performed to compute the wake angle
as a function of the Froude number and the disturbance
aspect ratio [12]. Here we propose a simple geometrical
approach to determine the scaling of this wake angle by
extending the phenomenological model of Refs. [8,13] to
nonaxisymmetric disturbances. A regime diagram in terms
of these two parameters is proposed, which brings together
the axisymmetric disturbance regime (α � Fr−1

B for A = 1) of
Refs. [8,9,12] and the strongly elongated disturbance regime
(α � Fr−2

L for A � 1) of Ref. [11].

II. NUMERICAL SIMULATIONS

The wave pattern is computed using the classical simplifi-
cation due to Havelock [3], in which the motion of a rigid hull
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is modeled by the translation at the water surface of a pressure
disturbance P (r). The resulting wave field is given by [7,9,14]

ζ (x) = − lim
ε→0

1

(2π )2

∫∫
kP̂ (k)/ρ

ω(k)2 − (k · U − iε)2
eik·xd2k, (1)

with P̂ (k) the two-dimensional Fourier transform of P (r), ρ

the fluid density, U = Uex the disturbance velocity, ω(k) =√
g|k| the wave frequency for pure gravity waves in deep

water, and ε > 0 a small parameter introduced to avoid the
divergence of the integrand. In Refs. [8–10,13] an axisym-
metric pressure distribution is used. Here we use a Gaussian
pressure distribution with elliptical isovalues of longitudinal
axis L (along the disturbance motion ex) and transverse axis B,

P (r) = P0 exp

[
−π2

(
x2

L2
+ y2

B2

)]
. (2)

For pure gravity waves in deep water, there are three length
scales in the problem, L, B, and U 2/g, so the far-field wake
angle of this nonaxisymmetric disturbance is governed by two
independent nondimensional parameters. The first one is the
aspect ratio

A = L/B. (3)

The second one can be either the longitudinal Froude number
based on the disturbance length L,

FrL = U√
gL

,

or the transverse Froude number based on the disturbance
width B,

FrB = U√
gB

= A1/2FrL.

Both sets of nondimensional numbers (A,FrL) and (A,FrB)
turn out to be useful to describe the various wake angle
regimes in the following.

We have computed the wake pattern for a wide range
of aspect ratios, from A = 0.25 (ellipse traveling along its
smallest dimension) to A = 64 (very thin ellipse traveling
along its largest dimension), and for Froude numbers FrL
ranging from 0.1 to 100. These numbers go well beyond
realistic values for ships (typically FrL � 0.1–2 and A �
2–10), but they are nonetheless useful to infer asymptotic
scaling laws for the wake angle. The Fourier integral (1) is
integrated on a square domain of size Lbox, discretized on a
grid of N × N collocation points. For an aspect ratio A � 1,
the resolution N must be such that Lbox � L � B � Lbox/N .
We take here N = 3 × 212 = 12 288, which is sufficient to
simulate the wake pattern for the largest aspect ratio, A = 64.

Typical wave patterns are shown in Fig. 1 for a constant
longitudinal Froude number FrL = 1.5 with varying aspect
ratios A from 0.25 to 16. The far-field wake angle α is measured
as the angle between the disturbance trajectory and the line
going through the maximum amplitude of the waves. For this
value of FrL the wake angle α is smaller than the Kelvin value,
and is clearly a decreasing function of the aspect ratio A.

Figure 2 shows the angle α for various aspect ratios, as
a function of both the longitudinal and transverse Froude
numbers, FrL [Fig. 2(a)] and FrB [Fig. 2(b)]. From these two

FIG. 1. (Color online) Wave field computed for the nonaxisym-
metric Gaussian pressure disturbance (2) at fixed longitudinal Froude
number FrL = 1.5 for various aspect ratios: (a) A = 0.25, (b) A = 1,
(c) A = 4, (d) A = 16. Color maps and scales are the same for the four
images. Dashed line: classical Kelvin angle αK ; solid line: angle α of
maximum wave amplitude.

sets of nondimensional parameters it is possible to identify the
following three regimes:
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FIG. 2. (Color online) Angle of maximum wave amplitude α as a
function of the longitudinal Froude number FrL (a) and the transverse
Froude number FrB (b), for a nonaxisymmetric Gaussian pressure
disturbance at five values of the aspect ratio, A = L/B = 0.25, 1, 4,
16, and 64.

(1) At low velocity, angles α close to the classical Kelvin
angle αK � 19.47◦ are found. This regime is valid up to FrL �
0.5 for A > 1 [see Fig. 2(a)], whereas it is valid up to FrB � 0.5
for A < 1, i.e., up to FrL � 0.5A−1/2 [see Fig. 2(b)]. In other
words, the Kelvin regime holds when the Froude number based
on the smallest size of the disturbance is below 0.5.

(2) At intermediate velocity, provided that the aspect
ratio A is sufficiently large, the wake angle is governed by
the longitudinal Froude number, and follows the law

α � C2

Fr2
L

, (4)

with C2 ≈ 0.073 ± 0.003. This intermediate regime is com-
patible with the analysis of Noblesse et al. [11]. It must
be noted that its extent is moderate: For A = 64 (a value
unrealistically large for real ships), this scaling holds in the
range 0.5 < FrL < 2 only.

(3) At larger velocity, the wake angle is governed now
by the transverse Froude number FrB , and follows the
law

α � C3

FrB
, (5)

A = L / B

Fr
L =

 U
 / 

(g
 L

)1
/2

α = C2 / FrL
2

α  = C3 / (A1/2 FrL)

(1)   Kelvin
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 A
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1

(2)

(3)

FIG. 3. The three regimes of wake angle in the plan of parameters
(A,FrL) in logarithmic scales.

with C3 ≈ 0.22 ± 0.01. This law is in excellent agreement
with the analytical prediction C3 = 1/(π1/2401/4) � 0.224 of
Ref. [9] for an axisymmetric Gaussian pressure disturbance
[Eq. (2) with A = 1].

The three wake regimes are summarized in the plan of
parameters (A,FrL) in Fig. 3. The boundary between regimes
(2) and (3) is given by FrL � (C2/C3)A1/2 � 0.33A1/2.
Interestingly, for nearly axisymmetric disturbances (typically
A < 2), only the first and third regimes are observed: The
wake angle directly proceeds from α � 19.47◦ to α � Fr−1

B

as the velocity is increased, in agreement with the analysis of
Refs. [8,9] for axisymmetric disturbance.

III. PHENOMENOLOGICAL MODEL

We introduce in the following a simple model which
describes the transition between the three wake regimes found
in the simulation. The basic assumption is that the amplitude
of the waves excited by a moving disturbance is small when
their wavelengths are much larger or much smaller than the
disturbance size. This hypothesis is a direct consequence of
the Cauchy-Poisson initial-value problem. It was first used
in Ref. [8] for axisymmetric disturbance, and we extend this
approach here to the case of nonaxisymmetric disturbance.

The physical content of the Cauchy-Poisson problem can
be described as follows. When a stone of size L is thrown
in a pound, a wave packet containing all the wavelengths
is excited. However, in the far field, waves of significant
amplitudes have their wavelength of the order of the stone
size. Let us consider for simplicity the case of a Gaussian
initial perturbation of the interface, which excites a Gaussian
spectrum of wave numbers, each propagating with its group
velocity cg(k) = 1

2

√
g/k. In this spectrum, the small wave

numbers of large initial amplitude propagate faster, so they
spread over a larger distance and their spatial density of
energy (and hence their amplitude) rapidly decreases. On the
other hand, the large wave numbers do not spread much, but
they are of small initial amplitude. As a result, the waves
of intermediate wave number k, of the order of L−1, are of
maximum amplitude.

We start by describing the wake pattern in the Fourier space.
The waves in the wake being stationary in the frame of ref-
erence of the disturbance traveling at velocity U = Uex , their
wave vectors must be such that their relative (i.e., Doppler-
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FIG. 4. (Color online) Graphical solution in the Fourier space
for the wake angle of a nonaxisymmetric disturbance. Thin (color)
lines: Wave vectors k satisfying the stationary condition �(k) = 0
[Eq. (6)], for longitudinal Froude numbers FrL = 0.35, 0.5, 1, and
2. The normal to the curve gives the group velocity relative to the
disturbance c′

g , making angle α(k) with the axis x. Thick (gray) line:
Energy-containing domain radiated by a disturbance [Eq. (8), shown
here for A = 4]. The wake angle α for a disturbance of a given Froude
number is given by the normal to the curve �(k) = 0 taken at the point
of intersection (k̃x ,k̃y) between the bold gray line and the thin line.

shifted) frequency �(k) = ω(k) − k · U is zero [ω(k) = √
gk

is the dispersion relation of gravity waves, with k = |k|].
Introducing the nondimensional wave vector K = k/kg , with
kg = g/U 2, the stationary condition �(k) = 0 writes

K2
y = K2

x

(
K2

x − 1
)
. (6)

This relation is plotted in Fig. 4 (it corresponds to a family
of curves because of the use of the axis normalized by the
disturbance size—see below). The energy of a given wave
vector K propagates according to its relative group velocity
(in the frame of the disturbance) c′

g = ∇k� = cg − U, where
cg = ∇kω is the group velocity in the frame of the liquid at
rest. Accordingly, the relative group velocity c′

g is a vector
normal to the curves (6), as illustrated by the arrows in Fig. 4
[15,16]. The angle of c′

g with respect to −U, which we call
the radiation angle, is therefore given by

tan α(K) =
(

∂Ky

∂Kx

)−1

=
√

K2
x − 1

2K2
x − 1

(7)

(see Refs. [8,13] for an alternate derivation of this angle in the
physical space). This radiation angle is 0 for Kx = 1 and for
Kx → ∞, and reaches the maximum αK = tan−1(1/

√
8) �

19.47◦ at the inflection point of the curve (6), which is located
at K0 = (

√
3/2,

√
3/4), with K0 = |K0| = 3/2.

For a disturbance characterized by a given spectrum,
the energy density of each wave number of the spectrum
propagates in the direction given by Eq. (7). The resulting
wake angle α, i.e., the angle of maximum wave amplitude, is

therefore given by the radiation angle α(k) at which most of the
energy supplied by the disturbance is effectively radiated. Two
cases must be considered: (i) If the maximum of the radiated
energy is in the vicinity of the inflection point K0 = 3/2,
the radiated energy focuses along the Kelvin angle αK ;
(ii) otherwise, the wake angle is given by the radiation angle
evaluated at the most excited wave number.

In order to determine the wake angle it is now necessary
to model the effect of the nonaxisymmetric disturbance in
the Fourier space. We extend the analysis stemming from
the Cauchy-Poisson problem by assuming that the wave of
maximum amplitude in each direction has a wavelength of the
order of the disturbance size along that direction. Accordingly,
the energy-containing domain in the spectral space is an
ellipse, of semiaxes 2π/L and 2π/B = 2πA/L:

(
Lkx

2π

)2

+
(

Lky

2πA

)2

= 1 (8)

(plotted as the bold gray line in Fig. 4 in the case A = 4). In
practice, because of the finite extent of the disturbance, this
energy-containing ellipse has a thickness of the order of unity
in the spectral space; for simplicity we do not consider this
thickness in the following. Normalizing Eq. (8) by kg = g/U 2
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FIG. 5. (Color online) Wake angle according to the model (7)–
(10) as a function of the longitudinal Froude number FrL (a) and
transverse Froude number FrB (b), for aspect ratios A = 0.25, 1, 4,
16, and 64.
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and using the relation Lkg = Fr−2
L , the ellipse writes

K2
x + (Ky/A)2 = (2π )2Fr4

L. (9)

For a given Froude number FrL > 1/
√

2π � 0.4, the
energy-containing ellipse (9) intersects the stationary curve
�(k) = 0 (6) at the point K̃ = (K̃x,K̃y), satisfying

K̃2
x = 1

2

[
1 − A2 ±

√
(A2 − 1)2 + 4A2(2π )2Fr4

L

]
(10)

(where only the sign + has a physical meaning). If this
intersection falls in the vicinity of the inflection point, K̃ � K0

[case (i) above], the energy radiated by the disturbance focuses
at the Kelvin angle. Otherwise, energy is mostly found at the
radiation angle (7) evaluated at the intersection point (10).
This geometrical construction can be readily generalized for
any dispersion relation, e.g. for finite-depth gravity waves, for
capillary-gravity waves, etc.

The wake angle α given by this model (7)–(10) is plotted
as a function of FrL and FrB for various aspect ratios A in
Fig. 5. For parameters such that the wake angle is a decreasing
function of FrL, the model shows an excellent agreement
with the wake angle determined numerically in Fig. 2 for the
elliptical Gaussian disturbance. On the other hand, since the
model does not contain the physics of the wave focusing along
the inflection point (cusp angle), it cannot describe the wake
angle at small Froude numbers, when α is close to the Kelvin
angle, and the sharp jump to smaller angles observed in Fig. 2
as the Froude number is increased.

The two scaling laws found numerically [Eqs. (4) and
(5)] are readily recovered in the case of a very elongated
disturbance (A � 1):

For 1 
 FrL 
 √
A, Eq. (10) reduces to K̃x � 2πFr2

L,
yielding the wake angle

α � 1

4πFr2
L

.

This is the intermediate regime (2) of Fig. 3, in which the wake
angle does not depend on the aspect ratio A, and is governed
by FrL only. The numerical constant C2 = 1/4π � 0.080 is
very close to the one found numerically, C2 � 0.073 ± 0.003.

For FrL � √
A, Eq. (10) reduces to K̃x � (2πA)1/2FrL,

yielding the wake angle

α � 1

2
√

2π
√

AFrL
= 1

2
√

2πFrB
.

This is the asymptotic regime (3) of Fig. 3, in which the wake
angle is governed now by the transverse Froude number FrB =
U/

√
gB. The numerical constant is C3 = 1/(2

√
2π ) � 0.20,

very close to the one found numerically, C3 � 0.22 ± 0.01.

IV. CONCLUSION

We have investigated, by means of numerical simulations
and a simple phenomenological model, the influence of the
aspect ratio A of the disturbance on the scaling of the
angle of maximum wave amplitude. The model stems from
the general property of dispersive waves that a disturbance
of finite size excites a wave packet containing wavelengths
of order of the disturbance size, which we apply here to
the case of nonaxisymmetric disturbances. In spite of its
simplicity, the present model successfully reproduces the two
wake regimes reported in the literature, governed by the
Froude number based either on the disturbance length L or
width B: For axisymmetric or weakly elongated disturbances
the asymptotic law α � Fr−1

B of Refs. [8,9] is recovered,
whereas for elongated disturbances an intermediate scaling
Fr−2

L is found. This intermediate scaling is compatible with
the analysis of Noblesse et al. [11], which applies for two
separated point sources.

Of course the application of this highly simplified model for
real ship wakes is questionable, since it ignores the complexity
of the flow around real ship hulls (with detached boundary
layers, turbulence, wave breaking, etc.). In particular, the
crossover between the two scaling laws at FrL � A1/2, which
can be hardly tested from existing data of airborne wake images
[8], should be confirmed by systematic measurements of
ship models of various aspect ratios or numerical simulations
reproducing realistic hull shapes.
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