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Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels
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Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position
of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is
subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should
attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental
investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration
parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well
with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969)].
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I. INTRODUCTION AND BACKGROUND

A fluid interface interacts with vibration, giving rise to
various interesting phenomena depending on the relative direc-
tion of the vibration and the interface. Vibration perpendicular
to the interface can lead to a parametric instability (known
as the Faraday wave instability [1–3]) whereas vibration
parallel to the fluid interface can lead to the formation of
frozen wave instability [4–7]. While the Faraday waves occur
due to the parametric excitation of an interface, the frozen
waves are caused by a shear-driven mechanism similar to the
Kelvin-Helmholtz instability.

When subjected to vibration a fluid interface can share
many similarities with that of simple mechanical systems
under vibration. It is known that the vibrations are able to
stabilize the equilibrium states which were unstable in the
absence of vibrations and to create new equilibrium states. In
a usual pendulum with a fixed suspension point, the only stable
equilibrium position is the position with the bob below the sus-
pension point. The inverted position where the mass is above
the suspension point corresponds to an unstable equilibrium.

Kapitza considered the stability of a pendulum when the
point of suspension was submitted to harmonic vibrations
[8,9]. The stability properties of this system have been studied
either by means of averaged equations (the effective potential
method; see below) or by linearization around fixed points,
which leads to the Mathieu equation. Kapitza analyzed the
case of rapid oscillations with small amplitude (a) of the
suspension point of a pendulum with length l0, corresponding
to a � l0 and ω � �, with � �

√
g0/l0 the eigenfrequency

of pendulum oscillations (g0 is the gravity field acceleration
constant). He split the motion into fast and slow components
and introduced an effective potential Ueff to describe the slow
component. The stable equilibrium states of the pendulum
correspond to the minima of Ueff .

To analyze the equilibria of the Kapitza pendulum, a
periodic generalized force was introduced by Landau and
Lifshitz [10] as the derivative of the Lagrangian with respect
to the generalized coordinate, f = ∂L/∂ϕ (ϕ is the angle
between the pendulum and the vertical direction). For vertical
vibrations of the suspension point the generalized force is

f = −ml0aω2 cos(ωt) sin ϕ and the effective potential takes
the form

Ueff = mgl0

(
− cos ϕ + aω2

4gl0
sin2 ϕ

)
, (1)

where m is the pendulum mass. When aω �
√

2gl0 the poten-
tial Ueff exhibits two minima. The first minimum corresponds
to the vertical position of the bob below the suspension point
(ϕ = 0); this state is always stable. The other minimum
corresponds to an upper vertical position. This later position,
unstable for a pendulum, thus becomes stable for the Kapitza
pendulum. A physical explanation of the stability of the in-
verted pendulum position has been proposed in [11]: For rapid
oscillations of the axis, a time averaged on the period gives
rise to a nonzero torque that makes the upward position stable.

When the suspension point is vibrated horizontally, the
generalized force becomes f = −ml0aω2 cos(ωt) cos ϕ and
the effective potential takes the form

Ueff = mgl0

(
− cos ϕ + aω2

4gl0
cos2 ϕ

)
. (2)

For aω �
√

2gl0, the state with vertical position of the bob
below the suspension point (α = 0) is stable. For aω �

√
2gl0,

the equilibrium state corresponds to the pendulum inclined
with angle ϕ such as

cos ϕ = 2gl0

a2ω2
. (3)

As shown by Wolf [5] a similar behavior can be observed in
the case of an interface between two fluids under a gravity field,
in a rectangular cavity subjected to small-amplitude, high-
frequency vibrations. The width of the vessel, l, is assumed
to be much smaller than the depth of the two fluids. Wolf
introduced a time-averaged effective potential Ueff for a single
particle of a mass m in a rapidly oscillating field with ω �
�, in the same way as it was made in [10] for the Kapitza
pendulum. For horizontal vibrations of the container, the angle
ϕ in the formula (2) for the effective potential should be taken
as the angle between the equilibrium position of the interface
without vibrations (which is horizontal) and its position under
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vibrations (which is inclined). Wolf introduces the angle α

between the vertical upward position and interface position
under vibrations (inclined position). One should thus substitute
ϕ = π

2 − α in formula (2) for Ueff, which becomes

Ueff = mgl0

(
− sin α + aω2

4gl0
sin2 α

)
. (4)

The equilibrium positions of the fluid interface correspond
to the minima of this potential, given by

sin α = 2gl0

a2ω2
. (5)

The formulas (1) and (2) for the effective potential Ueff

of the Kapitza pendulum contain the eigenfrequency of the
pendulum oscillation � = √

g/l0. Assuming that the formula
for the effective potential can be generalized for the case of a
fluid interface, Wolf uses for � the formula for the frequency
of waves at the interface of two thick layers of inviscid fluids
under a gravity field and in the absence of capillary effects:

�2 = kg
ρl − ρv

ρl + ρv

, (6)

where k is the wave number. Then Eq. (5) can be rewritten as

sin α = 2g2

a2ω2�2
= gL

πa2ω2

ρl + ρv

ρl − ρv

, (7)

where L = 2π/k is the wavelength of perturbations.
For the rectangular container of greater lateral width l,

taking L/2 = l, Eq. (7) becomes

sin α = 2gl

πa2ω2

ρl + ρv

ρl − ρv

. (8)

It follows from (8) that the angle α should grow with the
increase of lateral width of the vessel. Note that for some
values of vibration parameters, and density or gravity values,
the expression (8) can give values larger than unity. It simply
means that sin α saturates to unity.

The present paper deals with the dynamic equilibration
of a fluid interface when subjected to horizontal vibration.
The problem has been surprisingly poorly investigated until
now. Only two research articles related to this phenomenon
could be found. Wolf [5] first reported the phenomenon when
experimenting with aqueous solution of potassium iodide and
oil. He observed that for large-amplitude, high frequency cases
the interface indeed tilts towards a wall at an angle α to the
vertical according to Eq. (8) that he derived. The experiments
were carried out for a fixed value of aspect ratio (h/l =
1). Later, Lyubimov et al. formulated in [12] a variational
principle for the determination of the free surface shape of
a fluid subjected to the high-frequency horizontal vibrations.
Numerical minimization of the corresponding functional has
shown that the results obtained for different aspect ratios are
qualitatively the same and that for the same vibration velocity
amplitude (aω), α is larger for values of h/l much larger than 1.

The objective of the present paper is thus to investigate
the above phenomenon when the density differences between
liquid and vapor phases and the g levels are varied. Working
with a fluid system involving a liquid layer surrounded by its
own vapor near its critical point is indeed advantageous. Close
to the critical point the physical properties of a fluid follow

scaled universal power laws [13]. When the critical point is
approached, various parameters such as the thermal expansion
coefficient, isothermal compressibility, thermal conductivity,
etc., diverge while properties such as surface tension, liquid-
vapor density difference, capillary length, and coefficient of
thermal diffusivity, etc., vanish. The fact that the capillary
length goes to zero when approaching the critical point even
with weak gravity fields makes capillary effects negligible.
So just by heating or cooling the fluid (or in other words, by
approaching or moving away from the liquid-vapor critical
point) one can modify the properties of the liquid and vapor
phases in a scaled way and thus study the interface for a
variety of fluid conditions without having to change the fluid
combination. Also, it is interesting to note that working close to
the critical point decreases the density difference between the
two fluids which, according to Eq. (8), leads to a magnification
in the angle of the tilted interface under vibration. The effect of
gravity is studied by changing the gravity level inside a small
cell by using a magnetic levitator.

The present paper is organized as follows. Firstly, a
brief description of the experimental setup used to carry
out the experiments is given followed by the results of
the experiments and comparison with theory. Lastly, some
important conclusions drawn from the experiments are made.

II. EXPERIMENTAL SETUP

The experiments are carried out with H2 as the working fluid
using the cryogenic facility HYLDE (HYdrogen Levitation
DEvice [14–16]). The HYLDE setup uses a 10 T magnetic field
generated by a cylindrical superconducting coil. Hydrogen can
be levitated near the upper end of the coil where is present a
near-constant magnetogravitational potential field (product of
magnetic field and its gradient) (≈1000 T2 m−1). The setup
is shown schematically in Fig. 1(a). A superconducting coil
made of Nb-Ti is dipped inside liquid helium at a temperature
of 2.16 K and a pressure of 0.1 MPa inside the cryostat.
The experimental cell is mounted inside another cryostat (the
“anticryostat”) maintained under a vacuum of less than 10−7

mbar. Endoscopes for a light source and a video camera are
mounted inside the anticryostat as can be seen in Fig. 1.
The positions of the endoscopes are independently adjustable.
The experimental cell is vibrated using a motor-driven cam
mechanism. The motor and cam assembly mounted on the top
of the anticryostat [shown in Fig. 1(a)] is connected using a
long shaft (not shown in the figure) to the vibration arm of
the cell [shown in Fig. 1(b)]. The rotational motion of the
motor is converted into a rocking motion of the shaft due to
the cam assembly. The rocking motion of the shaft results
in an oscillatory motion of the cell along a pivot shown in
Fig. 1(b). The oscillation amplitude being very small, the net
effect is equivalent to a horizontal vibration (see end of Sec. II
for further details).

It has been demonstrated by Quettier et al. [16] that in the
technique of magnetic levitation using a solenoid of cylindrical
configuration, a total compensation of gravity can be obtained
only at a single point. A residual gravity field is radially
directed towards the center of the cell. The uniformity of the
gravity field depends on the size of the cell. Using the setup
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FIG. 1. (Color online) (a) Schematic diagram of the experimental setup HYLDE; (b) experimental cell of size 7 mm × 7 mm × 7 mm.

HYLDE a uniformity better than 1% and 2.5% can be achieved
in cells of size 3 and 7 mm, respectively.

The experimental cell used [Fig. 1(b)] is a cubical cavity of
side 7 mm, made of sapphire. The experiments are performed
within 24 h after filling the cell with H2 initially at room
temperature. With the relaxation of H2 spin polarization
takes place slowly with a time constant of 50 h. The fluid
is thus n-H2, whose critical point is defined by: temper-
ature Tc= 33.19 K, pressure pc= 1.315 MPa, and density
ρc= 30.11 kg m−3 [14]. Hydrogen is filled inside the cell at
a density ρ within 0.2% of its critical density using a capillary
tube of inner diameter 0.5 mm. To determine the critical
density, the cell is filled (without gravity compensation) up
to half its height at a temperature very close to the critical
point (say 50 mK) and the meniscus is monitored for small
temperature increase or decrease of the cell (50 mK on either
side of the filling temperature). If the level of the meniscus
does not change with temperature, it means that the cell is
filled at its critical density.

This method of filling the cell at the critical density of
the fluid is quite precise and the cell density is close to
the critical density ρc, with an error of ±0.2% [17]. The
capillary tube is fitted with a thermal switch, a small block of
copper continuously cooled under the triple point of H2, by
conduction, by connecting it to the bottom of the anticryostat
(which experiences 2.17 K temperature due to direct contact
with helium inside the cryostat) and heated whenever required
using a resistive heater. In the absence of heating the hydrogen
inside the capillary tube freezes, thus closing the cell. To fill
or empty the cell, the switch can be heated, thus melting solid
H2 inside the capillary tube.

The experimental cell is provided with thermal bridges,
strands of copper wires connecting the bottom flange of the
anticryostat, which is maintained at liquid helium temperature,

and the cell. Resistive heaters in thermal contact with the cell
are used to heat and control the temperature of the cell. Two
thermometers are pasted on either side of the cell to monitor
the temperature of the cell. The temperature control of the cell
is achieved by using a standard PID (proportional, integral,
differential) control system.

The cell is oscillated along a pivot with various frequencies
(f = 10–50 Hz) and various amplitudes (a = 0.1–1 mm). It
is estimated that for a frequency of 50 Hz and for maximum
amplitude of 1 mm, the cell experiences an oscillation in the
vertical direction of ±10 μm which is negligible compared to
the amplitude of the horizontal vibration. Also, the resulting
centripetal acceleration compares to the vibrational accelera-
tion as a/R (where a is the amplitude of vibration and R is
the distance of the cell from the pivot) which comes out to be
of the order of 1/60. Thus the centrifugal force is negligibly
small in the frequency and amplitude ranges considered and
the vibration can be assumed to be in the horizontal direction.

III. RESULTS AND DISCUSSION

The experimental configuration is shown in Fig. 2. Hydro-
gen is filled inside a cubical cell of side 7 mm at its critical den-
sity. To carry out the experiments the cell is first maintained at a
temperature slightly lower than the critical temperature Tc (say
Tc − 100 mK) and then horizontal vibration is applied. The
temperature of the cell is increased very slowly (20 mK min−1)
so that the fluid can be assumed to be under thermodynamic
equilibrium at all temperatures. Experiments are conducted
for various combinations of amplitudes (ranging from 0.2 to
0.8 mm) and frequencies (between 10 and 35 Hz). Various
gravity levels, g = 0.18g0,0.1g0,0.05g0,0.01g0, and 0g0 (g0

is the gravitational acceleration), are obtained by adjusting the
current intensity in the coil. The experimental results show no
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FIG. 2. Experimental configuration.

signs of hysteresis, meaning that pinning of the interface at the
walls is negligible.

The images obtained from the experiments are analyzed
using standard image processing software. Due to the fact that
the interface oscillates in phase with vibration around its mean
position, the interface looks fuzzy. Thus the measurements are
made at the middle of the interface. A similar procedure is
followed for all the measurements at all vibration levels. A
measurement error of around ±5% may be expected in the
angle measurements.

A. Determination of the fluid temperature

It is important to mention that the experiments have a
serious limitation with respect to the measurement of the
temperature. Since the thermometers fixed to the cell vibrate
along with the cell inside an intense magnetic field, eddy
currents are induced inside them and their electric cabling,
provoking unwanted oscillations in the temperature electric
signal. This renders the values of the temperature during the
vibration experiments useless. Thus an indirect method needs
to be used to estimate the temperature of the bulk fluid.

Figure 3 shows the evolution of the interface as the cell is
heated from a subcritical temperature (Tc − 45 mK) towards Tc

at a very slow rate (20 mK/min) for a= 0.83 mm, f = 35 Hz,
and gravity level 0.05g0. The interface looks fuzzy, due
to the effect of vibrations. What is indeed observed is the
position of an interface that exhibits periodic oscillations in
phase with the exciting vibration around its mean, steady-state
position. Figure 3(a) shows the interface attaining a dynamic
equilibrium, tilting towards the right wall. In our experiments
the interface always seemed to tilt towards the right wall. This

nonrandom behavior is presumably due to a slight initial tilt in
the cell with respect to the vibrational direction (as can be seen
in Fig. 2). In the absence of this initial tilt, the interface should
randomly choose a particular wall based on the experimental
perturbations. It is not supposed to flip to the other wall once
it has found its equilibrium position.

As the temperature of the cell is further increased, the
interface deforms giving rise to the so-called frozen wave
instability [6]. Figure 3(b) shows the transition region when the
tilted interface destabilizes, giving birth to the frozen waves
[Figs. 3(c) and 3(d)]. See the Supplemental Material [18]
explaining the evolution of the interface as the temperature is
varied for the case a = 0.83 mm, f = 35 Hz, and g = 0.05g0.

Experiments and subsequent analysis of the frozen wave
instability (treated in Ref. [19]) have shown that the wave-
length (λ) of the frozen wave instability depends on the thermal
proximity to the critical point 
T (= Tc − T ) according to the
empirical relation

λ = S

T 0.38

g0.8
(aω)1.2. (9)

Here S is a proportionality constant that depends on the
working fluid. For H2, S = 0.075 with all the quantities in
SI units. The temperature of the bulk fluid can be estimated by
first calculating the temperature for a particular wavelength of
the frozen wave instability and then extrapolating it using the
fact that the heating of the cell is carried out at approximately
20 mK min−1. This method, although approximate, is sufficient
for the present analysis.

B. Phenomenological understanding of the tilting of the
interface

It is well known that when a liquid filled in a reservoir
is subjected to a constant acceleration −→

a0 , the interface of
the liquid tilts at an angle α given by tan(α) = (g + a0y)/a0x

with respect to the vertical. This is due to the fact that the
interface aligns perpendicular to the direction of the effective
gravity. Though this phenomenon is a little bit different from
the phenomenon observed in our experiments, they share the
same root as will be demonstrated below.

The tilting of the liquid-vapor interface in our experi-
ments is caused by the nonlinear interaction of vibration
with the interface. This happens when a threshold vibra-
tional acceleration is exceeded. Lyubimov and Cherepanov
[4] analytically treated the frozen wave problem involving
two incompressible inviscid fluids subjected to horizontal

FIG. 3. Evolution of the dynamics at the interface for the vibration case a = 0.83 mm, f = 35 Hz, and gravity level 0.05g0 as the
temperature is increased from approximately Tc−45 mK (a) to Tc−15 mK (d) .
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FIG. 4. Comparison of the experimental results with theory (g =
0.05g0).

vibration. Their approach involved, under high-frequency ap-
proximation (� = ωh2/ν � 1), the splitting of the equations
of motion into pulsating and average parts. A supplementary
assumption of low amplitude (a/h � 1) allows linearizing the
pulsating fields and solving them separately. For the present
experiments, � lies between 3000 and 15 000 while a/h lies
between 0.1 and 0.01, showing that we are in the validity
range of the Lyubimov and Cherepanov theory. The resulting
averaged equations using the standard notation are reproduced
from [4] as below:

duβ/dt= − ∇pβ/ρβ+νβ
uβ−[
g �γ+∇(

(aω)2V 2
β

)]
, (10)

where uβ is the averaged velocity field, Vβ is the relative
amplitude (with respect to aω) of the pulsating velocity field,
�γ is the unit vector indicating the direction of the acceleration
due to gravity, and the subscript β refers to the two fluids.

Equation (10) along with the relevant boundary conditions
can be solved to obtain the average flow field of the problem.
Such an analysis is, however, out of the scope of the present
paper. Our interest in discussing the above equation is merely
to explain the phenomenology of the tilted interface. As can
be seen from Eq. (10), the pulsating velocity fields induce
an extra acceleration term ∇((aω)2V 2

β ) in the average flow
field of the problem. The averaged equations indicated by

Eq. (10) are phenomenologically similar to a fluid filled inside
a square cavity subjected to a constant acceleration equal
to −→

a0 = ∇((aω)2V 2
β ). The nature of this acceleration term

needs to be determined by appropriate analytical methods to
compare it to Eq. (8), which is not taken up in the present paper.

C. Effect of vibrational parameters on the angle of the interface

From the temperature of the bulk fluid estimated according
to the procedure described in the previous section, theoretical
values of sin α can be calculated by using Eq. (8). The results
of the experiments are compared with the theory in Fig. 4
for gravity acceleration 0.05g0 and for various values of
amplitudes and frequencies. The solid dots in the plot are
the results of the experiments for various values of a2ω2. The
solid line is derived from Eq. (8) for the corresponding values
of a2ω2.

The following observations can be made. When the vibra-
tional velocity is increased, the angle of the interface with
respect to the vertical decreases. For smaller values of aω,
the interface remains relatively horizontal (sin α ∼ 1). It can
be seen that Eq. (8) compares well with the experiments for
smaller values of α. The dispersion in the experimental values
is attributed to errors in the calculation of the temperature
values and errors in the measurement of the angle of the
interface. However, an exact agreement with Eq. (8) cannot
be expected due to the approximation made in the equation
[as we already mentioned in the Introduction, Eq. (8) is valid
for small angles of α (large values of aω)]. The experiments
carried out using the gravity level 0.01g0, however, do not
match very well with Eq. (8) due to the fact that the uniformity
of the gravity field itself is of the order of 0.025g0, which is
much higher than the gravity sought.

It is important to note that the observed tilted interface
cannot be an incomplete frozen wave. By comparing the results
of Fig. 4 with Eq. (9), the wavelength of a frozen wave is seen to
increase with aω whereas the angular tilt of the interface with
respect to the vertical (angle α) decreases as aω is increased.
In fact, the frozen waves grow from the tilted interface when
the conditions corresponding to the instability threshold are
met [Fig. 3(b)].

D. Effect of thermal proximity on the angle of the interface

As has been mentioned earlier, as one approaches the
critical point, various properties of a near-critical fluid vary
with the proximity to the critical point according to universal

FIG. 5. Effect of Tc − T on the angle of the interface when the temperature of the cell is changed from Tc−62 mK to Tc−20 mK for the
vibration case a = 0.83 mm, f = 35 Hz, and gravity level 0.05g0. A and B indicate the start of frozen waves instabilities (see text).
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FIG. 6. Effect of (Tc − T ) on the angle of the interface (compar-
ison with theory).

scaled power laws [13]. Thus, studying the effect of the
temperature on the angle of the interface is an important aspect
of the problem. Figure 5 presents the results of experiments
for the case a = 0.83 mm, f = 35 Hz, and g = 0.05g0. In the
pictures presented, the temperature of the cell changes from
Tc − 62 mK to Tc − 20 mK. It can be seen that the angle of
the interface does not change much between Tc − 62 mK and
Tc − 25 mK. A small bump is already evident on the interface
(shown as “A” in Fig. 5) at Tc − 25 mK. which indicates the
nascence of the frozen waves. They develop much more at
Tc − 20 mK (shown as “B” in Fig. 5).

Equation (8) describes the dependence of the angle of the
interface on the relative density ratio (ρl + ρv)/(ρl − ρv).
The liquid-vapor density difference 
ρ(= ρl − ρv) varies
with ε = (Tc − T )/Tc, the relative critical point proximity,
according to [13]:


ρ = 2Bρcε
0.325. (11)

The values of (ρl + ρv)/(ρl − ρv) are calculated for various
temperatures using data from NIST [20] and from Eq. (11) and
are then used to calculate the theoretical values of sin α from
Eq. (8). Figure 6 shows the effect of critical point proximity
(Tc − T ) on the angle of the interface and compares the results

FIG. 7. Effect of g on the angle of the interface with respect to
gravity field for a = 0.83 mm and f = 35 Hz.

FIG. 8. Effect of g on the angle of the interface for a = 0.83 mm
and f = 35 Hz.

of the experiments with theory. It can be observed from the
plot that as the fluid approaches the critical point, the angle
of the interface increases. In the range of the temperatures
considered, drastic change in the angle of the interface is not
seen because the values of (ρl + ρv)/(ρl − ρv) change only by
±7% with respect to the median temperature. Comparison
of the results of the experiments and theory show good
agreement. It can be seen that the trend of the plots is the same.

E. Effect of vibrational parameters on the angle of the interface

Figure 7 shows the images of the interface corresponding
to the vibration case a = 0.83 mm and f = 35 Hz for various
gravity levels 0.1g0,0.05g0,and 0.01g0. It can be seen that as
the gravity is reduced, the angle of the interface reduces, well
in agreement with Eq. (8).

Figure 8 compares the results of the experiments with
theory. The solid dots are the experimental results while the
solid line traces Eq. (8). It can be seen that the general trend
of the plots is the same. The point corresponding to 0.01g0
deviates considerably from the line. This is due to the fact that
the uniformity of the gravity levels inside the cell is of the
order of 0.025g0, greater than the gravity level sought.

IV. CONCLUSION

Vibration experiments were carried out on a liquid-vapor
interface of H2 to study the dynamic equilibrium of the
interface. The study was performed for various combinations
of amplitude and frequency of vibration and for various gravity
levels, thanks to the magnetic gravity compensation instrument
HYLDE. Experiments showed that under harmonic vibrations
the equilibrium position of an interface can considerably
deviate from its normally horizontal position and attain large
enough angles. When compared with the theoretical correla-
tion derived by Wolf [5], the data compared well with theory,
although this latter suffers from substantial approximation.
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It is interesting to note that under vanishing gravity,
vibration acts on an interface in the same way as an artificial
gravity. Further theoretical work seems to be desirable to
deepen our understanding of this phenomenon.
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