
PHYSICAL REVIEW E 89, 063002 (2014)

Single-bubble dynamics in pool boiling of one-component fluids
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We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface
wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75,
036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform
temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase
in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface
and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then
examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic
and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble
nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the
contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and
therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability
increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly
enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip
motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened
by surface superheating.
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I. INTRODUCTION

Boiling is commonly observed in our daily life and is
ubiquitous in many geophysical and astrophysical systems
[1–3]. Technically, boiling is recognized as a highly efficient
mode of heat transfer that has been widely used in a variety of
applications in, for example, chemical engineering, the power
industry, the steel industry, and the microelectronics industry
[1,2].

Physically, boiling is an extremely complex and elusive
nonequilibrium process, in which various physical compo-
nents are involved and interrelated [1–4], e.g., nucleation,
growth, and departure of vapor bubbles; latent heat trans-
port accompanying the liquid-vapor transition; hydrodynamic
instability of the liquid-vapor interface; and hydrodynamic
interactions between bubbles. This complexity in physics
and the technical advantage of efficient heat transfer have
attracted extensive research efforts from both scientists and
engineers. Early in the second half of the 20th century, boiling
heat transfer had been studied extensively, largely stimulated
by the industrial exploitation of high-power heat exchangers
in nuclear power stations [5,6]. Up to now, the qualitative
nature of boiling has been well documented for most of the
common fluids and common regimes [1–3]. Quantitatively,
numerous correlations of boiling heat transfer have been
presented empirically involving several adjustable parameters
[1–3]. Below is a summary of a few key aspects of pool boiling,
i.e., boiling on a heating surface submerged in a pool of initially
quiescent liquids [1–3].

(i) Boiling regimes. Phenomenologically, pool boiling with
controlled surface temperature can be divided into three
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distinct regimes: nucleate boiling, transition boiling, and film
boiling.

(ii) Superheated liquid layer and nucleate boiling regime.
When the temperature of the heating surface is slightly above
the saturation temperature of the liquid, the liquid layer near the
heating surface is superheated and nucleate boiling takes place,
characterized by the nucleation and growth of vapor bubbles
[7] and their departure driven by the buoyant forces and surface
tension [4]. The bubble dynamics induces the microconvection
in the superheated liquid layer and leads to a very large rate of
heat transfer from the solid to the fluid.

(iii) Transition boiling regime. As the temperature of the
heating surface is increased above a threshold, continuous
vapor films are formed over portions of the solid surface. Since
vapor is less capable of conducting heat, these vapor films
essentially insulate the bulk liquid from the heating surface,
resulting in a dramatic decrease in the rate of heat transfer.
Moreover, these vapor films are unstable and can detach from
the surface. This restores the contact of liquid with solid and
resumes the nucleate boiling. This regime, which combines
unstable film boiling with partial nucleate boiling, is usually
referred to as the regime of transition boiling.

(iv) Critical heat flux. The critical heat flux (CHF) is a
characteristic heat flux that marks the transition from the
nucleate boiling to the transition boiling. In the nucleate
boiling regime, the heat flux increases with increasing surface
temperature while in the transition boiling regime, the heat flux
decreases with increasing surface temperature as the heating
surface becomes more and more covered by vapor films.
In industrial practices with controlled surface heat flux, the
performance of boiling equipments is generally limited by the
CHF, characterized by a rapid increase of surface temperature.
This results in the physical “burnout” of the heating surface,
the “boiling crisis.”
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(v) Leidenfrost temperature and film boiling regime. When
the surface temperature is further increased above the so-
called Leidenfrost temperature, the liquid layer near the
heating surface becomes thermodynamically unstable and
film boiling takes place, characterized by the presence of a
stable vapor film insulating the liquid from the solid. The
rate of heat transfer reaches a minimum at the Leidenfrost
temperature.

(vi) Effects of surface wettability. The boiling dynamics
and the rate of heat transfer are greatly affected by the surface
wettability. In general, when the degree of surface superheating
and the liquid pressure are given, a higher heat flux would
be obtained if the liquid wets the surface better. Moreover,
the above three boiling regimes are identified specifically for
partial wetting. If the liquid does not wet the heating surface,
then the boiling process immediately enters into the film
boiling regime as soon as boiling is initiated. The nucleate
boiling regime, the CHF, and the transition boiling regime
become unobservable.

Although the boiling phenomena have been extensively
studied for decades, most studies are empirical in nature
and only a few studies have focused on the fundamental
understanding of the boiling process, leaving it virtually
unexplored in physics [3,5,6,8–10]. Below we list a few
problems posed by the boiling process with a focus on its
thermohydrodynamic aspects.

(i) Most of the questions to be answered are closely
related to the boiling dynamics in the close vicinity of the
heating surface, in particular, the bubble dynamics down to
the contact-line scale. On the one hand, there are difficulties
in the experimental observation and theoretical analysis of
the complicated, violent boiling process. On the other hand,
the complexity of the boiling process and the well-known
stress and thermal singularities associated with the contact
line hugely complicate direct numerical simulations.

(ii) The mechanism underlying the boiling crisis remains
controversial [5,11–13]. The boiling crisis occurs at the CHF,
marking the transition from nucleate boiling to transition
boiling and eventually to film boiling. Two major mechanisms
have been proposed. The first one argues that the bubble
crowding close to the heating surface leads to the fusion of
multiple dry spots. The other considers surface drying initiated
by the growth of a single bubble.

It has been the belief of many people that numerical
simulations of the complete boiling process may be the only
viable option [3,6]. Recently, there have been various attempts
to simulate boiling numerically. In general, there exist three
different methods.

(i) Continuum method. Extended thermohydrodynamic
models. The classical thermohydrodynamics [14] can be
extended to liquid-vapor flows on heating surfaces by directly
solving the Navier-Stokes equation and various conservation
laws of relevant physical quantities in the liquid and vapor
phases, respectively. This must be supplemented with a model
for the liquid-vapor interfaces and necessary boundary condi-
tions at the solid surface [15]. For decades, there have been
numerous works for the continuum modeling and simulations
of boiling [6,16,17]. However, most of these works made
use of empirical models for the liquid-vapor interfaces, with
ad hoc assumptions on the contact line dynamics.

(ii) Mesoscopic method. Lattice Boltzmann method (LBM).
The LBM is a popular mesoscopic method for the simulation of
two-phase flows on solid substrates [18–20]. Recently, many
works have been carried out to simulate the boiling process
by extending the LBM to liquid-vapor flows that involve
the liquid-vapor transition in nonuniform temperature fields
[21–23]. However, the validity of these works still need further
deliberation.

(iii) Molecular method. Molecular dynamics (MD) simu-
lation. MD simulation is one of the most promising methods
to reproduce boiling numerically. An MD model deals with
a system consisting of a number of particles interacting with
each other. By choosing a few reasonable interactions between
the particles and using proper boundary conditions, the boiling
of a liquid can be reproduced in a natural and comprehensive
manner without introducing numerical artifacts [24]. Recently,
there have been extensive studies of processes related to boiling
using MD simulations [24–28]. However, these simulations are
limited to systems of very small size (up to a micrometer).

Recently, the dynamic van der Waals theory (DVDWT) has
been presented for one-component two-phase hydrodynamics
involving liquid-vapor transition in nonuniform temperature
fields [29,30]. As a diffuse-interface model formulated for
liquid-vapor flows, the DVDWT provides an alternative and
effective continuum method for investigating the thermohy-
drodynamics of boiling process down to the contact line scale
in the close vicinity of the heating substrate. Supplemented
with the hydrodynamic boundary conditions at the fluid-solid
interface [31], this model is able to fully take into account
the various physical processes involved in the contact line
dynamics, including the liquid-vapor transition (evaporation or
condensation) and capillary flow in the bulk fluid region, and
boundary slip of fluid at solid surface [31]. Due to the use of the
diffuse-interface method, the stress and thermal singularities at
the contact line are resolved automatically [31]. Furthermore,
the DVDWT treats the evaporation or condensation rate at the
liquid-vapor interface as an outcome of calculation rather than
a prerequisite as in most of the existing continuum models
for liquid-vapor flows involving liquid-vapor transition [31].
With the help of these advantages, the DVDWT has been
employed to study the evaporation, spreading, and migration
of evaporative droplets on solid substrates, from the complete
wetting regime to the partial wetting regime and to the
nonwetting (Leidenfrost) regime [28,31–35].

It is interesting and important to note that the DVDWT has
recently been used to study the pool boiling of one-component
fluids [36]. However, the competition between lateral bubble
spreading and vertical bubble departure, which is an important
characteristic of pool boiling under gravity, has not been
addressed and systematically investigated. The outcome of
this competition is essential to the triggering of boiling crisis
and to the transition from nucleate boiling to film boiling
regime [12,13]. One of the main purposes of the present
work is to employ the DVDWT to investigate the competition
between lateral bubble spreading and vertical bubble depar-
ture in saturated pool boiling. The DVDWT is numerically
implemented by using an explicit finite difference scheme.
Numerical results are obtained for the growth and departure
of bubbles on homogeneous and chemically patterned heating
surfaces, respectively.
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The paper is organized as follows. In Sec. II, we briefly
review the DVDWT with the boundary conditions and describe
its numerical implementation. In Sec. III, we study the growth
and departure of a single bubble on homogeneous surface
under zero gravity and artificially large gravity, respectively.
Simulations for zero gravity are motivated by the initial stage
of bubble growth, in which the bubble size is so small that the
role of gravity is negligible. Simulations under artificially large
gravity are numerical experiments to reproduce the buoyant-
induced bubble departure. In Sec. IV, we investigate the bubble
dynamics on chemically patterned surface, motivated by the
large rate of heat transfer measured in a recent experiment
[37]. We find that the stick-slip motion of contact line leads
to a reduced departure diameter of bubbles, which is partly
responsible for the enhanced rate of heat transfer. We conclude
the paper in Sec. V with a few remarks.

II. THEORETICAL MODELING AND NUMERICAL
IMPLEMENTATION

We consider the pool boiling of a one-component fluid
on a heating solid substrate. In the framework of the DVDWT
[30,31], we take into account a number of physical components
involved and interrelated in the boiling process: two-phase
hydrodynamics, liquid-vapor transition, latent-heat transport,
and wetting dynamics at solid surface. Assuming the solid
substrate to be flat, rigid, and of high heat conductivity, we
outline a minimal version of the DVDWT below [30,31,38].

A. Dynamic van der Waals theory

The DVDWT is formulated for heterogeneous one-
component fluids with coexisting liquid and vapor. In this dif-
fuse interface model, the natural order parameter is the number
density n, which varies quickly but smoothly across liquid-
vapor interfaces. The entropy density ns for homogeneous
fluids is generalized by including a gradient contribution,
taking the form of

Ŝ = ns(n,e) − C

2
|∇n|2, (1)

where s(n,e) is the entropy per molecule for homogeneous
fluids of number density n and internal energy density e. For
simplicity, we assume C to be a positive constant that results
in a decrease of entropy due to the density inhomogeneity
[30,31,33,39]. In this case, the entropy and internal energy are
respectively given by Sb = ∫

drŜ and Eb = ∫
dre. We then

define the temperature T via

1

T
≡

(
δSb

δe

)
n

= n

(
∂s

∂e

)
n

(2)

and the generalized chemical potential μ̂ via

μ̂ ≡ −T

(
δSb

δn

)
e

= μ − CT ∇2n, (3)

in which μ = −T [∂(ns)/∂n]e is the chemical potential for
homogeneous fluids.

In the van der Waals theory [10,39], homogeneous one-
component fluids are characterized by two fundamental pa-
rameters: the molecular volume v0 and the strength of attractive

interaction ε. The Helmholtz free energy density f (n,T )
is given by f (n,T ) = nkBT [ln(λ3

thn) − 1 − ln(1 − v0n)] −
εv0n

2, from which the entropy per molecule s, the internal
energy density e, and the pressure p (equation of state) can be
obtained as

s (n,T ) = kB ln[(kBT /ε)3/2(1/nv0 − 1)] + const, (4)

e(n,T ) = 3nkBT /2 − εv0n
2, (5)

p(n,T ) = nkBT /(1 − v0n) − εv0n
2. (6)

Here λth ≡ �(2π/mkBT )1/2 is the thermal de Broglie wave-
length with kB , m, and � being the Boltzmann constant,
molecular mass, and Planck constant, respectively. Note that
s (n,e) can be readily derived from Eq. (4) and Eq. (5).
Moreover, the critical density, temperature, and pressure are
respectively given by

nc = 1/3v0, Tc = 8ε/27kB, pc = ε/27v0. (7)

To model the wettability effects of solid surface, we
introduce the surface entropy Ss = ∫

dAσs(n) and the surface
energy Es = ∫

dAes(n), in which dA is the surface element,
and the areal densities σs and es are assumed to only depend
on the fluid density n at the solid surface. It follows that the
equilibrium conditions can be obtained by maximizing the
total entropy Stot ≡ Sb + Ss subject to fixed particle number
N = ∫

drn and fixed total internal energy Etot ≡ Eb + Es .
They read (i) T = const in the whole system, (ii) μ̂ = const
in the bulk region, and (iii)

CT ∇γ n + (∂fs/∂n)T = 0 (8)

at the solid surface. Here ∇γ ≡ γ̂ · ∇ with γ̂ denoting the
outward unit vector normal to the surface and fs (n,T ) ≡
es (n) − T σs (n) is the surface free energy per unit area. Note
that due to the introduction of a gradient contribution in Eq. (1),
a length scale 	 can defined by

	 = (C/2kBv0)1/2, (9)

which is the characteristic liquid-vapor interfacial thickness
far from the critical point. In addition, from the equilibrium
condition μ̂ = const, an estimate of the liquid-vapor interfacial
tension γ is obtained as [38]

γ ∼ kBT (1 − T/Tc)3/2	/v0. (10)

Now we present the hydrodynamic equations from the
conservation laws of mass and momentum plus the principle of
positive entropy production in irreversible processes. The mass
density ρ ≡ mn, the momentum density ρv, and the entropy
density Ŝ satisfy the balance equations

∂n

∂t
+ ∇ · (nv) = 0, (11)

∂

∂t
(ρv) + ∇ · (ρvv) = ∇ · (− ↔

� + ↔
σ ) − ρgez, (12)

∂Ŝ

∂t
+ ∇ · (Ŝv) = −∇ · ĴS

f + σ. (13)
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FIG. 1. Schematic illustration for simulated systems. (a) A bubble on a homogeneous surface, to be discussed in Sec. III. (b) A bubble
on a chemically patterned (hydrophilic-hydrophobic-hydrophilic) surface, to be discussed in Sec. IV. The black and white segments of the
solid surface indicate the hydrophilic and hydrophobic parts, respectively. The system is closed in the x direction by the periodic boundary
conditions. Note that a vapor layer of thickness hv , sandwiched by liquids in the z direction, is introduced to maintain the supersaturated state
of the liquid surrounding the bubble. This is essential to the simulation of boiling processes [30,36].

In Eq. (12), g is the gravitational acceleration and ez is the
(upward) unit vector along the z axis (see Fig. 1). The total
stress tensor is divided into two parts. The Newtonian viscous
stress tensor

↔
σ is given by

↔
σ = η(∇v + ∇vT ) + (ζ − 2η/3)

↔
I∇ · v, (14)

with η and ζ being the shear and bulk viscosities, respectively,
and the generalized reversible pressure tensor

↔
� (with gradient

contribution) is given by

↔
� = [p − CT (n∇2n + |∇n|2/2)]

↔
I + CT ∇n∇n, (15)

where p is expressed by Eq. (6) and the anisotropic part
−CT ∇n∇n results in the liquid-vapor interfacial tension γ .
In Eq. (13), the generalized entropy flux ĴS

f (with gradient
contribution) is given by

ĴS
f = − 1

T
λ∇T − Cn(∇ · v)∇n, (16)

with λ being the heat conductivity, and the entropy production
rate in the bulk region σ is given by

σ = 1

T

↔
σ : ∇v + 1

T 2
λ(∇T )2 (17)

in the linear response regime.
In order to use the above system of equations to simulate the

pool boiling process, we need appropriate boundary conditions
at the heating surface. For simplicity, we work under the
following assumptions:

(i) For fluid velocity v, the no-slip boundary condition v = 0
is applied.

(ii) For fluid temperature T , the isothermal (Dirichlet)
boundary condition T = const is applied. This means we con-
sider the boiling processes under the condition of controlled
surface temperature.

(iii) For number density n, the equilibrium condition in
Eq. (8), i.e., CT ∇γ n + (∂fs/∂n)T = 0, is applied. This means
the equilibration at the solid boundary is much faster than that
in the bulk.

It is interesting to note that molecular dynamics simulations
have shown that (i) fluid velocity slip becomes appreciable in
the vicinity of a moving contact line [40,41] and (ii) a jump of
temperature (due to the Kapitza resistance) can occur across
the fluid-solid interface, especially for liquids on hydrophobic
substrates [42,43]. In addition, the heat conductivity of the
substrate can be finite in comparison with that of the liquid,
and the equilibrium condition in Eq. (8) can be relaxed for slow
equilibration at the solid surface [32,41]. These effects are to
be described by a more general set of boundary conditions,
which have been derived in our recent work [31].

In summary, we will simulate the pool boiling process
by numerically solving Eqs. (11)–(13) supplemented with
appropriate boundary conditions and initial conditions. Our
simulations will provide detailed thermohydrodynamic infor-
mation of the boiling process down to the contact-line scale.
This will be achieved by analyzing the evolution of the density
distribution n(r,t) (and, hence, the bubble profile) calculated
from Eq. (11), the velocity distribution v(r,t) calculated from
Eq. (12), and the temperature distribution T (r,t) calculated
from Eq. (13) together with Eqs. (1), (4), and (5). Here the
entropy equation is used instead of the energy equation in
order to avoid the numerical parasitic flows [30,44].

B. Numerical method and system setup

The above system is numerically solved by using an explicit
finite-difference scheme [30,31,33,38]. Numerical simulations
are carried out in the two-dimensional xz plane with the
fluids confined in the computational domain 0 � x � Lx

and 0 � z � Lz, as illustrated in Fig. 1 and displayed in
Figs. 2 and 6. The state variables n, v, and T in the fluid
are defined in a two-dimensional, unstaggered, uniformly

063002-4



SINGLE-BUBBLE DYNAMICS IN POOL BOILING OF . . . PHYSICAL REVIEW E 89, 063002 (2014)

0.78 0.78 0.780.79 0.79 0.790.8 0.8 0.80.81 0.81 0.810.82 0.82 0.820.83 0.83 0.83

0.83 0.83 0.83

0.83 0.83 0.83

0.841 0.841
0.841

0.841

0.841

0.841

0.841

0.841

0.
84

1

0.85

0.
85

0.
85

0.85

0.
85

0.85

0.86

0.86

0.86

0.86

0.86

0.87

0.87

0.87

0.
87

0.88

0.88 0.88

0.88

0.89
0.89 0.89

x/

z
/

0 50 100 150 200 250
0

50

100

150

200

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

z/

Tcx−Tt

Tb−Tt

pcx/pc p/pc

(T − Tt)/(Tb − Tt)

0 50 100 150 200 2500

50

100

150

200

x/

z
/

0.13

0.2

0.3

0.4

0.5

0.57

FIG. 2. (Color online) A bubble under zero gravity on a homoge-
neous surface with static contact angle θs = 0◦ and surface tempera-
tures Tb = 0.90Tc and Tt = 0.775Tc, recorded at time t = 5000τ0.
The system measures Lx = 250	 by Lz = 210	 with hl = 10	,
hv = 100	, and H = 100	 as defined in Fig. 1. Upper panel: Density
(color) and velocity (arrow) fields. Middle panel: Temperature
contour (labeled thin lines) and liquid-vapor interfaces defined at
n = (ng + nl)/2 (thick lines). Temperature values are in units of Tc.
Lower panel: Reduced pressure p/pc with p calculated from Eq. (6)
(thin solid blue line) and reduced temperature (T − Tt )/(Tb − Tt )
along the z direction at x = 125	 (thick solid black line). The thin
dashed blue line denotes the coexistence pressure pcx ≈ 0.48pc,
and the thick dashed black line denotes the coexistence temperature
Tcx ≈ 0.84Tc.

discretized Cartesian mesh. The mesh size is chosen to be
�x = �z = 0.5	 with 	 defined in Eq. (9). The two solid

surfaces are defined at z = 0 and Lz, and periodic boundary
conditions are applied in the x direction to close the system. In
this geometry, the isothermal (Dirichlet) boundary condition
for temperature is given by T = Tb at the bottom surface
(z = 0) and T = Tt at the top surface (z = Lz), where Tb and Tt

are given constants. As illustrated in Fig. 1, a thick vapor layer,
sandwiched by liquids in the z direction, is introduced. This is
to maintain the supersaturated state of the liquid surrounding
the bubble. Physically, this metastable state is a key factor
in simulating the boiling dynamics [30,36]. Alternatively, an
open boundary condition may be applied at the top of the
surrounding liquid (z = H here) [36].

To further simplify our simulations, we assume es = const,
σs = −cs(n − nc) with cs = const. Hence, the surface free
energy density is given by

fs = csT (n − nc) + const. (18)

Commonly used in the study of wetting phenomena [45], this
kind of surface energy function leads to density enrichment or
depletion near the solid surface. The viscosities η and ζ and
the heat conductivity λ are assumed to be locally proportional
to n, i.e.,

η = ζ = νmn, λ = νkBn, (19)

with the kinematic viscosity ν being a constant.
In our computation, the number density is measured by

1/v0, the space by the characteristic interfacial thickness 	,
the time by the viscous relaxation time τ0 ≡ 	2/ν, the velocity
by V0 ≡ 	/τ0 = ν/	, and the temperature by the critical
temperature Tc. By dedimensionalizing the hydrodynamic
equations and boundary conditions, we obtain three dimen-
sionless parameters [33], R ≡ ν2m/ε	2, which characterizes
the dynamic properties of the bulk fluid,

G ≡ mg	/ε, (20)

which is the normalized gravitational acceleration, and W ≡
cs/kB	 for the wettability of the solid surface. In this work, we
use R = 0.06 and vary W to simulate different wettabilities
(i.e., different static contact angles θs).

We want to point out that the DVDWT is employed to
simulate the bubble dynamics with a small set of material
parameters: the molecular mass m, the energy parameter ε,
the volume parameter v0, the coefficient C for the gradient
contribution to entropy density, and the kinematic viscosity ν.
All the other material parameters are expressed in terms of
these five basic parameters. Physically, the use of R = 0.06
can be justified by a simple argument on the sound propagation
in viscous fluids [30]. In one-component fluids, the sound
velocity c scales as (ν/	)R−1/2 and the acoustic oscillation
becomes apparent for small R: R � (	q)−2, where q is the
wave number. For wavelengths as short as 	 (with q ∼ 1/	),
we have R � 1. In addition, we require that the acoustic
traversal time Lz/c should be much longer than τ0 ≡ 	2/ν,
the microscopic viscous relaxation time on the scale of 	

(the smallest time scale in our simulations). With Lz ∼ 102	

in our simulations, we obtain R 	 (	/Lz)2 ∼ 10−4. It is
interesting and necessary to investigate the effect of viscosity
on bubble dynamics, for which prior studies have been carried
out [3,46–48].
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The normalized gravitational acceleration G needs a
particular explanation [35]. By definition, G measures the
gravitational energy of a molecule over the distance 	 relative
to the interaction energy ε. For example, G ≈ 1.6 × 10−14

for water, which is obtained for 	 ≈ 1 nm and g = 9.8 m/s2.
Physically, G is directly related to the capillary length defined
by Rc ≡ (γ /nlmg)1/2 with nl being the liquid number density.
It represents the length scale at which the gravitational energy
and the liquid-vapor interfacial energy are comparable. In the
pool boiling scenario, the bubble dynamics on the heating
surface is influenced by the gravity only if the size of
the growing bubble becomes comparable with Rc. At the
coexistence temperature Tcx = 0.84Tc with nl ≈ 0.61/v0, Rc

is estimated to be Rc ≈ 0.16	/G1/2 from Tc = 8ε/27kB and
Eqs. (10) and (20). For water under the Earth’s gravity, G ≈
1.6 × 10−14 gives the capillary length Rc ≈ 1.1 mm, which
is a macroscopic length scale, larger than 	 (≈1 nm) by six
orders of magnitude. Numerically, our simulations are limited
to nanoscale systems (hundreds of 	 in each direction), in
which the Earth’s gravity is not relevant. Therefore, in order
to induce appreciable gravitational effects in our simulations,
we have to use artificially large gravity by taking G = 10−4

and G = 5.0 × 10−5, which give Rc ≈ 16	 and Rc ≈ 23	,
respectively. This allows us to investigate the gravitational
effects on bubble dynamics near the heating surface. It is
worth emphasizing that the use of artificially large gravitational
acceleration is, on the one hand, necessitated by the multiscale
nature of the problem and, on the other hand, caused by our
limited computational capability.

Our simulations start from the equilibrium state of two-
phase coexistence at temperature Tcx ≈ 0.84Tc, pressure pcx ≈
0.48pc, and densities nl ≈ 0.61/v0 and nv ≈ 0.10/v0 for
liquid and vapor, respectively. The top-surface temperature is
then changed to Tt = 0.775Tc, and a semicircular vapor bubble
of radius R0 (=25	 or 20	) is introduced at the bottom surface.
This is realized by locally changing the fluid density from
nl to nv in a prescribed region (of bubble shape). The purpose
of this operation is to mimic the generation of vapor bubble via
thermodynamic nucleation. It is noted that there exists a short
transient of fast bubble relaxation (∼hundreds of τ0) mainly
caused by the mismatch between R0 and the surrounding
thermal and mechanical conditions. The wettability of heating
surface, manifested via the static contact angle, is adjusted
by varying the dimensionless parameter W ≡ cs/kB	, which
takes the values −0.07, −0.04, −0.02, 0.02, 0.06, and 0.09,
corresponding to static contact angles θs = 180◦, θs = 120◦,
θs = 101◦, 76◦, 41◦, and 0◦, respectively. (Here the contact
angle is defined in the liquid phase.) The degree of surface
superheating, defined by �Tsup ≡ Tb − Tcx, is changed by
fixing the coexistence temperature Tcx ≈ 0.84Tc and varying
the bottom-surface temperature Tb from 0.88Tc to 0.93Tc.
Finally, the total flux of heat transfer from the bottom surface
at z = 0 to the fluid is computed from

Qb = −
∫ Lx

0
dx(λ∂T /∂z)z=0, (21)

which is usually taken as a measure of the efficiency of boiling
heat transfer [1–3,30]. Physically, heat transfer in pool boiling

is carried by conduction, convection, and latent-heat transport
accompanying the liquid-to-vapor transition.

III. BUBBLE GROWTH AND DEPARTURE ON
HOMOGENEOUS SURFACES

In the nucleate boiling regime, the liquid layer superheated
near the surface experiences large density fluctuations. As a
result, vapor bubbles are nucleated at active sites of the heating
surface. And when they reach a critical radius, Rn, they grow
spontaneously. Typically, Rn is very small, of the order of
magnitude of hundreds of angstroms [1–3]. The growth of the
vapor bubbles proceeds in three successive stages [1–3]:

(i) In the initial stage, the bubble size is so small that
the growth proceeds continuously in the superheated liquid
[7]. Here the gravity is negligible. Moreover, the speed of
lateral bubble spreading over the heating surface is not only
determined by the rate of bubble growth (depending on the
degree of surface superheating) but also controlled by the
degree of surface wettability.

(ii) When the bubble size becomes comparable with
the capillary length Rc, the gravity (buoyancy) induces the
vertical bubble deformation, which competes with the lateral
spreading.

(iii) With further increase of the bubble size, the vertical
bubble deformation becomes dominant, leading to the bubble
departure from the heating surface eventually. In subcooled
boiling, the detached bubble gradually shrinks and finally
collapses in the subcooled liquid in the bulk. In saturated
boiling, however, the detached bubble grows continuously
during its rise in the saturated liquid. This will be the focus of
the present work.

In this section, we present our hydrodynamic simulations
for the above three stages of bubble growth in saturated
pool boiling. We first perform simulations under zero gravity,
motivated by the initial stage of bubble growth, in which the
bubble is very small compared to the capillary length. We then
simulate the growth and departure of nanoscale bubbles under
artificially large gravity. This is for a numerical demonstration
of the dynamics of large bubbles (∼1 mm) under the Earth’s
gravity.

A. Bubble growth under zero gravity

Consider a bubble on a homogeneous surface under zero
gravity. In order to investigate the effects of surface wettability
on the growing dynamics of a single bubble, we vary the static
contact angle θs , which is controlled by the dimensionless
parameter W ≡ cs/kB	.

Starting from the equilibrium state of two-phase coex-
istence at temperature Tcx ≈ 0.84Tc, we introduce a single
bubble of initial radius R0 = 25	 on the bottom surface at
t = 0. The temperatures of the bottom and top surfaces are then
changed to be Tb = 0.90Tc and Tt = 0.775Tc, respectively. In
Fig. 2, we plot the number density n, velocity v, temperature
T , and pressure p for a representative state. Here the static
contact angle is θs = 0◦. The upper panel of Fig. 2 shows that
the dynamic contact angle is much larger than its static value
θs = 0◦ due to the significant surface superheating [13,44].
The liquid-to-vapor transition is localized in the close vicinity
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FIG. 3. Bubble growth on homogeneous surfaces under zero gravity; effects of surface wettability. (a) Temporal evolution of a bubble on
a surface with a given static contact angle θs : (a1) θs = 0◦, (a2) θs = 41◦, (a3) θs = 76◦, and (a4) θs = 120◦. The time step is �t = 1000τ0 in
(a1)–(a3) and �t = 200τ0 in (a4). (b) Temporal evolution of the bubble base radius Rb (half the length over which the bubble is in contact
with the solid) in units of 	. (c) Temporal evolution of the surface-integrated heat flux Qb (in units of εν/v0), computed from Eq. (21). Here
the system measures Lx = 250	 by Lz = 210	 with hl = 10	, hv = 100	, and H = 100	 as defined in Fig. 1. The surface temperatures are
Tb = 0.90Tc and Tt = 0.775Tc, respectively.

of the contact line over the length scale of interfacial thickness
(≈3	) [33,34]. The middle panel of Fig. 2 shows that the
temperature of the liquid-vapor interfaces is everywhere close
to the coexistence temperature Tcx ≈ 0.84Tc, a characteristic
of one-component fluids. This indicates the presence of a
thermal singularity at the contact line, characterized by a very
large temperature gradient and thus a very large heat flux
[33,44]. These properties associated with the liquid-vapor-
solid three phase contact line in one-component fluids have
been well studied for evaporative droplets on heating surfaces
[33,34,38,44]. Furthermore, the middle panel of Fig. 2 shows
that the thermal diffusion layer extends up to the top surface
of the bubble. This is attributed to the small system size
[10,30]. The pressure (shown in the lower panel of Fig. 2)
outside the bubble is almost constant, close to the coexistence
pressure pcx ≈ 0.48pc. (Note that the sharp variation of p

in the liquid-vapor interfacial region is simply caused by the
density variation therein [30].) The pressure inside the bubble

is sightly higher than outside by γ /R ≈ 0.01pc, implying
that mechanical equilibrium is achieved quickly in such
extremely nonisothermal environment [49]. This ensures a
constant-pressure boiling condition [36].

Figures 3(a1)–3(a4) show the evolution of bubble profile
on the heating surface. It is interesting to note that the shape
of a growing bubble remains fairly circular, indicating that
mechanical equilibrium is quickly achieved, already shown
in the lower panel of Fig. 2. Therefore, the time dependence
of the liquid-vapor interfacial curvature radius can be used to
deduce that of the pressure inside the bubble.

Figures 3(b) and 3(c) show the effects of surface wettability
on the temporal evolution of the bubble base radius Rb (half
the length over which the bubble is in contact with the solid)
and that of the heat flux Qb computed from Eq. (21). The
former gives the speed of lateral bubble spreading while
the later measures the efficiency of heat transfer. We find that
the larger the static contact angle θs , the faster the bubble
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FIG. 4. Bubble growth on homogeneous surfaces under zero gravity; effects of surface superheating �Tsup ≡ Tb − Tcx. (a) Temporal
evolution of a bubble on a surfaces with a given bottom-surface temperature: (a1) Tb = 0.88Tc and (a2) Tb = 0.92Tc. The top-surface
temperature is Tt = 0.775Tc. The time step is �t = 1000τ0. (b) Temporal evolution of the bubble base radius Rb in units of 	. (c) Temporal
evolution of the surface-integrated heat flux Qb (in units of εν/v0), computed from Eq. (21). Here the system measures Lx = 250	 by Lz = 210	

with hl = 10	, hv = 100	, and H = 100	 as defined in Fig. 1. The static contact angle of the bottom surface is θs = 0◦.

spreads laterally on the heating surface and, consequently, the
faster the heat transfer efficiency drops. This correlation is
not surprising because the heat conductivity of vapor is much
smaller than that of liquid, and hence the larger the bubble
base length (2Rb), the lower the heat transfer efficiency is.

We also investigate the effects of surface superheating on
the growing dynamics. The degree of surface superheating
is defined by �Tsup ≡ Tb − Tcx. In our simulations, the
coexistence temperature is fixed at Tcx ≈ 0.84Tc and the
bottom-surface temperature Tb is varied from 0.88Tc to 0.93Tc.
We plot in Fig. 4 the temporal evolution of the bubble base
radius Rb and that of the heat flux Qb. We find that for sufficient
superheating, the higher �Tsup is, the faster the bubble spreads
laterally on the heating surface and, accordingly, the faster the
heat transfer efficiency drops.

Finally, we plot in Fig. 5 the temporal evolution of the
bubble area (volume in two dimensions), represented by an
effective radius Reff defined by πR2

eff ≡ the instantaneous
bubble area. It is seen that the rate of bubble growth is mainly
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FIG. 5. Temporal evolution of the effective bubble radius Reff for
different static contact angles and bottom-surface temperatures. Here
Reff is defined by πR2

eff = the instantaneous bubble area (volume in
two dimensions).

determined by the degree of surface superheating with an
extremely weak dependence on the surface wettability. This
is because the liquid-to-vapor transition is localized around
the contact line over a small length ≈3	 (see the upper panel
of Fig. 2). The rate of the localized evaporation is mostly
controlled by the degree of surface superheating with a weak
dependence on the contact angle.

B. Bubble departure under gravity

Now we investigate the bubble dynamics on homogeneous
surfaces under artificially large gravity. Starting from the
equilibrium state of two-phase coexistence at temperature
Tcx ≈ 0.84Tc, we apply a gravity with G = 10−4 and introduce
a single bubble of initial radius R0 = 25	 on the bottom
surface at t = 0. The temperatures of the bottom and top
surfaces are then changed to be Tb = 0.90Tc and Tt = 0.775Tc,
respectively. In Fig. 6, we plot the number density n, velocity v,
temperature T , and pressure p for a representative state. Here
the static contact angle is θs = 60◦. It is seen from the upper
panel of Fig. 6 that the dynamic contact angle is a bit larger than
its static value θs = 60◦. It is noted that a strong convective
flow is present around the bubble, jointly induced by the gravity
and the liquid-to-vapor transition near the contact line. In the
nucleate boiling regime, heat transfer of high efficiency is
facilitated, on the one hand, by the latent-heat adsorption of
the growing bubble and, on the other hand, by the convective
heat transfer accompanying the liquid circulation.

The middle panel of Fig. 6 shows that the temperature
at the bubble surface is almost constant, close to 0.865Tc,
which is actually a bit higher than Tcx ≈ 0.84Tc. This is
attributed to the pressure increase near the bubble due to the
gravity. The lower panel of Fig. 6 shows the pressure profile
along the z direction, which consists of a few linear segments
joined by fast variations in the liquid-vapor interfacial regions
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FIG. 6. (Color online) A bubble under gravity (G = 10−4) on
a homogeneous surface with static contact angle θs = 60◦ and
surface temperatures Tb = 0.90Tc and Tt = 0.775Tc, recorded at
time t = 3000τ0. The system measures Lx = 200	 by Lz = 185	

with hl = 10	, hv = 90	, and H = 85	 as defined in Fig. 1. Upper
panel: Density (color) and velocity (arrow) fields. Middle panel:
Temperature contour (labeled thin lines) and liquid-vapor interfaces
defined at n = (ng + nl)/2 (thick lines). Temperature values are in
units of Tc. Lower panel: Reduced pressure p/pc with p calculated
from Eq. (6) (thin solid blue line) and reduced temperature (T −
Tt )/(Tb − Tt ) along the z direction at x = 100	 (thick solid black
line). The thin dashed blue line denotes the coexistence pressure
pcx ≈ 0.48pc, and the thick dashed black line denotes the coexistence
temperature Tcx ≈ 0.84Tc.

[30]. The pressure difference across the whole system along
the z direction is approximately 〈n〉mgLz ≈ 0.20pc with the
average density 〈n〉 ≈ 0.38/v0 and the system height Lz =
185	. This further confirms that mechanical equilibrium is
achieved quickly in this extremely nonisothermal system [49].

We then turn to the effects of surface wettability.
We find that, similarly to the case of zero gravity, an increase
in the static contact angle θs enhances the lateral bubble
spreading on the heating surface. Accordingly, the residence
time of the bubble on the surface becomes longer and
the departure diameter of the bubble increases (see the insets
of Fig. 7). This is attributed to the competition between lateral
bubble spreading and vertical (buoyancy-induced) bubble
deformation. The larger the bubble base length (2Rb), the
stronger the bubble adhesion to the surface and hence the
larger the bubble area (volume in two dimensions) required
for departure. Therefore, higher hydrophobicity (i.e., larger
contact angle) hinders the bubble departure and thus facilitates
the transition from nucleate boiling into film boiling. This is
consistent with the vapor recoil theory for the boiling transition
[5,13]. Moreover, the insets of Fig. 7 indicate that there are two
distinct regimes of bubble departure, depending on whether the
departure is achieved by pinch-off.

Finally, we investigate the effects of surface superheating
(see Fig. 8). We find that higher degree of surface superheating
can also facilitate the lateral bubble spreading and thus delay
the departure of the bubble from the heating surface.

IV. BUBBLE GROWTH AND DEPARTURE ON
PATTERNED SURFACES

The thermohydrodynamic simulations in the previous
section demonstrate that, compared to hydrophobic surfaces,
hydrophilic surfaces endow slower lateral spreading and
smaller departure diameter of bubbles, which would lead to
higher efficiency of heat transfer and hinder the transition from
nucleate boiling into film boiling. In this respect, hydrophilic
surfaces are superior to hydrophobic surfaces [1–3]. However,
from the consideration of nucleation kinetics, hydrophobic
surfaces possess much more active sites for bubble nucleation
via thermal fluctuations under the same pressure and surface
superheating [1–3]. For a given value of the contact angle θs ,
the probability of a fluctuation producing a bubble nucleus on
a solid surface is proportional to e−��s/kBT , where ��s =
γπR2

0(1 + cos θs)2(2 − cos θs) is the surface free-energy cost
for the nucleation of a bubble of radius R0 and liquid-vapor
interfacial tension γ [39]. Therefore, the probability of bubble
nucleation on hydrophobic surfaces (θs > 90◦ and cos θs < 0)
is higher than that on hydrophilic surfaces (θs < 90◦ and
cos θs > 0). In this section, we demonstrate that a designed
patterned substrate may incorporate the advantages of both
hydrophobic and hydrophilic surfaces. Below we present the
bubble dynamics on a patterned (hydrophilic-hydrophobic-
hydrophilic) surface in a two-dimensional geometry [see
Fig. 1(b)].

A. Stick-slip motion of contact line

We first investigate the contact line motion in one-
component fluids on patterned surfaces. Starting from the

063002-9



XINPENG XU AND TIEZHENG QIAN PHYSICAL REVIEW E 89, 063002 (2014)

x/

z
/

0 40 80 120 160 200
0

20

40

60

80

40 80 120 160
0

40

80

t = 2600τ0

(a)

x/

z
/

0 40 80 120 160 200
0

20

40

60

80

40 80 120 160
0

40

80

t = 4200τ0

(b)

x/

z
/

0 40 80 120 160 200
0

20

40

60

80

40 80 120 160
0

40

80

t = 4580τ0

(c)

x/

z
/

0 40 80 120 160 200
0

20

40

60

80

40 80 120 160
0

40

80

t = 5400τ0

(d)

FIG. 7. Bubble departure under gravity (G = 10−4) from surfaces with different static contact angles: (a) θs = 41◦. Bubbles are plotted in
sequence from t = 0 to 2000τ0 with time interval 400τ0. (b) θs = 60◦. Bubbles are plotted in sequence from t = 0 to 3600τ0 with time interval
600τ0 and at t = 3800τ0. (c) θs = 76◦. Bubbles are plotted in sequence from t = 0 to 3600τ0 with time interval 600τ0 and at t = 4000τ0. (d)
θs = 101◦. Bubbles are plotted in sequence from t = 0 to 4800τ0 with time interval 800τ0 and at t = 5000τ0. Here the surface temperatures are
Tb = 0.90Tc and Tt = 0.775Tc. The system measures Lx = 200	 by Lz = 185	 with hl = 10	, hv = 90	, and H = 85	 as defined in Fig. 1.
Inset: Snapshots of bubbles that are detached from the surface and reaching the liquid-vapor interface originally at z = H (see Fig. 1). In all
four plots, a semicircular bubble of radius R0 = 25	 is introduced at the bottom surface at t = 0. First, the bubble shrinks to a smaller one in
a transient period (∼hundreds of τ0) due to the mismatch between R0 and the thermal and mechanical conditions around the bubble. Then the
bubble grows continuously in both the horizontal and vertical directions. As the bubble radius becomes comparable with the capillary length
Rc (≈16	 here), the bubble evolution in the vertical direction becomes dominant over that in the horizontal direction due to buoyancy effect.
Finally, the bubble detaches from the bottom surface.

equilibrium state of two-phase coexistence at temperature
Tcx ≈ 0.84Tc, we introduce a vapor bubble of x-extension
80	 sandwiched between liquids as shown in Fig. 9. The
equilibrium state is illustrated in Fig. 9(a) and also shown
in Fig. 9(b) at t = 0. We then apply a body force along the
+x direction, whose magnitude equals the artificial gravity
for G = 10−4. Throughout the simulations, the temperatures
of the bottom and top surfaces are both fixed at Tcx ≈ 0.84Tc.

In Figs. 9(b) and 9(c), the contact line exhibits a stick-
slip motion. At the left hydrophobic-hydrophilic intersection
x = 80	 [empty symbols in Fig. 9(c)], an abrupt increase

of the contact-line velocity indicates a fast slip of the
contact line when crossing that intersection. Near the right
hydrophobic-hydrophilic intersection at x = 160	 [solid sym-
bols in Fig. 9(c)], the vanishing contact-line velocity indicates
the pinning of the contact line at that intersection. This kind of
stick-slip motion also occurs in immiscible two-phase flows on
patterned surfaces [50], where the contact line moves through
boundary slip and bulk diffusion [41]. In one-component
fluids, the contact line moves through boundary slip and
liquid-vapor transition [32]. In both cases, the stick-slip motion
is predominantly caused by the contact-angle switch at the
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FIG. 8. Bubble departure under gravity (G = 10−4) from surfaces with different bottom-surface temperatures: (a) Tb = 0.92Tc. Bubbles are
plotted in sequence from t = 0 to 2400τ0 with time interval 400τ0. (b) Tb = 0.93Tc. Bubbles are plotted in sequence from t = 0 to 2000τ0 with
time interval 400τ0 and at t = 2200τ0. Here the static contact angle is θs = 41◦. The system measures Lx = 200	 by Lz = 185	 with hl = 10	,
hv = 90	, and H = 85	 as defined in Fig. 1. Inset: Snapshots of bubbles that are detached from the surface and reaching the liquid-vapor
interface originally at z = H (see Fig. 1). The process of bubble growth followed by departure is similar to that described in the caption to
Fig. 7.
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FIG. 9. (Color online) Stick-slip motion of contact line on chem-
ically patterned surfaces. (a) Schematic illustration of the system.
The black and white segments of the surface indicate the hydrophilic
and the hydrophobic parts, respectively. The system is closed in
the x direction by the periodic boundary conditions. A body force
is applied in the +x direction to induce Poiseuille-type flow. (b)
Temporal evolution of two liquid-vapor interfaces. The time ranges
from t = 0 (with the two interfaces denoted by two thick lines) to
1200τ0 with time step �t = 80τ0. The system measures Lx = 200	

by Lz = 60	 with Di = D′
i = Do = 40	. (c) Temporal evolution of

the contact-line coordinates xcl of the two liquid-vapor interfaces. The
contact line of the left interface is represented by empty symbols and
exhibits a fast slip near the intersection at x = 80	. The contact line
of the right interface is represented by solid symbols and exhibits a
pinning (stick) near the intersection at x = 160	.

intersections [50]. However, due to the participation of liquid-
vapor transition, the stick-slip motion in one-component fluids
can be suppressed by surface superheating. This is attributed
to the reduced contrast in contact angle, which decreases with
the increasing degree of surface superheating [33,34,44]. It is
interesting to note that stick-slip motion of the contact line
also occurs in volatile nanoparticle suspensions and polymer
solutions [51].

B. Bubble growth under zero gravity

Consider a bubble on a patterned (hydrophilic-
hydrophobic-hydrophilic) surface under zero gravity. We first
investigate the size effects of the hydrophobic segment on

the growing dynamics of the bubble. The length Do of the
hydrophobic segment is varied and the bubble evolution is dis-
played in Fig. 10. Since the capillary length Rc ≡ (γ /nlmg)1/2

tends to infinity under zero gravity, we are physically in the
regime of Do � Rc. We find that there are two distinct stages
for bubble growth on the heating patterned surface. In the first
stage, the bubble spreads laterally as fast as on a homogeneous
hydrophobic surface [see Fig. 3(a4)] before the liquid-vapor
interface reaches the boundary of the hydrophobic segment. As
soon as the contact line arrives at the hydrophobic-hydrophilic
intersection, it is pinned there, and, consequently, the bubble
can only grow along the vertical direction. After a finite period
of pinning, the contact line depins and the lateral bubble growth
is continued on the hydrophilic segments.

We find that the wider the hydrophobic segment, the
longer the pinning of the contact line is at the hydrophobic-
hydrophilic intersection. Furthermore, an interesting separa-
tion of length scales and time scales is exhibited in Fig. 10(d).
The bubble dynamics is affected by the hydrophobic segment
only in the initial stage, characterized by a small length
scale comparable with Do. Later, the bubble growth becomes
independent of the surface pattern, evidenced by the collapse
of bubble profiles at a length scale much larger than Do [see
Fig. 10(d)]. This corresponds to usual boiling on homogeneous
surfaces, in which the nucleation sites (tiny pits or scratches
of nano or micrometer scale) are much smaller than the
capillary length Rc (of millimeter scale). In this limit, the
structural details of nucleation sites cannot be detected from
the observation of long-time bubble dynamics and the mea-
surement of heat transfer coefficient. We therefore conclude
that hydrophilic surfaces patterned by nano- or microscale
hydrophobic segments cannot significantly alter the bubble
dynamics and improve the efficiency of heat transfer.

C. Bubble departure under gravity

Now we investigate the bubble dynamics on a patterned
(hydrophilic-hydrophobic-hydrophilic) surface under artifi-
cially large gravity. Figure 11 shows the size effects of the
hydrophobic segment by varying the length Do. It is seen that
the larger Do, the longer the residence time of the bubble on
the heating surface, and hence the larger the bubble departure
diameter.

According to the above results and those in Sec. IV B
for zero gravity, if the hydrophobic segment is too narrow
(compared with the capillary length), then the hydrophobic
pattern plays a negligible role and the surface just operates
as a hydrophilic one. If the hydrophobic segment is too wide,
then the departure diameter of the bubble is made very large,
approaching what would be obtained on a hydrophobic surface.
Combining these considerations, we conclude that under the
operating condition of fixed degree of surface superheating
�Tsup ≡ Tb − Tcx, there exists an optimum length Do for the
hydrophobic segment, which endows the patterned surfaces
with abundant nucleation sites and smaller departure diameters
simultaneously. In this sense, a patterned surface is able to in-
corporate the advantages of both hydrophobic and hydrophilic
surfaces. The hydrophobic region provides abundant active
sites for bubble nucleation while the surrounding hydrophilic
region hinders the continuous lateral spreading of the bubble
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FIG. 10. Bubble growth under zero gravity on chemically patterned surfaces with different values of Do as defined in Fig. 1(b): (a)
Do = 50	, (b) Do = 80	, and (c) Do = 110	. The time step is 400τ0. The bold lines indicate the onset of the depinning of the contact line at the
hydrophobic-hydrophilic intersection. (d) Bubble profiles selected from (a)–(c) with thick solid lines from (a), thin solid lines from (b), and thin
dashed lines from (c). The collapse of bubble profiles at t = 8000τ0 indicates the separation of length and time scales. Here the static contact
angle of the hydrophilic segment is θs = 0◦ and that of the hydrophobic segment is θs = 180◦. The surface temperatures are Tb = 0.90Tc and
Tt = 0.775Tc. The system measures Lx = 200	 by Lz = 280	 with hl = 10	, hv = 120	, and H = 150	 as defined in Fig. 1.

by pinning the contact line at the hydrophobic-hydrophilic
intersection. The former increases the density of nucleated
bubbles while the latter results in a small bubble departure
diameter and helps prevent the transition from nucleate boiling
into film boiling. These effects would jointly enhance the
efficiency of heat transfer. We would like to emphasize that
our conclusion is actually qualitatively consistent with recent
experimental measurement of heat transfer coefficients on
various homogenous and chemically patterned surfaces [37].
It has been experimentally found that the largest heat transfer

coefficients are achieved not on surfaces with spatially uni-
form wettability but on heterogeneous surfaces textured with
hydrophilic and hydrophobic regions [37,52–54].

To make our study more complete, numerical simu-
lations are also carried out for bubble dynamics on a
patterned (hydrophobic-hydrophilic-hydrophobic) surface—a
hydrophobic surface decorated with a hydrophilic segment in
the center. Under zero gravity, first the bubble grows slowly as
on a homogeneous hydrophilic surface. As soon as the contact
line arrives at the hydrophilic-hydrophobic intersection, it slips
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FIG. 11. Bubble departure under gravity (G = 5.0 × 10−5) on chemically patterned surfaces with different values of Do as defined in Fig. 1:
(a) Do = 10	. Bubbles are plotted in sequence at t = 0, 1000τ0, 3000τ0, 4000τ0, 5000τ0, 6000τ0, 6400τ0, and 6760τ0. (b) Do = 60	. Bubbles
are plotted in sequence at t = 0, 1000τ0, 3000τ0, 5000τ0, 7000τ0, 7600τ0, 8000τ0, and 8360τ0. Here the static contact angle of the hydrophilic
segment is θs = 0◦ and that of the hydrophobic segment is θs = 180◦. The surface temperatures are Tb = 0.90Tc and Tt = 0.775Tc. The system
measures Lx = 200	 by Lz = 250	 with hl = 10	, hv = 90	, and H = 150	 as defined in Fig. 1. The process of bubble growth followed by
departure is similar to that described in the caption to Fig. 7.
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quickly across the intersection. Then the bubble spreads as on
a homogeneous hydrophobic surface. Under artificially large
gravity, if the hydrophilic segment is too narrow compared
with the capillary length, then its effect is negligible and
the whole surface just operates as a hydrophobic one with
a low rate of heat transfer. If the hydrophilic segment is
wide enough compared with the capillary length, then the
patterned surface just operates as a hydrophilic one with a
higher rate of heat transfer. Therefore, for a bubble growing on
a hydrophobic surface decorated with a hydrophilic segment,
there is a minimum length Di of hydrophilic segment to
achieve a heat transfer rate appreciably higher than that on
a homogeneous hydrophobic surface. Combining the above
results with those for a hydrophilic surface decorated with
a hydrophobic segment, we conclude that there exists a
minimum length Di for hydrophilic segment and an optimal
length Do for hydrophobic segment. In fact, both Di and Do

should be of the same order of magnitude of the capillary
length. Therefore, the aspect ratio of the hydrophobic patch
on hydrophilic surface, defined by Do/(Do + Di), should be
about 0.5 in order to achieve a high rate of heat transfer.
Moreover, it can be predicted that in a three-dimensional
situation, the length scale in each direction on the patterned
surface should be comparable to the capillary length with the
aspect ratio close to 0.5 [37].

V. CONCLUDING REMARKS

We have investigated the thermohydrodynamics of a single
bubble in pool boiling of one-component fluids. We employed
the DVDWT as an efficient method based on the diffuse-
interface modeling of liquid-vapor flows involving liquid-
vapor transition in a nonuniform temperature field [30,32].
The DVDWT describes the various physical components that
are involved and interrelated in the pool boiling, including
two-phase hydrodynamics, liquid-vapor transition, latent-heat
transport, and wetting dynamics. We carried out simulations in
two spatial dimensions for bubbles on heating surfaces under
zero and artificially large gravity, respectively. Simulations
for zero gravity are motivated by the initial stage of bubble
growth in nucleate boiling, during which the bubble size is
too small for the gravity to play an appreciable role. On
the other hand, simulations for artificially large gravity are
numerical demonstrations of the buoyancy-induced bubble
departure under Earth’s gravity.

The focus of the present work is on the effects of surface
wettability upon the bubble dynamics. For this purpose, we first
studied bubbles on homogeneous substrates. Our simulations
show that under zero gravity, the speed of lateral bubble
spreading increases with increasing contact angle. Consistent
with this finding, our simulations also show that under gravity,
the diameter of bubble departure increases with increasing
contact angle. Physically, the larger the bubble base length,
the stronger the bubble adhesion to the substrate, and hence
the larger the bubble volume is required for departure. We also
investigate the effects of surface superheating on the bubble
dynamics with similar findings that can be interpreted using
the temperature dependence of contact angle [13,34,44].

We then studied the bubble dynamics on patterned
(hydrophilic-hydrophobic-hydrophilic) substrates. Our simu-
lations show that under zero gravity, the larger the hydrophobic
segment, the longer the pinning of the contact line at
the hydrophobic-hydrophilic intersection. Consistently, our
simulations also show that under gravity, the larger Do is,
the longer the residence time of the bubble on the heating
surface, and hence the larger the bubble departure diameter.
We thereby conclude that there exists an optimum length Do of
the hydrophobic segment, which endows the patterned surface
with abundant nucleation sites (on the hydrophobic segment)
and smaller departure diameters (constrained by the contact
line pinning at the hydrophobic-hydrophilic intersection).
Physically, the optimum value for Do is expected to be
comparable with the capillary length Rc. In this sense, a
hydrophilic surface patterned with hydrophobic patches of
length Do is able to incorporate the advantages of both
hydrophobic and hydrophilic surfaces. This conclusion from
our simulations is in agreement with recent experimental
observations [37,52–54].

We would like to point out that the contact-line pinning
mentioned above is part of the stick-slip motion of contact
line on patterned surfaces. Our simulations have demonstrated
that the stick-slip motion in one-component fluids is similar
to that in immiscible binary mixtures, both caused by the
switch of contact angle across the hydrophobic-hydrophilic
intersection [50]. In one-component fluids, however, the stick-
slip motion can be suppressed by surface superheating due
to the temperature dependence of the dynamic contact angle
[33,34,44].

Finally, we make a few remarks.
(i) Since the mesh size �x = �z = 0.5	 used to resolve

the diffuse interface is only a few angstroms, our simulated
systems are actually very small, up to hundreds of nanometers
at most. Moreover, an artificially large gravity is introduced
to make the capillary length Rc sufficiently small and thus
accessible in our simulations. It is our expectation that a larger
scale simulation of pool boiling using the DVDWT will soon
be computationally achievable. This will surely contribute to
the study of the fundamental physical aspects of boiling.

(ii) In this work, the wettability of the heating surface is
solely modeled by short-range interactions at the fluid-solid
interface. The long-range van der Waals interaction has not
been taken into account, which is essential to the physical
understanding of wetting phenomena [55,56].

(iii) The present work demonstrates that boiling heat
transfer can be enhanced by patterning hydrophilic surfaces
with hydrophobic patches of size comparable with the capillary
length. However, the contrast in contact angle, which is
necessitated by the effectiveness of such a design, can be
significantly reduced by surface superheating [33,34,44]. We
further propose that more effective surface can be engineered
by combining geometric pattern with chemical pattern [1–3].

(iv) The present work deals with the dynamics of a
single bubble. However, hydrodynamic interactions between
bubbles must play important roles, particularly in the layer
of crowded bubbles near the heating surface [1–3]. It has
been predicted that through hydrodynamic interactions, bub-
bles can even detach from the heating surface under zero
gravity [4].
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(v) The DVDWT can also be applied to investigate
the bubble dynamics in many other boiling scenarios, e.g.,
saturated flow boiling and subcooled (pool and flow) boiling
[1–3]. Particularly, in subcooled pool boiling, the liquid near
the heating surface is superheated while the liquid in the bulk
is undersaturated, i.e., subcooled. Typically, vapor bubbles
will be formed and grow near the surface. As the bubbles
become large enough, they detach from the surface. During
their buoyancy-induced rise, they shrink and collapse rapidly
in the subcooled liquid, signaled by audible sound emission.
The rapid dynamics of bubble collapse coupled with sound
emission and propagation, which is not yet well understood,
can be studied by using the DVDWT.

(vi) The pool boiling of binary mixtures may also be
explored by following the general framework of the DVDWT.
In binary mixtures, even at small solute concentrations, the
fluid-fluid interface is nonisothermal and therefore the surface
Marangoni force may play an essential role [57].
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