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Estimating trajectories and parameters of dynamical systems from observations is a problem frequently
encountered in various branches of science; geophysicists for example refer to this problem as data assimilation.
Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot
easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using
the same observations for estimation and validation might result in overly optimistic performance assessments.
To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a
more realistic performance assessment in data assimilation. The presented approach becomes particularly simple
for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging,
incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high
gain observer confirm the theory.

DOI: 10.1103/PhysRevE.89.062919 PACS number(s): 05.45.Tp, 05.45.Xt, 02.50.Fz, 92.60.Wc

I. INTRODUCTION

Generally speaking, the question to be revisited in this
paper is the following: “Is my model consistent with my
observed data?” We consider a situation in which the model is a
dynamical system and the observations are noise corrupted. In
order to meaningfully assess the model, the observations have
to be compared with model trajectories. These trajectories
though have to be estimated using the observations, even if
the model itself is fully specified. This form of dynamical
estimation problem will be referred to as data assimilation,
a term borrowed from geophysical applications (see, e.g.,
Refs. [1–3]). It might be tempting to use the residual error of
these trajectories with respect to the observations as a measure
of model performance. Thereby, however, the observations
would be used both to estimate and to evaluate the trajectories.
This “in sample” evaluation might result in overly optimistic
performance assessments.

As a simple example, the reader might think of trying
to synchronize two systems uni–directionally over a noisy
channel. If the coupling is too weak, no synchronization
will occur. With increasing coupling, the error with respect
to the observations (the in-sample observational error) will
typically become ever smaller (see also Fig. 1, circles, for
results from a numerical experiment). The error with respect
to the underlying clean signal though (the out-of-sample
observational error) will at some point become again larger as
the slave system is increasingly affected by the noise (Fig. 1,
diamonds). This can be considered as a form of overfitting.

In statistical regression with independent or at least ex-
changeable observations, this problem can be circumvented
by separating the data into disjoint sets for estimation and
validation, or at least by mimicking such a separation by
cross validation or similar procedures [4]. These approaches
though affect the temporal structure of the observations and
are therefore not directly applicable to data assimilation. In
this paper, an alternative is presented, also inspired by similar
results from statistical regression (e.g., the Cp criterion [4]).
The idea is to estimate the optimism of the in-sample
observational error in data assimilation. The optimism is
essentially due to correlations between the trajectory estimates
and the observational noise. Obviously, these correlations

are an inevitable consequence of the fact that the trajectory
estimates are functions of the observations.

Our discussion requires a brief digression on the quadratic
error in continuous time as well as some aspects of stochastic
integration. Next, we derive the main mathematical result
of this paper. In terms of applying the presented theory in
practice, two general classes of data assimilation approaches
are discussed separately. The first class are algorithms of the
filtering type where the estimated system state at any time t is
nonanticipating, that is, dependent only on past and present,
but not future, observations. This encompasses a very large
class of algorithms relevant in physics, engineering, and the
atmospheric sciences, including various approximations of the
optimal nonlinear filter [5] and algorithms for incremental data
assimilation such as nudging and synchronization schemes,
3DVAR, and 4DVar (see Ref. [2] for an overview). In fact,
all of these satisfy the even stronger assumption of linear
observational error feedback. The second class are algorithms
of the smoothing type where the estimated system state at
any time t depends on the entire observational record, but
the estimated trajectories are differentiable. This includes for
example weak-constraint (long window) 4DVar [6]. We stress
here that, to the best of our knowledge, all data assimilation
approaches of practical relevance are of either the filtering
type or the smoothing type. In this paper, we focus mainly
on filtering schemes, and it turns out that the optimism of
the in-sample observational error for these schemes obeys
a very simple formula which can be evaluated with only
a few additional computations. The results are applied in a
numerical example employing synchronization. This example
confirms that the observational error becomes increasingly
overoptimistic with stronger coupling, while the presented
theory correctly predicts the optimism (which we can compute
directly in our synthetic experiment).

II. THE QUADRATIC ERROR IN CONTINUOUS TIME

In continuous time, we consider a fixed time interval [0,T ]
and define the observations as

ot = ζt + σrt , t ∈ [0,T ], (1)
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FIG. 1. Synchronization errors vs coupling strength for two
Lorenz’63 systems with unidirectional coupling over the noisy
channel. The in-sample error (◦) decreases with increasing coupling
strength, while the out-of-sample error (�) shows a clear minimum for
a finite coupling. The out-of-sample error agrees with the estimates
(+) provided by the right-hand side of Eq. (15) (with sample averages
replacing expectation values; see also accompanying text). Results are
shown for σ = 1; other noise intensities gave qualitatively similar
results.

with ζ. being the desired signal and r. the noise. (The subscript
dot notation is used to refer to an entire time series, e.g., ζ.
is a shorthand for {ζt ,t ∈ [0,T ]}.) The noise r. is supposed
to be a continuous, stochastic signal of bandwidth ∝1/δ

which approximates white noise with unit intensity for δ → 0.
This will have to be made precise later. The desired signal
ζ., henceforth referred to as the output, which we assume
to be continuous, carries the relevant information. We think
of ζ. as being generated through some dynamical system
(deterministic or stochastic); for example, ζ. might be of the
form ζt = h(zt ), where h is some function and z. the solution
of an ordinary differential equation with unknown initial
condition, or more generally a Markov process. However, the
details of how ζ. arises are irrelevant at this point.

The result of our data assimilation procedure is a process
{xt ,t ∈ [0,T ]}, which we assume to be continuous. Further,
xt for any t ∈ [0,T ] might depend on the entire observational
record o.. (Note that our setup also includes the case where
x. depends on model parameters which in turn have been
estimated from the observations [7].) It now seems natural
to define the (mean square) observational error as

q(x.,o.,δ) = 1

T

∫ T

0
(xt − ot )

2dt ; (2)

this definition is very preliminary only, as we now want to take
the limit δ → 0. If we expand q, we obtain

q(x.,o.,δ) = 1

T

∫ T

0
x2

t dt + 1

T

∫ T

0
o2

t dt − 2

T

∫ T

0
xtotdt. (3)

The limit δ → 0 should be seen as an approximation to the
case of large but finite bandwidth encountered in practice
and is used for convenience as explicit dependence on the
bandwidth would make our results unnecessarily complicated
and specific. The first term in Eq. (3) does not depend on δ. The
second term though does and in fact grows like the bandwidth
of the noise. On the other hand, this term does not depend on x..
Hence, as long as only performance differences (for example,

between two competing data assimilation algorithms) are of
interest, a modified mean square error with this term simply
being omitted still makes sense. If the third term converges,
we denote the resulting random quantity by

lim
δ→0

∫ T

0
xtotdt =

∫ T

0
xs ◦ dηs, (4)

with the accumulated observations defined as

ηt =
∫ t

0
ζsds + σWt . (5)

With this definition we can write∫ T

0
xs ◦ dηs =

∫ T

0
xsζsds + σ

∫ T

0
xs ◦ dWs,

where W. is the standard Wiener process [12]. The first term on
the right-hand side is a standard Riemann integral, while the
interpretation (and existence) of the second stochastic integral
requires some discussion which will be provided presently.
Our definite mean square error (denoted with Q) now reads as

Q(x.,η.) = 1

T

∫ T

0
x2

s ds − 2

T

∫ T

0
xs ◦ dηs, (6)

provided the stochastic integral makes sense.
For the remainder of this section, we briefly mention

relevant properties of stochastic integrals (further material has
been included in Appendix B; see, e.g., Refs. [13,14] for more
information). The stochastic integral

∫ t

0 xs ◦ dWs is defined if
one of the following two sets of assumptions apply (both are
relevant for data assimilation).

A. Smooth x.

If xt is a smooth (by which we mean differentiable) function
of t , then the stochastic integral is well defined and independent
from the details of the approximation of the white noise. It is
then permitted to integrate by parts∫ T

0
xs ◦ dWs = xT WT −

∫ T

0
ẋsWsds, (7)

whereby we have expressed the stochastic integral through
a standard Riemann integral (note that Ws is a continuous
function of s).

B. Nonanticipating x.

The stochastic integral can still be defined if x. is continuous
and nonanticipating; that is, for any t , the random variable xt

is independent of the future increments {Wt+s − Wt,s � 0}.
The value of the integral however depends to some extent on
how the white noise is approximated by limited bandwidth
noise. This is not an artifact of the continuous time limit but a
manifestation of phenomena already present in discrete time.
Here we use the presumably very natural approximation with
piecewise linear functions; the details have been deferred to
Appendix A. The integral is then referred to as the Stratonovic
integral.

We stress that the two definitions in Secs. A and B are con-
sistent in that if x. happens to be smooth and nonanticipating,
any approximation to the Stratonovic integral will in the limit
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satisfy Eq. (7). Finally, if x. and W. are independent, then in
both cases A and B we have E[

∫ t

0 xs ◦ dWs] = 0.

III. THE OUT-OF-SAMPLE ERROR

The quadratic error Q(x.,η.) between output and obser-
vations is what we compute in practice, but what we should
really be interested in is the error Q(x.,ζ.) between output
and desired signal. Although the latter cannot be computed
directly, an interesting and useful relation between the two can
be derived. By straightforward calculation using the definitions
of Q and η, we obtain

Q(x.,ζ.) = Q(x.,η.) + 2σ

T

∫ T

0
xs ◦ dWs. (8)

Defining the in-sample and out-of–sample errors as EI =
E[Q(x.,η.)] and EO = E[Q(x.,ζ.)], respectively, we can take
the expectation of Eq. (8) and obtain

EO = EI + 2σ

T
E

[∫ T

0
xs ◦ dWs

]
. (9)

This identity (which should be regarded as the “dynamical
version” of Eq. (7.22) in Ref. [4]) is the basis of our further
analysis. The second term in Eq. (9) is referred to as the
optimism of the in-sample error. The optimism is essentially
a correlation between x. and W.. This correlation is an
inevitable consequence of the fact that x. is correlated with the
observations. We see that although some correlation between
output and observations is required in order that x. captures
some information from the observations, too much correlation
entails that the in-sample error EI is a (typically upward)
biased estimate of the out-of-sample error EO .

These considerations show that data assimilation (or in
fact any estimation procedure employing noisy observations)
requires one to carefully tune the amount of correlation
between observations and estimated trajectories. Here is where
Eq. (9) becomes practically relevant. The optimism depends
largely on the employed data assimilation approach and
not on the details of the underlying “true dynamics.” Most
importantly though, Eq. (9) (or its approximations) allows
one to calculate the out-of-sample error without the need of
independent test observations.

Typically, approximations are necessary in order to apply
Eq. (9) in practice. First, one has to make do with taking
the empirical average in-sample-error Q(x.,η.) instead of its
expectation EI (unless the latter can be computed explicitly).
Second, calculating E[

∫ T

0 xs ◦ dWs] requires approximations
if x. is a complicated function of the observations. Further, the
standard deviation σ is required, which essentially amounts to
saying what part of the observations η. is desired and which
not. This is an approximation but in the same sense that noise
itself is an approximation. Most importantly, the noise level σ

of a measurement device can often be estimated from a separate
experiment (or gathered from the manufacturer’s instructions),
unlike the optimism of a specific trajectory estimate. We
also stress that the formalism cannot be applied if there is
multiplicative noise in the observations, i.e., if σ is random.

To further analyze the optimism and obtain more specific
results, two classes of data assimilation schemes are now
considered, namely, of the smoothing type and the filtering

type. Our discussion of smoothing type approaches is brief,
because a very detailed analysis of this situation in the context
of the minimum energy estimator has been carried out in
Ref. [15]. We then focus on filtering type approaches.

A. Smoothing type approaches

Various data assimilation approaches exist which result in
estimates that are anticipating; i.e., the estimate xt at any time
t depends on the entire observational record η.. The optimism
of the in-sample error is still well defined [via Eq. (7)] if
x. is smooth, which we take to mean “differentiable” here.
Examples are the maximum a posteriori estimator [16] and
the minimum energy estimator [17,18], which can be seen as
a continuous time analog of weakly constrained 4DVAR [19].
A detailed analysis of the presented theory in the case of the
minimum energy estimator has been carried out in Ref. [15].
The essence of that research is that the optimism is strongly
related to the sensitivity of the estimated trajectory with
respect to the observations. To very good approximation,
the sensitivity can be obtained from the Hessian of the cost
function.

Here, we discuss a much simpler but very illustrative
application to orthogonal function expansions. Consider differ-
entiable functions φm : [0,T ] → R for m = 1, . . . ,M with the
property

∫ T

0 φm(t)φn(t)dt = δmn. We set xt = ∑
m amφm(t)

and determine the coefficients am by minimizing the mean
square error. Using the orthonormality of φm we obtain

Q(x.,η.) =
∑
m

a2
m − 2

∑
m

am

∫ T

0
φm(t)dηt ,

which is minimal for am = ∫ T

0 φm(t)dηt . With am being set
thus and using elementary properties of stochastic integrals, we
obtain E[

∫ T

0 xt ◦ dWt ] = σM, where M is the number of free
parameters in the model. Equation (9) then gives EO = EI +
2σ 2M

T
. This formula is the continuous time equivalent of the

famous Cp criterion from linear regression, which is obtained
if T is interpreted as “the number of samples.” It is intuitively
clear that using an increasing number M of basis functions will
cause EI to decrease. More specifically, EI = −CM − σ 2M

T
,

where CM is positive increasing and converges to
∫ T

0 ζ 2
t dt , the

energy of the desired signal. Hence EO = −CM + σ 2M
T

must
have a minimum at some finite M , which can be interpreted as
the optimal number of basis functions for reconstructing the
desired signal.

B. Filtering type approaches

We now consider data assimilation approaches giving
nonanticipating estimates; i.e., the estimate xt at any time
t depends only one the observational record ηs , s � t . Any
smoothing type approach yields also filtering type estimates;
indeed, if we consider a smoothing type estimate over the
reduced observational history ηs , s ∈ [0,τ ] with τ < T , then
the endpoint xτ of the estimated trajectory is nonanticipating.
By incrementing τ as new observations come in, a filtering type
algorithm is obtained. It turns out that filtering type algorithms
thus obtained employ a linear error feedback. This entails that
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x. obeys a stochastic differential of the form

dxt = αtdt + btdηt , (10)

which can be written as dxt = atdt + σbtdWt , with at =
αt + btζt . These equations are to be understood in the Ito
sense; a. and b. are assumed to be nonanticipating, whence
x. is also nonanticipating. This is the case, for example, if
for all t , at and bt depend on the history of observations up
to and including t , plus maybe further random components
which are entirely independent of the observational record,
for example, initial conditions. Apart from the filtering type
algorithms mentioned above, these assumptions in fact cover
the optimal nonlinear filter if either the mode or the first
moment is taken as the estimate (see Ref. [5], Eq. (6.116) or
(6.95), respectively), and also its various approximations such
as the extended Kalman filter and continuous time versions of
the ensemble Kalman filter (as discussed in Ref. [20]), as well
as nudging and synchronization approaches [21].

The core step towards computing the optimism for filtering
type algorithms is to convert the Stratonovic integral in Eq. (9)
to a sum of Riemann and Ito integrals. Using stochastic
calculus (more specifically Ref. [13], Chap. 3, Def. 3.13) and
Eq. (10), it is easy to see that∫ t

0
xs ◦ dWs =

∫ t

0
xsdWs + σ

2

∫ t

0
btdt, (11)

and since the expectation value of the Ito integral is zero,
combining Eqs. (9) and (11) gives

EO = EI + σ 2

T

∫ T

0
E[bt ]dt. (12)

The computation of the optimism should not represent any
difficulties whatsoever if bt is purely a function of time (as
is the case in Kalman filtering and synchronisation/nudging).
There exist data assimilation schemes of filtering type where
bt depends implicitly on the observations and is therefore
random (as, e.g., in continuous time variants of the extended
Kalman filter). We might still get reasonable approximations
by assuming

σ 2

T

∫ T

0
btdt ∼= σ 2

T

∫ T

0
E[bt ]dt. (13)

In the limit T → ∞, this might be rigorously true due to
appropriate ergodic properties of the problem.

IV. NUMERICAL EXAMPLE: SYNCHRONIZATION

We discuss a numerical experiment where x. is obtained
using a certain synchronization scheme. In this experiment, bt

in Eqs. (10) and (12) will simply be a constant. Our choice
of bt is motivated by the high gain observer concept [23].
Assume for the moment that there is no noise and suppose that
ζt = z

(1)
t , the first component of some zt ∈ Rd , which in turn

satisfies a differential equation of the form

żt = f (zt ), t ∈ [0,T ].

The observer is the dynamical system

ξ̇t = f (ξt ) + K(xt − ζt ), xt = ξ
(1)
t , (14)

where the gain K is a d × 1 matrix. We have d = 3 in our
example. The error et = xt − ζt can be made to decrease
exponentially fast by ensuring that the roots of the polynomial
χ (λ) = λ3 − K (1)λ2 − K (2)λ − K (3) are sufficiently far in the
left half of the complex plane. (Strictly speaking, for this result
to apply, the system has to evolve on a compact set.) Hence
if we choose χ (λ) = (λ + κ)3, and the gain Kκ accordingly,
the high gain observer theory predicts that synchronization
will occur if κ is large enough. We refer to κ as the coupling
parameter.

In the presence of noise, the observer (14) modifies to

dξt = [f (ξt ) + Kκxt ]dt − Kκdηt , xt = ξ
(1)
t .

Comparison with Eq. (10) yields that now bt = −K (1)
κ = 3κ;

hence Eq. (12) gives the simple formula

EO = EI + 3σ 2κ. (15)

Note that the optimism only depends on the coupling but not
on the actual dynamics. We will now verify this statement
numerically. In order to do this, we replace EI and EO

in Eq. (15) with their sample approximations Q(x.,η.) and
Q(x.,ζ.), respectively. (The uncertainty introduced through
this approximation will be assessed through Monte Carlo
resampling.) We further compute 3σ 2κ and check if these
three quantities satisfy Eq. (15). The value of Eq. (15) is in
that it would allow us to express Q(x.,ζ.), which is inaccessible
in realistic situations, through Q(x.,ζ.) + 3σ 2κ , which is
accessible.

For the vector field f we use the chaotic Lorenz’63 system
given by

f (x,y,z) = [S(y − x),Rx − y − xz,xy − Bz]t ,

with parameters S = 10, R = 28, and B = 8/3. For the
observer, perturbed parameters S = 9.9, R = 27.2, and B =
2.63 were used. For this setup, we found the synchronization
threshold to be at κ ∼= 1.2.

A total of 99 simulations were performed for noise
intensities σ between 0.25 and 4 and coupling parameters
κ between 1.2 and 3. A stochastic Euler scheme of fixed time
step t = .005 for a time interval with T = 250 was used
(an initial transient was discarded); this corresponds to 50 000
sample points. Each simulation was repeated 20 times with
different realizations of the noise.

The simulations yielded a number of interesting (yet
maybe not surprising) facts. Figure 1 shows the results for
σ = 1. The coupling parameter varies along the abscissa.
Other noise intensities gave qualitatively similar results. First,
the in-sample error (marked with circles) decreases with
increasing coupling strength, while the out-of-sample error
(marked with diamonds) shows a clear minimum. Second, the
results appear to be consistent with Eq. (15) (the out-of-sample
error estimates are marked with crosses, +). The last point
was investigated further. In Fig. 2, the optimism, that is, the
differences between in-sample and out-of-sample errors are
shown for three different values of σ . From the 20 independent
simulations, ±2 standard deviation consistency bars were
calculated, providing an indication of the variability of the
optimism across different simulations. The straight line gives
the optimism according to Eq. (15). All quantities have been
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FIG. 2. Difference between in-sample and out-of-sample errors
(+ with error bars) for several noise levels. Error bars were obtained
from repeating the experiment with independent noise realizations.
Solid line shows the same quantity as estimated from our theory (i.e.,
3σ 2κ , see right-hand side of Eq. (15) and accompanying text).

normalized with the variance of the signal ζ.. It emerges that
the theoretical estimate agrees very well with the empirical op-
timism, confirming our theory qualitatively and quantitatively.
It is also evident that the optimism grows with increasing
coupling strength. Very similar experiments were conducted
using Chua’s circuit; the findings were exactly the same.

V. CONCLUSIONS

When estimating trajectories of a dynamical system from
observations, the error with respect to the observations is
often a too optimistic estimator of performance, since the
observations have been used already to find the trajectory
estimate. This optimism was investigated here in a situation
where observations obtain continuously in time and are
corrupted with additive white noise. As a measure of deviation,
we have considered the mean square error. An estimate of the

optimism was presented which depends only on quantities
which are available in an operational situation. This result has
potential application in the assessment of data assimilation
techniques. A detailed numerical simulation was presented for
the high gain observer, where the presented theory could be
used to optimize the feedback gain (aka the coupling constant).
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APPENDIX A: PIECEWISE LINEAR APPROXIMATION

We assume the situation in Sec.II B, i.e., x. is nonantici-
pating and W. is the standard Wiender process on the interval
[0,T ]. For the partition 0 = t1 < · · · < tN = T , tn+1 − tn �
t of that interval we define

Wt
t = t − tn

tn+1 − tn
Wtn+1 + tn+1 − t

tn+1 − tn
Wtn+1

for tn � t < tn+1. Clearly, this is a piecewise linear approxi-
mation of W. which collocates at the points of the partition.
We now define

∫ T

0
xs ◦ dWs = lim

t→0

∫ T

0
xsẆ

t
s ds

provided the limit exists.

APPENDIX B: STOCHASTIC INTEGRALS

The stochastic integral
∫ T

0 xs ◦ dWs discussed in Sec. II
is known as a Stratonovic integral. However, it is commonly
defined as the limit t → 0 of

N∑
n=1

xtn + xtn+1

2

(
Wtn+1 − Wtn

)
, (B1)

where {tn} is a partition as in Appendix A. It follows from
results in Ref. [14], Chap. 6, Sec. 7, that this gives the same
result as our previous definition in Appendix A. The way the
process x. enters in Eq. (B1) is crucial for the definition of
the Stratonovic integral. Taking for example xtn (Wtn+1 − Wtn )
instead as summands in definition (B1) gives another integral
referred to as the Ito integral. Both Ito and Stratonovic integrals
differ in general. It is customary in mathematics to write
Stratonovic and Ito integrals as

∫ T

0 xs ◦ dWs and
∫ T

0 xsdWs ,
respectively. A very important property of the Ito integral
is that E[

∫ t

0 xsdWs] = 0 for any t . This is not true for the
Stratonovic integral.
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[6] M. Fisher, Y. Trémolet, H. Auvinen, D. Tan, and P. Poli,
Weak Constraint and Long Window 4D-Var, Techical Report
655 (European Centre for Medium Range Weather Forecasting,
Reading, United Kingdom, 2011).

[7] The literature on identifying dynamical models is of course vast:
see, e.g., Ref. [8] for methods for general stochastic differential
equations; Ref. [9] for approaches from nonlinear time series
analysis; or the classics, Refs. [10,11], for the linear theory.
Clearly this list is very far from being complete.

[8] M. Kessler, A. Lindner, and M. Sørensen (eds.), Statistical
Methods for Stochastic Differential Equations, Monographs
on Statistics and Applied Probability, Vol. 124 (CRC Press,
Boca Raton, FL, 2012), revised papers from the 7th Séminaire
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