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Network approach to the pinning control of drift-wave turbulence
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Network of coupled oscillators has long been employed as an important approach to explore the complicated
dynamics in spatially extended systems. Here we show how this approach can be used to the analysis of turbulence
pinning control. Specifically, by use of a model of two-dimensional drift-wave plasma turbulence, we investigate
how the performance of the turbulence control is influenced by the spatial distribution of the pinning strength. It is
found that the dynamics of pinned turbulence can be well captured by a simple model of networked modes, based
on which the dependence of the control performance on the pinning distribution can be analytically obtained.
In particular, the model predicts that as the distribution of the pinning strength becomes more nonuniform, the
performance of turbulence control will be gradually decreased. This theoretical prediction is in good agreement
with the results of numerical simulations, including the sinusoidal and localized pinning distributions. Our studies
provide a new viewpoint to the mechanism of mode couplings in drift-wave turbulence, as well as be constructive
to the design of new schemes for controlling turbulence in realistic systems.
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I. INTRODUCTION

Chaos control has been a central topic in nonlinear science
for decades [1,2]. Since the pioneer work of Ott, Grebogi, and
York in 1990 [3], tremendous efforts had been given to the
control of chaos in various circumstances, in which a variety
of controlling techniques had been developed [4,5]. While the
earlier studies are more concerning with the control of low-
dimensional chaos, recently much more attentions have been
given to the control of spatiotemporal chaos [6–8], motivated
by the omnipresent existence of spatially extended dynamical
systems in nature. Differing from low-dimensional chaos, in
spatiotemporal chaos the unstable manifold is generally of
very high dimension, as characterized by the existence of
a large number of positive Lyapunov exponents [2]. This
feature makes many techniques developed for controlling
low-dimensional chaos no more applicable, thus leading to the
search of new approaches for controlling spatially extended
systems [8–10]. Among the new approaches proposed in
the literature, pinning control is distinguished from others
by its efficiency, flexibility, and high performance and has
been widely adopted for controlling spatiotemporal chaos in
various systems, including ensembles of chaotic oscillators on
an array or lattices [11–13], spatiotemporal chaos described
by partial differential equations [14–17], defect turbulence in
cardiac systems [18], and flow turbulence described by the
Novier-Stokes equations [19–21].

A typical example of spatiotemporal nonlinear system
that has been extensively studied in literature is the drift-
wave turbulence, which arises naturally in magnetic plasmas
where pressure gradient exists [22]. Drift-wave turbulence is
generally believed to be responsible for the anomalous cross-
field particle transport [23], and its control and suppression
therefore is of great importance to the performance of magnetic
confinement fusion devices, e.g., the tokamaks [24]. Over
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the past two decades, there have been continuous attempts
in extending the techniques developed in chaos control to the
suppression of drift-wave turbulence, in which a variety of
theories and techniques have been proposed [25–32]. In the
regime of weak turbulence, by use of the technique of time-
delay autosynchronization (TDAS) [33], it has been shown by
a series of studies that the chaotic temporal behavior of the drift
waves in cylindrical magnetized plasmas can be tamed to be
periodic [25,27,31]. Moreover, by the strategy of open-loop
synchronization, namely the mode-selective control, it has
been shown recently that the complicated spatial behavior
of the weakly developed drift-wave turbulence can be also
successfully controlled (synchronized) to a predefined pattern
of regular spatial structure [29,30]. More recently, by use of the
method of pinning coupling, it has been shown that both the
spatial and temporal behaviors of the drift-wave turbulence can
be efficiently regulated into different spatiotemporal patterns,
given the pinning strength is larger to some critical value [34].

As in chaos control, the control of drift-wave turbulence
relies also on a proper understanding of the system dynamics
[27,29,34]. This is reflected not only in the selection of the
targeting states but also in the design of the control signals,
i.e., the controlling strategy. In exploring the dynamics of
drift-wave turbulence, a general approach is to transform the
problem into the Fourier space, and investigating how the
interactions of the modes, i.e., the mode-mode couplings,
lead to complicated system behaviors. Along this approach,
several classic models have been proposed in the literature
[35–37], which well explains the transition from regular to
chaotic behaviors, as well as the self-organization of some
large-scale structures, e.g., the zonal flows [38]. However,
these models describe only the situation of free turbulence
(autonomous system) and are not suitable for analyzing the
turbulence control. In turbulence control, the key idea is to
establish an efficient coupling between the targeting state and
some intrinsic wave modes in the system to enhance these
specific modes while suppressing the others [19–21]. This
feature makes it necessary to include the targeting state as a
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part of the system when analyzing the mode couplings. This is
specially the case when the controlling signals satisfy certain
spatial distribution, in such a case the mode couplings might
significantly modified due to the new resonance induced by the
controlling signals. That is, to analyze the turbulence control,
the current models of mode couplings should be improved.

The purpose of the present work is to investigate the control
of drift-wave turbulence under distributed pinning, based on
a network model of coupled modes. Here, distributed pinning
refers to the situation that the strength of the pinning coupling
is varying in the space and satisfies certain distributions, e.g.,
the sinusoidal form or localized distribution [11,12]. This is an
important extension of the strategy of global pinning studied
in Ref. [34], in which the pinning couplings are added on each
site of the system with a constant strength. Comparing to the
case of global pinning, distributed pinning is more convenient
and practicable in operation, as in realistic situations the
state of the whole system is generally not available. It worth
noting that while the feasibility of distributed pinning has been
well verified in controlling spatiotemporal chaos (or weak
turbulence), it is still not clear whether it can be applied
to fully developed turbulence, e.g., the strong drift-wave
turbulence [19,20]. Motivated by these, we in the present
work investigate the control of fully developed drift-wave
turbulence by distributed pinning, with special attention being
paid to the influence of the pinning distribution on the the
control performance. Our main finding is that, with the increase
of the pinning nonuniformity (which in sinusoidal pinning
distribution is characterized by the decreased wave number
or increased amplitude), it becomes more difficult to control
the turbulence. We demonstrate this finding by extensive
numerical simulations and analyze its underlying mechanisms
by theoretical analysis based on a new model of networked
modes.

The rest of the paper is organized as follows. In Sec. II,
by numerical simulations, we shall demonstrate the control
of drift-wave turbulence by sinusoidal pinning and study the
influence of the pinning distribution on the turbulence control
performance. In Sec. II, we shall analyze the system dynamics
in the Fourier space and propose the new model of networked
modes. The dynamics of the network model is analyzed in
detail in Sec. III, in which an explicit formula is obtained on the
influence of the pinning distribution on control performance.
In Sec. IV, we shall extend our studies to the case of localized
control and give the conclusion.

II. NUMERICAL RESULTS

The drift-wave plasma turbulence to be investigated is
described by the following two-dimensional (2D) Hasegawa-
Mima equation [39]:

∂t (1 − ∇2
⊥)φ + Vd∂yφ + [∇2

⊥φ,φ] = 0, (1)

with φ = φ(x,y,t) as the electrostatic potential, [f,g] =
∂yf ∂xg − ∂xf ∂yg as the Poisson bracket, and ∇2

⊥ = ∇2
x + ∇2

y

as the Laplace operator perpendicular to the magnetic field
B = Bez. Standard operations have been adopted to make
the equation dimensionless, and the only tunable parameter
of the equation is Vd , which characterizes the speed of the
diamagnetic drift. The nonlinearity of the equation lies in the

term [∇2
⊥φ,φ], which is caused by the nonlinear polarization

drift. Throughout the study, we will fix Vd = 1, with which
the system is in the strong turbulence regime [40].

In numerical simulations, we set the system to be bounded
in the square domain [0,8π ] × [0,8π ] and adopt the periodic
boundary condition for each direction. The time increment
�t is chosen as 1 × 10−2 [in obtaining Eq. (1), the time t

has been normalized by the ion gyroperiod], and the space is
divided into 128 × 128 grids. The initial conditions are given
in the Fourier space, which, for the sake of simplicity, are
chosen as a combination of three plane waves, φ(t = 0) =∑3

i=1 A0 cos(ki · r), with A0 = 1 × 10−2 and k1 = (1,2),k2 =
(1,3),k3 = (−3, − 5). To integrate the equation, we adopt
the Fourier pseudospectral method and the Adams-Bashforth-
Crank-Nicolson (ABCN) scheme for the space and time
discretizations, respectively [34,41]. The numerical results
are verified by using different initial conditions, grids, and
time increments. The equation is integrated for a period of
length t = 1 × 103, during which the system shows the typical
behavior of 2D drift-wave turbulence, e.g., the formation,
interaction, and evolution of vortices. The distribution of φ

at the moment t = 1 × 103 is presented in Fig. 1(a), which
shall be taken as the reference turbulence to be controlled by
distributed couplings in our studies.

FIG. 1. (Color online) (a) The equipotential contours of φ for the
2D drift-wave turbulence described by the Hasegawa-Mima equation.
(b) By the sinusoidal pinning of parameters ε0 = 0.12, Ap = 1.0,
and kp = 0.75, the contours of φ at the moment t = 1 × 103 after
the start of the pinning control. It is seen that the turbulence in (a) is
well controlled to the target pattern φT = AT cos(kT · r − ωT t), with
AT = 5 × 10−2 and kT = 1.25.
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When distributed pinning is added, the equation of the
system dynamics reads

∂t (1 − ∇2
⊥)φ + Vd∂yφ + [∇2

⊥φ,φ] = ε(x,y)(φ − φT ). (2)

Here φT is the spatiotemporal pattern that the turbulence
is going to be controlled to, i.e., the target. In the present
work, we choose the target as one of the unstable solutions
of the Hasegawa-Mima equation, φT = AT cos(kT · r − ωT t),
with kT = (kT ,kT ) and ωT = kT /(1 + k2

T ). Differing from
previous studies, in Eq. (2) the pinning strength ε is varying in
the space, ε(x,y) = ε0[1 + φp(x,y)], with ε0 the uniform
pinning strength and φp the pinning function. In our first
study, we set φp to satisfy the sinusoidal form, i.e., ε(x,y) =
ε0[1 + Ap cos(kp

x x + k
p
y y)]. Ap reflects the degree of variation

for the pinning strength and is named the pinning amplitude. kp

characterizes the distribution of the pinning strength over the
space and is named the pinning wave number. For the sake of
simplicity, we set kp

x = k
p
y = kp. Apparently, by increasing Ap

or decreasing kp, the distribution of the pinning strength will be
gradually changed from uniform to nonuniform. Our main task
in the present work is just to investigate how the change of Ap

and k
p
x,y will affect the control performance for the drift-wave

turbulence. (Please note that by changing Ap and kp, the total
pinning cost is kept unchanged, i.e.,

∑
ε(x,y) = const. For

this reason, the question we are interested here could be also
regarded as a problem of pinning optimization.)

We start by checking the controllability of the drift-wave
turbulence by distributed pinning. Differing from spatiotem-
poral chaos, where distributed pinning has been justified
and effective, it remains an open question whether strong
turbulence is controllable by distributed pinning [20]. Setting
AT = 5 × 10−2 and kT = 1.25 for the target (which will be
fixed throughout the following studies), and using ε0 = 0.12,
Ap = 1.0, and kp = 0.75 for the pinning distribution, we
plot in Fig. 1(b) the contours of φ at t = 1 × 103 after the
start of the pinning control. It is seen that the turbulence
shown in Fig. 1(a) is successfully controlled to the target
φT = AT cos(kT · r − ωT t).

Having justified the efficiency of distributed pinning on
controlling drift-wave turbulence, we go on to study the
dependence of the control performance on the pinning param-
eters. The performance of pinning control is evaluated by the
normalized control error, σ =

√∑N
i,j (φi,j − φT )2/N2/AT ,

with N = 128 the size of the simulation grid. In simulation,
σ is calculated at the moment t = 1 × 103 after the start of
the pinning control. Clearly, the smaller is σ , the better is the
system controlled to the target. To study, we change the pinning
wave number kp and pinning amplitude Ap in the sinusoidal
distribution and check how the value of σ is varied.

The dependence of σ on kp is shown in Figs. 2(a)
and 2(b). In Fig. 2(a), we fix the pinning amplitude Ap = 1.0
and plot σ as a function of ε0 for different values of kp. It is
seen that, for the given kp, σ is gradually decreased with the
increase of ε0. Also, in Fig. 2(a), it is seen that the control
performance is affected by the pinning wave number. More
specifically, with the decrease of kp, the value of σ is found
to be increased. To have more details on the dependence of σ

on kp, we fix ε0 = 0.15, and plot in Fig. 2(b) the variation of

FIG. 2. (Color online) Numerical results on the influence of the
pinning distribution on the control performance. (a) Fixing Ap = 1.0,
the variation of the normalized pinning error σ as a function of the
uniform pinning strength ε0 for different pinning wave numbers kp .
(b) Fixing ε0 = 0.15 in (a), the variation of σ as a function of kp . (c)
Fixing kp = 0.125, the variation of σ as a function of ε0 for different
pinning amplitudes Ap . (d) Fixing ε0 = 0.15 in (c), the variation of
σ as a function of Ap .

σ as a function of kp. Now it is seen that with the increase of
kp, σ is monotonically decreased.

The influence of Ap on σ is presented in Figs. 2(c)
and 2(d). Fixing the pinning wave number kp = 0.125, we plot
in Fig. 2(c) the variation of σ as a function of ε0 for different
values of Ap. It is observed that with the increase of Ap, the
curve of control error seems to be shifting upwards. This trend
is confirmed in Fig. 2(d), in which we fix ε0 = 0.15 and plot σ

as a function of Ap. It is clearly seen that with the increase of
Ap, the control error is increased in a monotonic fashion. The
numerical results of Fig. 2 thus suggest that by increasing the
pinning amplitude Ap or decreasing the pinning wave number
kp, the turbulence becomes more difficult to be controlled. Our
mission in the following sections is to explain these numerical
phenomena, based on a new model of networked modes.

III. NETWORK MODEL

To explore the dynamics of the pinned turbulence, we
transform Eq. (2) into the Fourier space, and investi-
gate how the drift waves (modes) are interacting with
each other. Rewriting φ = ∑

i[φ̂i(t) exp(iki · r) + c.c]/2,
φT = [φ̂T (t) exp(ikT · r) + c.c]/2, and φp = [Ap exp(ikp ·
r) + c.c]/2, Eq. (2) then is changed to
∑

i

(∂t + iω′
i + ε′

i)φ̂i(t)e
iki ·r =

∑
l,j

	i
lj φ̂

∗
l (t)φ̂∗

j (t)−i(kl+kj )·r

+ ε′
i φ̂T (t)eikT ·r + ε′

iA
pφ̂∗

T (t)e−i(kp+kT )·r

− ε′
i

∑
m

φ̂∗
m(t)Ape−i(km+kp)·r, (3)

with ω′
i = Vdkiy/(1 + k2

i ), ε′
i = ε0/(1 + k2

i ), and 	lj = (k2
j −

k2
i )(kj × ki) · ez/[2(1 + k2

i )]. φ̂i(t) = Ai(t) exp(−iωit) and
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φ̂T (t) = AT exp(−iωT t) are, respectively, the temporal part of
the electrostatic mode φi and the target φT . Without pinning,
we have ε′ = 0, and only the first term on the right-hand-side
of Eq. (3) exists, which describes the traditional scheme of
three-wave coupling and is the underlying mechanism for
generating turbulence. When uniform pinning is applied, i.e.,
ε′ > 0 and Ap = 0, the secnd term on the right-hand side of
Eq. (3) will be activated, which corresponds to the situation of
global pinning. When distributed pinning is employed, the last
two terms on the right-hand side of Eq. (3) will be participated
in, which, as we will show later, is the key in understanding
the performance of distributed pinning.

By Fourier transform, we can obtain from Eq. (3) an infinite
set of coupled ordinary differential equations, with each
equation defines the evolution of a specific mode. Depending
on whether the mode is directly driven by the target, the mode
equations can be roughly classified into two types. The first
type of mode equations reads

(d/dt + iω′
i + ε′

i)φ̂i(t) =
∑
l,j

	i
l,j φ̂

∗
l (t)φ̂∗

j (t) − ε′
iA

pφ̂m(t),

(4)

where the summation is over all wave vectors satisfying the
resonant condition ki + kl + kj = 0. The control signals are
reflected in the second term on the right-hand side of Eq. (4),
which shows that, by the resonant condition ki + km + kp =
0, the mode φ̂i is coupled to another mode φ̂m with the coupling
strength ε′

iA
p. By the technique of mode truncation, we keep

only a pair of resonant modes in the summation, e.g., φ̂j,l .
As such, the equation is simplified to be involving only four
modes, φ̂i,j,l,m. The coupling structure of these modes can be
schematically represented by a network motif, as plotted in
Fig. 3(a). In this motif, each node represents a specific mode,
and a link represents that the modes it connects are coupled
through the resonant conditions. As Eq. (4) applies to the
general modes, this motif structure is typical in the system,
which is the first block constituting our network model.

The second type of mode equations applies to only two
special modes. The first one, which is denoted as φc and
named as the control mode here, has the same wave number
and frequency as the target, i.e., φc = Ac(t) exp(ikc · r −
iωct) = Ac(t) exp(ikT · r − iωT t). The evolution of φ̂c(t) =
Ac(t) exp(−iωT t) is governed by the equation

(d/dt + iω′
c + ε′

c)φ̂c(t) =
∑
l,j

	c
l,j φ̂

∗
l (t)φ̂∗

j (t)

− ε′
cA

pφ̂∗
m(t) + ε′

cφ̂T (t).

(5)

As kc = kT , we have ε′
c = ε′

T and ω′
c = ω′

T . Comparing to
Eq. (4), a new term, ε′

cφ̂T (t), appears on the right-hand side of
Eq. (5), which represents the driving received from the target.
As Ap < 1 and φ̂m < φ̂T (i.e., the intrinsic modes are always
weaker than the target), φ̂c is more influenced by φ̂T than φ̂m.
This makes it reasonable to neglect the influence of φ̂m in
Eq. (5). Considering again only a pair of resonant modes in
the summation, φ̂l,j , and replacing ε′

c with ε′
T and ω′

c with ω′
T ,

Eq. (5) then is simplified to

(d/dt + iω′
T + ε′

T )φ̂c(t) = 	T
l,j φ̂

∗
l (t)φ̂∗

j (t) + ε′
T φ̂T (t), (6)

φ φ (φ )

φT

(a)

(c)

(b)φj

φ m

φ c (φ d)

φ iφ l φ jφ l

φT

φ 3 φ c

φ 1φ 2 φ 4 φ 5

φ p

FIG. 3. (Color online) Schematic plots on the structure of mode
couplings when distributed pinning is added to the drift-wave
turbulence. (a) For the typical mode φi described by Eq. (4), its
couplings to other three modes φl , φj , and φm. The dashed line denotes
that the coupling strength between φi and φm is also dependent on
the pinning amplitude Ap . (b) For the special mode φc (φd ) described
by Eq. (6) [Eq. (7)], its couplings to other two modes φl and φj , as
well as its coupling to the target φT . The arrowed line represents the
unidirectional coupling from the target. (c) The network model that
combines (a) and (b), which is used in the present work to investigate
the control performance of distributed pinning.

Still, the coupling structure of the modes can be schematically
represented by a network motif, which is shown in Fig. 3(b).
It worth noting that in Fig. 3(b) the target, φT , is coupled to
the control mode, φc, in the one-way fashion (which is the
nature of pinning control), while the other modes are coupled
mutually.

The other special mode of the second type, φd , satisfies
the resonant condition kp + kT + kd = 0, which is obtained
by keeping the first, third, and fourth terms on the right-hand
side of Eq. (3). By the similar approximation used in obtaining
Eq. (6), we can obtain the evolution equation for this special
mode,

(d/dt + iω′
d + ε′

d )φ̂d (t)=	d
l,j φ̂

∗
l (t)φ̂∗

j (t) + ε′
dA

pφ̂∗
T (t). (7)

Equation (7) is essentially the same as Eq. (6), except the
coupling strength ε′

dA
p received from the target. As such, the

couplings of the modes in Eq. (7) can be still represented by
the network motif shown in Fig. 3(b) by simply replacing φc

with φd .
Our above analysis of mode couplings implies that in the

Fourier space the system dynamics is essentially captured by
a complex network [42], in which nodes are the drift-wave
modes and links are the couplings established by various
resonant conditions. This network is constituted by numerous
network motifs plotted in Fig. 3(a), together with two special
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network motifs plotted in Fig. 3(b). The pinning signals, which
are added onto each site in the original spatial space, now are
added onto only two special modes in the network, φc and φd .
As such, the problem of turbulence control we are interested
now becomes the pinning control of a complex network–a topic
that has arisen many research interest in network science in
recent years [43–45]. From the viewpoint of network science,
the network dynamics is said to be successfully controlled if
the control mode, φc, is excited to be with large amplitude,
while all other modes in the network are suppressed to 0. This
picture of complex network, however, is still too complicated
for theoretically treatment. As the central task of pinning
control is to excite the control mode φc, modes surrounding φc

in the network thus is of focusing interest in investigating
the control performance. For this reason, we adopt only
skirts representative modes around φc in the network and
construct the simplified network model shown in Fig. 3(c).
This simplified model, which basically is a combination of the
motifs shown in Figs. 3(a) and 3(b), captures the essence of the
mode couplings and, as we will demonstrate later, is able to
explain the numerical results on the performance of distributed
pinning (Fig. 1).

To make the resonant conditions closed, we have also
included the mode φp in the network model. This mode
has the same wave number as the pinning distribution, i.e.,
kp = kp, but are coupled to other two modes, φ1 and φ4, in
the system. Thus, together with the target, φT , the network
model actually consists of eight nodes. Although the pinning
signals are added onto only the control mode φc, it is hoping
that by the mode couplings, the other modes in the network
could be also successfully suppressed. That is, the mode φc

is excited to be with large amplitude, while the amplitude of
the other modes are damped to 0. It should be noted that the
network links are of different weight, as the coupling strength
of a link is dependent on the modes they are connecting. Say,
for instance, the coupling strength between modes φ1 and φ4

in the model is dependent on not only the wave number kp

(through the resonant condition k1 + k4 + kp = 0) but also
on the pinning amplitude Ap (through the resonant condition
k1 + k4 + kp = 0). From the viewpoint of network science,
nodes of large degree (the number of connections) play more
important roles in determining the network dynamics [46,47].
It is thus expected that in our network model modes φ1,4 will
differ in their behavior from that of others.

For the convenience of theoretical analysis, we restrict our
study to the one-dimensional case, i.e., φ = φ(x,t). In such a
case, the set of mode equations describing the dynamics of the
network model are specified to

dφ̂c/dt = 
T φ̂c + 	c
4,5φ̂

∗
4 φ̂∗

5 + ε′
T φ̂T ,

dφ̂p/dt = 
pφ̂p + 	
p

1,4φ̂
∗
1 φ̂∗

4 ,

dφ̂1/dt = 
1φ̂1 + 	1
2,3φ̂

∗
2 φ̂∗

3 + 	1
4,pφ̂∗

4 φ̂∗
p − ε′

1A
pφ̂∗

4

dφ̂2/dt = 
2φ̂2 + 	2
1,3φ̂

∗
1 φ̂∗

3 , (8)

dφ̂3/dt = 
3φ̂3 + 	3
1,2φ̂

∗
1 φ̂∗

2 ,

dφ̂4/dt = 
4φ̂4 + 	4
c,5φ̂

∗
c φ̂

∗
5 + 	4

1,pφ̂∗
1 φ̂∗

p − ε′
4A

pφ̂∗
1

dφ̂5/dt = 
5φ̂5 + 	5
c,4φ̂

∗
c φ̂

∗
4 ,

with 
 = −(iω′ + ε′) and where ω′, ε′, and 	 are the same
as in Eq. (3). Depending on the node degree (the number of
coupled modes), the mode equations can be classified into
three groups: the degree of modes φp,2,3,5 is 2, the degree of
mode φc is 3, and the degree of modes φ1,4 is 4. Following
the network terminology, we name φ1,4 the hub mode and
name modes φp,2,3,5 the normal mode. Considering together
the feature of weighted couplings, the model we have proposed
thus can be classified as a weighted, heterogeneous network
[42].

The equations of the hub nodes, φ1,4, desire special
attentions. As shown in Eq. (8), these two modes are not only
coupled to other normal modes in the network but also coupled
mutually by the enhanced strength, 	φ̂∗

p − ε′Ap. Unlike other
couplings (where the strength is determined by only the
wave numbers of the connected modes), the coupling strength
between φ1 and φ4 is also dependent on the pinning amplitude,
Ap. Specifically, by increasing Ap, only the coupling between
φ1 and φ4 will be enhanced, while the other couplings are kept
unchanged. It is also important to note that as the seven modes
in the network are coupled through three resonant conditions,
there are only four independent modes. Also, as kc = kT and
kp = kp, the number of independent modes is reduced to 2.
Without loss of generality, in our following studies we choose
φ2 and φ5 as the independent modes (the findings we are going
to present is robust and is independent on the selection of the
independent modes).

IV. MODEL ANALYSIS

Can the network model reproduce the phenomena obtained
in numerical simulations, i.e., the increased (decreased)
control error as a function of the pinning amplitude (pinning
wave number) shown in Fig. 2? To investigate, we next
give an analysis on the dynamics of the network model and
check how the control performance is affected by the two
pinning parameters: kp and Ap. Using still the parameters
kT = 1.25 and AT = 5 × 10−2 for the target, and setting
k2 = 0.6 and k5 = 2.8 for the independent modes, in Fig. 4
we plot the variation of the normalized control error, σ ′, as
a function of the pinning wave number, kp, and the pinning
amplitude, Ap. Here, the normalized control error is redefined
as σ ′ = [

∑5
i=1(A2

i (t) + A2
p)/6]1/2/AT , which counts for the

averaged amplitude of the nonpinning modes in the network
(φ̂i,p = Ai,pe−iωi,pt ,i = i, . . . ,5). The initial conditions of the
modes, Ai(t = 0), are randomly chosen within the range
(0,AT ), and the results are averaged over a period of t × 104. It
is seen in Fig. 4 that, with the increase of kp (Ap), the value of
σ ′ is decreased (increased) monotonically, with is consistent
with the trends observed in direct numerical simulations (the
results shown in Fig. 2).

To have more details on the dynamics of the pinned network,
we go on to explore the time evolution of the individual modes.
Fixing the pinning wave number as kp = 0.5, we plot in Fig. 5
the time evolution of A1,...,5, Ac, and Ap. It is seen that
during the process of network evolution, the control mode,
Ac, is excited and stabilized to a large amplitude, while all
other modes are finally damped to 0. That is, the network is
successfully controlled to the target under the set of control
parameters. Two interesting phenomena are also observed in
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FIG. 4. For the network model described by Eq. (8), the variation
of the redefined normalized control error, σ ′, as functions of (a)
the pinning wave number kp by fixing Ap = 1 and (b) the pinning
amplitude Ap by fixing kp = 0.5.

Fig. 5. First, it is seen that the modes A1,...,5 and Ap are of very
different damping rates. More specifically, A2,3 are damped
to 0 at about t = 100, followed by A5,p at about t = 300,
while A1,4 are damped to 0 to about t = 900. Clearly, the
damping rates of A1,4 are much slower than those of A2,...,5

and Ap. Second, for the slowly damping modes, A1,4, it is
observed that from about t = 500 they begin to be damping
in a “synchronous” fashion, i.e., A1(t) ≈ A4(t). As during this
process we have A2,3,5,p ∼ 0, and the pair of modes, A1,4,
thus form a “soliton-like” cluster in the network. The above
phenomena are general for the network model and are not
affected by the network initial conditions and parameters (e.g.,
the values of k2,5, and the selection of the independent modes).

The fact that A2,3,5,p are damping much faster than A1,4

makes it possible to further simplify the model. Let T being
the transient period after which A2,3,5,p have been well damped
to 0, then for t > T the network dynamics is characterized by
only the evolution of A1,4, which are governed by the equations

dA1/dt = −ε′
1A1 − ε′

1A
pA∗

4e
i�ωt , (9)

dA4/dt = −ε′
4A4 − ε′

4A
pA∗

1e
i�ωt , (10)

with �ω = ω′
1 + ω′

4 the summed frequency of the two hub
modes. Differentiating Eq. (9) and using Eq. (10), we can

FIG. 5. (Color online) Using the parameters k2 = 0.6, k5 = 2.8,
kT = 1.25, Ap = 1.0, and kp = 0.5, the time evolution of the mode
amplitudes. A2,3 are first damped to 0 (t ∼ 100), followed by Ap,5

(t ∼ 300), and, last, A1,4 (t ∼ 900).

obtain the following evolution function for A1:

d2A1

dt2
+ (ε′

1 + ε′
4 − i�ω)

dA1

dt

+[ε′
1ε

′
4 − ε′

1ε
′
4(Ap)2 − i�ωε′

1]A1 = 0. (11)

Denoting λ as the damping (growth) rate of A1, i.e., A1(t) ∼
exp(λt), in the neighborhood of the target, i.e., when σ ∼ 0,
the control performance is characterized by the real part of λ:
the smaller Re(λ) is, the faster is the network to be controlled
to the target. Inserting the expression of A1(t) into Eq. (11),
we have

λ2 + (ε′
1 + ε′

4 − i�ω)λ + ε′
1ε

′
4[1 − (Ap)2] − iε′

1�ω = 0,

(12)

which gives

λ± = −�/2 ±
√

�2 − 4[ε′
1ε

′
4 − ε′

1ε
′
4(Ap)2 − iε′

1�ω], (13)

with � = ε′
1 + ε′

4 − i�ω. The damping rate of A1 thus is
characterized by γ = Re(λ+). [By changing the subscript in
Eq. (13), we can also obtain the damping rate for A4, which
slightly differs from γ . This feature is also reflected in Fig. 5,
where A1 ≈ A4 for t > 500. As such, in the following we will
use only γ to characterize the control performance.]

As ε′ = ε0/(1 + k2) and k1 + k4 + kp = 0, the damping
rate thus can be also expressed as a function of the pinning
parameters, i.e., γ = γ (ε0,k1,k

p,Ap). Using ε0 = 0.15, k1 =
3.8, and Ap = 1.0, we plot in Fig. 6(a) the variation of γ as
a function of kp according to Eq. (13). It is seen that, with
the increase of kp, the value of γ is monotonically decreased.
Fixing kp = 0.5, we plot in Fig. 6(b) the variation of γ as a
function of Ap, where it is seen that with the increase of Ap,
the value of λ is monotonically increased. To compare with the
results of numerical simulations (Fig. 2), we present in Fig. 6
also the variation of the control error, γ ′, as functions of kp

and Ap (in the logarithmic scale), where the theoretical and
numerical results are found to be in good agreement.
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FIG. 6. (Color online) For ε = 0.15 and k1 = 3.8, the damping
rate, γ , calculated according to Eq. (13). (a) Fixing Ap = 1, the
variation of γ as a function of the pinning wave number kp . (b) Fixing
kp = 0.5, the variation of γ as a function of the pinning amplitude Ap .
The symbols are the control errors obtained by numerical simulations
(Fig. 2) and are presented with the logarithmic scale γ ′ = 1/τ ln σ ,
with τ = 580 in (a) and τ = 617 in (b).

The performance of distributed pinning can be understood
from Eqs. (9) and (10) as follows. The key point lies in the
effective coupling strength, ε′

1,4A
p, between the two slow-

damping modes φ1 and φ4. By increasing Ap, the coupling
between the modes will be strengthened, which enlarges the
term of mode excitation, ε′

1,4A
p exp (i�ωt) and therefore

slows down the damping. This property can be also understood
from Eq. (13), where we have λ+ ∝ Ap. The effective coupling
strength is also affected by the pinning wave number kp.
Noticing that ε′

1,4 = ε0/(1 + k2
1,4) and k1,4 = −(k4,1 + kp) (the

resonant condition), the effective coupling strength thus is
decreasing with kp. So by changing the pinning distribution
(i.e, the values of kp and Ap), it essentially adjusts the effective
coupling strength between some pairs of resonant modes,
which in turn modifies the mode damping rate and affects
the control performance.

V. DISCUSSION AND CONCLUSION

The above results of sinusoidal pinning distribution can
be generalized to other forms of pinning distributions, as
any form of distribution can always be represented by the
summation of a series of sinusoidal waves, say, for example,
the localized pinning. Localized pinning refers to a situation
where the pinning signals are added onto only part of the
system sites, which is more practicable and feasible in

FIG. 7. For the localized pinning distribution described by
Eq. (14), the variation of the normalized control error, σ , as a function
of the pinning wave number kp . The other parameters are the same
to Fig. 2(b).

realistic applications [18,20,29]. To check whether the same
phenomena can be observed in localized pinning control, we
replace the sinusoidal distribution in Eq. (1) by the following
square-wave distribution:

ε(x,y) = ε0{1 + sgn[sin(kxx + kyy)]}, (14)

with sgn(. . .) being the signum function. Thus, the pinning
amplitude is alternating between 0 the 2 with a fixed spatial
interval characterized by kp = (kp

x ,k
p
y ). Still, we set k

p
x =

k
p
y = k = kp. Similarly to the case of sinusoidal distribution,

with the increase of kp the pinning strength tends to the uniform
distribution in the space. By the same set of parameters used in
Fig. 2, we plot in Fig. 7 the variation of the normalized control
error, σ , as a function of the kp. It is seen that, just like the
case of sinusoidal pinning, the control error is monotonically
decreased as kp increases.

Before giving our conclusion, we wish to highlight the
significance of complex network models in exploring the
turbulent dynamics. While Fourier analysis has been exten-
sively employed in exploring turbulence, to our knowledge,
a global picture on the interaction of Fourier modes is still
short, especially the connection between the dynamics of
the individual modes and the collective behaviors of the
whole system. From the viewpoint of complex network,
not only the coupling structures of the Fourier modes can
be clearly presented but also the roles of each individual
mode in affecting the turbulent dynamics can be conveniently
figured out, e.g., the importance of each mode can be simply
evaluated by its degree or total coupling cost. Having identified
the important modes in the network, it would be possible
to capture the main features of the system dynamics by a
simplified network model which keeps only the important
modes. Our studies in the present work shows that, by such a
network approach of system simplification, the analysis of the
turbulent dynamics indeed could be largely simplified and the
mechanisms of distributed pinning becomes straightforward.
The same idea of mode identification has been employed
in previous studies in controlling spatiotemporal chaos, in
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which the important modes are identified by the wavelets
transform [13]. Specifically, by modifying a tiny fraction of
the wavelet subspaces of the coupling matrix, the stability of
the system synchronization can be dramatically enhanced. It is
our believing that, with the help of the network science, many
new features of turbulent dynamics would be discovered.

In summary, we have studied, both numerically and analyti-
cally, the control of 2D drift-wave turbulence by the scheme of
distributed pinnings. It is found that, as the pinning distribution
tends to nonuniform, the control performance is monotonically
deteriorated. Transforming the turbulence equation into the
Fourier space, and after a detail analysis on the structure of
mode couplings, we have proposed a new model of networked
modes, which captures some essential features of the dynamics

of pinned turbulence. With the help of this network model,
an explicit formula has been obtained on the influence of the
pinning distribution on control performance, which are in good
agreement with the numerical results. Our studies shed new
light on the dynamics of drift-wave turbulence and make a
solid step towards the application of pinning control in realistic
systems.
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