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Few-cycle optical rogue waves: Complex modified Korteweg–de Vries equation
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In this paper, we consider the complex modified Korteweg–de Vries (mKdV) equation as a model of
few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and
systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of
evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we
classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern,
triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the
standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order
rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of
the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations.
In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power
few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.
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I. INTRODUCTION

The theory of nonlinear dynamics has attracted consid-
erable interest and is fundamentally linked to several basic
developments in the area of soliton theory. It is well known that
the Korteweg–de Vries (KdV) equation, modified Korteweg–
de Vries (mKdV) equation, sine Gordon equation, and the
nonlinear Schrödinger (NLS) equation are the most typical and
well-studied integrable evolution equations which describe
nonlinear wave phenomena for a range of dispersive physical
systems. Their stable multisoliton solutions play an important
role in the study of nonlinear waves [1]. Further studies have
also been carried out to examine the effects on these solitons
due to dissipation, inhomogeneity, or nonuniformity present
in nonlinear media [2,3].

The term “soliton” is a sophisticated mathematical concept
that derives its name from the word “solitary wave,” which is
a localized wave of translation that arises from the balance
between nonlinear and dispersive effects [1]. In spite of
the initial theoretical investigations, the concept of solitary
waves could not gain wide recognition for a number of
years in the midst of excitement created by the development
of electromagnetic concepts in those times. Korteweg and
de Vries (1895) developed a mathematical model for the
shallow water problem and demonstrated the possibility of
solitary wave generation [4]. Next, the study of solitary
waves really took off in the mid-1960s when Zabusky and
Kruskal discovered the remarkably stable particlelike behavior
of solitary waves [5]. They reported numerical experiments
where solitary waves, described by the KdV equation, passed
through each other unchanged in speed or shape, which
led them to coin the word “soliton” to suggest such a
unique property. In a follow-up study Zakharov and Shabat
generalized the inverse scattering method in 1972 and also
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solved the NLS equation, demonstrating both its integrability
and the existence of soliton solutions [6].

Following the above discoveries, solitary waves of all fla-
vors advanced rapidly in many areas of science and technology.
In nonlinear physics applications to many areas, e.g., hydrody-
namics, biophysics, atomic physics, nonlinear optics, etc., have
been developed. As of now, more than a few hundred nonlinear
evolution equations (NEEs) have been shown to admit solitons
and some of these theoretical equations are also responsible
for the experimental discovery of solitons [1,7]. In general,
nonlinear phenomena are often modeled by NEEs exhibiting a
wide range of high complexities in terms of difference in linear
and nonlinear effects. In the past four decades or so, the advent
of high-speed computers, many advanced mathematical soft-
wares, and a number of sophisticated and systematic analytical
methods, which are well supported by experiments, have
encouraged both theoreticians and experimentalists. Nonlinear
science has experienced an explosive growth by the invention
of several exciting and fascinating new concepts not just like
solitons, but, e.g., dispersion-managed solitons, rogue waves,
similaritons, supercontinuum generation, etc. [1]. Many of the
completely integrable nonlinear partial differential equations
(NPDEs) admit one of the most striking aspects of nonlinear
phenomena, which describe solitons as universal characters
and they are of great mathematical as well as physical interest.
It is impossible to discuss all these manifestations exhaustively
in this paper. We further restrict ourselves to the solitary wave
manifestation in nonlinear optics. In the area of soliton research
at the forefront right now is the study of optical solitons, where
the highly sought-after goal is to use strong localized nonlinear
optical pulses as the high-speed information-carrying bits in
optical fibers.

Optical solitons are localized electromagnetic waves that
propagate steadily in a nonlinear medium resulting from the
robust balance between nonlinearity and linear broadening
due to dispersion and diffraction. The existence of the optical
soliton was first time found in 1973 when Hasegawa and
Tappert demonstrated the propagation of a pulse through a
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nonlinear optical fiber described by the NLS equation [8]. They
performed a number of computer simulations demonstrating
that nonlinear pulse transmission in optical fibers would
be stable. Subsequently, after the fabrication of low-loss
fiber, Mollenauer et al. in 1980 successfully confirmed this
theoretical prediction of soliton propagation in a laboratory
experiment [7]. Since then, fiber solitons have emerged as a
very promising potential candidate in long-haul fiber optic
communication systems.

Further, in addition to several important developments
in soliton theory, the concept of modulational instability
(MI) has also been widely used in many nonlinear systems
to explain why experiments involving white coherent light
supercontinuum generation (SCG) admit a triangular spectrum
which can be described by the analytical expressions for
the spectra of Akhmediev breather solutions at the point of
extreme compression [1]. In the case of the NLS equation,
Peregrine already in [9] had identified the role of MI in
the formation of patterns resembling high-amplitude freak
waves or rogue waves (RWs). RWs have recently been also
reported in different areas of science. In particular, in photonic
crystal fiber RWs are well established in connection with
SCG [10]. This actually has stimulated research for RWs
in other physical systems and has paved the way for a
number important applications, including the control of RWs
by means of SCG [11,12], as well as studies in, e.g., superfluid
helium [13], Bose-Einstein condensates [14], plasmas [15,16],
microwaves [17], capillary phenomena [18], telecommuni-
cation data streams [19], inhomogeneous media [20], water
experiments [21], and so on. Recently, Kibler et al. [22],
using a suitable experiment with optical fibers, were able
to generate femtosecond pulses with strong temporal and
spatial localization and near-ideal temporal Peregrine soliton
characteristics.

For the past couple of years, several NEEs were shown to
exhibit the RW-type rational solutions [23–39]. From the above
listed works, it is clear that one of the possible generating
mechanisms [40] for the higher-order RW is the interaction
of multiple breathers possessing identical and very particular
frequency of the underlying equation. Though the theory of
solitons and many mathematical methods have been well used
in connection with soliton theory for the past four decades
or so, to the best of our knowledge, the dynamics of multi-
RW evolutions has not yet been systematically investigated in
integrable nonlinear systems [41].

Very recently, considering the propagation of few-cycle
optical pulses in cubic nonlinear media and by developing
multiple scaling approach to the Maxwell-Bloch-Heisenberg
equation up to the third order in terms of expansion parameter,
the complex mKdV equation was derived [42,43]. Circularly
polarized few-cycle optical solitons were found which are valid
for long pulses. Thus, it is more than worthy to systematically
investigate the existence of the few-cycle optical RWs for this
model, and this is the main purpose of the present paper.

The organization of this paper is as follows. In Sec. II,
based on the parameterized Darboux transformation (DT) of
the mKdV equation, the general formation of the solution is
given. In Sec. III, we construct the higher-order RWs from
a periodic seed with constant amplitude and analyze their
structures in detail by choosing suitable system parameters.

We provide detailed discussion about the obtained results in
Secs. IV and V.

II. THE DARBOUX TRANSFORMATION

For our analysis, we begin with coupled complex mKdV
equations of the form of

qt + qxxx − 6qrqx = 0, (1)

rt + rxxx − 6rqrx = 0. (2)

Under a reduction condition q = −r∗, the above coupled
equations reduce to the complex mKdV

qt + qxxx + 6|q|2qx = 0. (3)

The complex mKdV equation is one of the well-known
and completely integrable equations in soliton theory, which
possesses all the basic characters of integrable models. From
a physical point of view, the above equation has been derived
for, e.g., the dynamical evolution of nonlinear lattices, plasma
physics, fluid dynamics, ultrashort pulses in nonlinear optics,
nonlinear transmission lines, and so on [41]. The Lax pair
corresponding to the coupled mKdV equations is given by [41],
i.e.,

ψx = Mψ, (4)

ψt = (V3λ
3 + V2λ

2 + V1λ + V0)ψ = Nψ, (5)

with

ψ =
(

φ1

φ2

)
, M =

(−iλ q

r iλ

)
, V3 =

(−4i 0

0 4i

)
,

V2 =
(

0 4q

4γ 0

)
, V1 =

(−2iqr 2iqx

−2irx 2iqr

)
,

V0 =
( −qrx + qxr −qxx + 2q2r

−rxx + 2qr2 qrx − qxr

)
.

Here λ is an arbitrary complex spectral parameter or also
called eigenvalue, and ψ is the eigenfunction corresponding
to λ of the complex mKdV equation. From the compatibility
condition Mt − Nx + [M,N ] = 0, one can easily obtain the
coupled equations (1) and (2). Furthermore, we set T to be a
gauge transformation by

ψ [1] = T ψ, q → q[1], r → r [1], (6)

and

ψ [1]
x = M [1]ψ [1], M [1] = (Tx + T M)T −1, (7)

ψ [1]
t = N [1]ψ [1], N [1] = (Tt + T N )T −1. (8)

Here M [1] = M(q → q[1],r → r [1]), N [1] = N (q → q[1],r →
r [1]). By cross-differentiating (7) and (8), we obtain

M [1]
t − N [1]

x + [M [1],N [1]] = T (Mt − Nx + [M,N ])T −1.

(9)
This implies that, in order to prove that the mKdV equation is
invariant under the gauge transformation (6), it is important to
determine the T such that M [1] and N [1] have the same forms
as M and N . Meanwhile, the seed solutions (q, r) in spectral
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matrices M and N are mapped into the new solutions (q[1],
r [1]) in terms of transformed spectral matrices M [1] and N [1].

Recently, using the generalized DT, nth-order RW solutions
for the complex mKdV equation have been proposed in,
e.g., [38]. However, in our work, we shall systematically ana-
lyze the evolution of the different patterns of higher-order RWs
by suitably choosing the parameters in the rational solutions.
In addition, it is worth noting that the obtained results are in
agreement with our recently published developments about the
method of generating higher-order RWs [39,40].

A. Onefold Darboux transformation

From the knowledge of the known form of the DT for the
NLS equation [44–49], we assume that a trial Darboux matrix
T in Eq. (6) has the form

T = T (λ) =
(

a1 b1

c1 d1

)
λ +

(
a0 b0

c0 d0

)
, (10)

where a0, b0, c0, d0, a1, b1, c1, d1 are functions of x and t .
From

Tx + T M = M [1]T , (11)

by comparing the coefficients of λj , j = 2,1,0, it yields

λ2 : b1 = 0, c1 = 0,

λ1 : a1x = 0, − 2ib0 + q1d1 − qa1 = 0,

d1x = 0, − rd1 + r1a1 + 2ic0 = 0, (12)

λ0 : q1c0 − a0x − rb0 = 0, − b0x + q1d0 − qa0 = 0,

r1a0 − c0x − rd0 = 0, r1b0 − d0x − qc0 = 0.

From the coefficients of λ1, we conclude that a1 and d1 are
functions of t only. Similarly, from

Tt + T N = N [1]T , (13)

and by comparing the coefficients of λj , j = 3,2,1,0, we
obtain the following set of equations

λ3 : q1d1 − qa1 − 2ib0 = 0, r1a1 − rd1 + 2ic0 = 0,

λ2 : −q1r1a1i + 2q1c0 + a1qri − 2rb0 = 0, − a1qxi + 2q1d0 − 2qa0 + q1xd1i = 0,

2r1a0 − r1xa1i − 2rd0 + d1rxi = 0, q1r1d1i + 2r1b0 − 2qc0 − d1qri = 0,

λ1 : −a1t + r1q1xa1 + a1qrx − a1rqx + 2iq1xc + 2ib0rx − 2iq1r1a0 + 2ia0qr − q1r1xa1 = 0,

− 2iq1r1b0 − 2ib0qr + a1qxx + 2iq1xd0 − 2ia0qx − 2a1q
2r − q1xxd1 + 2q2

1 r1d1 = 0,

− r1xxa1 + 2iq1r1c0 + 2q1r
2
1 a1 + 2iqrc0 − 2ia0r1x + 2id0rx − 2d1qr2 + d1rxx = 0, (14)

− d1t − 2ic0qx + 2iq1r1d0 − r1q1xd1 − 2ir1xb0 − d1qrx + d1rqx − 2id0qr + q1r1xd1 = 0,

λ0 : −q1xxc0 + b0rxx + 2q2
1 r1c0 + a0qrx − 2b0qr2 + r1q1xa0 − q1r1xa0 − a0rqx − a0t = 0,

a0qxx − b0qrx − b0q1r1x − 2a0q
2r + r1q1xb0 + 2q2

1 r1d0 + b0rqx − q1xxd0 − b0t = 0,

− r1xxa0 + d0rxx − r1q1xc0 + 2q1r
2
1 a0 + q1r1xc0 − c0rqx + c0qrx − 2d0qr2 − c0t = 0,

− r1q1xd0 + q1r1xd0 − r1xxb0 + 2q1r
2
1 b0 + c0qxx + d0rqx − d0qrx − 2c0q

2r − d0t = 0.

By making use of Eqs. (12) and (14), one may obtain a1x =
0, d1x = 0, a1t = 0, d1t = 0, which implies that a1 and d1 are
two constants.

In order to obtain the nontrivial solutions of the complex
mKdV equation, we provide the DT under the condition a1 =
1, d1 = 1. Without loss of generality, and based on Eqs. (12)
and (14), we observe that the Darboux matrix T admits the
following form:

T = T (λ) =
(

1 0

0 1

)
λ +

(
a0 b0

c0 d0

)
. (15)

Here a0, b0, c0, d0 are functions of x and t , which could be
expressed by two eigenfunctions corresponding to λ1 and λ2.
To begin with, we introduce 2n eigenfunctions ψj and 2n

associated distinct eigenvalues λj as follows:

ψj =
(

φj1

φj2

)
, j = 1,2, . . . ,2n,

(16)
φj1 = φ1(x,t,λj ), φj2 = φ2(x,t,λj ).

Note φ1(x,t,λ) and φ2(x,t,λ) are two components of eigen-
function ψ associated with λ in Eqs. (4) and (5). Here it is

worthwhile to note that since the eigenfunction

ψj =
(

φj1

φj2

)

is the solution of the eigenvalue equations (4) and (5)
corresponding to λj , and the eigenfunction

ψ ′
j =

(
−φ∗

j2

φ∗
j1

)

is also the solution of Eqs. (4) and (5) corresponding to λ∗
j ,

where ∗ denotes the complex conjugate.
We assume from now on that even number eigenfunctions

and eigenvalues are given by odd ones as the following rule
(j = 1,2, . . . ,n):

λ2j = λ∗
2j−1, φ2j,1 = −φ∗

2j−1,2(λ2j−1),
(17)

φ2j,2 = φ∗
2j−1,1(λ2j−1).

For convenience and simplicity of our mathematical manipu-
lations, we propose the following theorems.
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Theorem 1. The elements of a onefold Darboux matrix
are presented with the eigenfunction ψ1 corresponding to the
eigenvalue λ1 as

a0 = − 1

�2

∣∣∣∣λ1φ11 φ12

λ2φ21 φ22

∣∣∣∣ , b0 = 1

�2

∣∣∣∣ λ1φ11 φ11

λ2φ21x φ21

∣∣∣∣ ,
(18)

c0 = 1

�2

∣∣∣∣φ12 λ1φ12

φ22 λ2φ22

∣∣∣∣ , d0 = − 1

�2

∣∣∣∣φ11 λ1φ12

φ21 λ2φ22

∣∣∣∣ ,
⇔ T1(λ; λ1)

=
⎛
⎝λ − 1

�2

∣∣∣λ1φ11 φ12

λ2φ21 φ22

∣∣∣ 1
�2

∣∣∣λ1φ11 φ11

λ2φ21 φ21

∣∣∣
1

�2

∣∣∣φ12 λ1φ12

φ22 λ2φ22

∣∣∣ λ − 1
�2

∣∣∣φ11 λ1φ12

φ21 λ2φ22

∣∣∣
⎞
⎠ , (19)

with�2 = |φ11 φ12
φ21 φ22

|, and then the new solutions q[1] and r [1]

are given by

q[1] = q + 2i
1

�2

∣∣∣∣λ1φ11 φ11

λ2φ21 φ21

∣∣∣∣ ,
(20)

r [1] = r − 2i
1

�2

∣∣∣∣φ12 λ1φ12

φ22 λ2φ22

∣∣∣∣ ,
and the new eigenfunction ψ

[1]
j corresponding to λj is

ψ
[1]
j = T1(λ; λ1)|λ=λj

ψj . (21)

Proof. Note that b1 = c1 = 0, a1x = 0, and d1x = 0 are
derived from the functional form of x, then a1t = 0 and
d1t = 0 are derived from the functional form of t . So, a1 and
d1 are arbitrary constants, and hence we let a1 = d1 = 1 for

simplicity for later calculations. By transformation defined by
Eqs. (12) and (14), new solutions are given by

q1 = q + 2ib0, r1 = r − 2ic0. (22)

By making use of the general property of the DT,
i.e., T1(λ; λj )|λ=λ1ψj = 0,j = 1,2, after some manipulations,
Eq. (18) is obtained. Next, substituting (a0,b0,c0,d0) given
in Eq. (18) into Eq. (22), the new solutions are given
as in Eq. (20). Furthermore, by using the explicit matrix
representation Eq. (19) of T1, then ψ

[1]
j (j � 3) is given by

ψ
[1]
j = T1(λ; λ1)|λ=λj

ψj . �
It is trivial to confirm q[1] = −(r [1])∗ by using the special

choice on ψ2 and λ2 in Eq. (17). This means q[1] generates a
new solution of the complex mKdV from a seed solution q.
Note that ψ

[1]
j = 0 for j = 1,2.

B. n-fold Darboux transformation

By n-times iteration of the onefold DT T1, we obtain n-fold
DT Tn of the complex mKdV equation with the special choice
on λ2j and ψ2j in Eq. (17). To save space, we omit the tedious
calculation of Tn and its determinant representation. Under the
above conditions, the reduction condition q[n] = −(r [n])∗ is
preserved by Tn, so we just give q[n] in the following theorem.

Theorem 2. Under the choice of Eq. (17), the n-fold DT Tn

generates a new solution of the complex mKdV equation from
a seed solution q as

q[n] = q − 2i
N2n

D2n

, (23)

where

N2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ11 φ12 λ1φ11 λ1φ12 . . . λn−1
1 φ11 λn

1φ11

φ21 φ22 λ2φ21 λ2φ22 . . . λn−1
2 φ21 λn

2φ21

φ31 φ32 λ3φ31 λ3φ32 . . . λn−1
3 φ31 λn

3φ31

φ41 φ42 λ4φ41 λ4φ42 . . . λn−1
4 φ41 λn

4φ41

...
...

...
...

...
...

...

φ2n1 φ2n2 λ2nφ2n1 λ2nφ2n2 . . . λn−1
2n φ2n1 λn

2nφ2n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

D2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ11 φ12 λ1φ11 λ1φ12 . . . λn−1
1 φ11 λn−1

1 φ12

φ21 φ22 λ2φ21 λ2φ22 . . . λn−1
2 φ21 λn−1

2 φ22

φ31 φ32 λ3φ31 λ3φ32 . . . λn−1
3 φ31 λn−1

3 φ32

φ41 φ42 λ4φ41 λ4φ42 . . . λn−1
4 φ41 λn−1

4 φ42

...
...

...
...

...
...

...

φ2n1 φ2n2 λ2nφ2n1 λ2nφ2n2 . . . λn−1
2n φ2n1 λn−1

2n φ2n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By making use of Theorem 2 with a suitable seed solution, we
can generate the multisolitons, multibreathers, and multi-RWs
of the complex mKdV equation. As the multisoliton and multi-
breather solutions are well known and completely explored for
the complex mKdV equation, next we concentrate mainly on
the systematic construction of the higher-order RWs from the

double degeneration [40] of the DT. Though the construction
of higher-order RW solutions is quite cumbersome, one can
still validate the correctness of these solutions with the
help of modern computer tools such as a simple symbolic
calculation or equivalent, and also by a direct numerical
computation.
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III. HIGHER-ORDER ROGUE WAVES

In this section, starting with a nonzero seed q = ceiρ, ρ = ax + bt, b = a3 − 6ac2, a,b,c ∈ R, we shall present higher-order
RWs of the complex mKdV equation. If a = 0, q = c is a constant, which is just a seed solution to generate soliton. So, in
this paper, we choose a �= 0. By using the principle of superposition of the linear differential equations, the new eigenfunctions
corresponding to λj can be provided by

ψj =
(

d1ce
i[( 1

2 a+c1)x+( 1
2 b+2c1c2)t] + d2i( 1

2a + λj + c1)ei[(− 1
2 a+c1)x+(− 1

2 b+2c1c2)t]

d1i( 1
2a + λj + c1)e−i[(− 1

2 a+c1)x+(− 1
2 b+2c1c2)t] + d2ce

−i[( 1
2 a+c1)x+( 1

2 b+2c1c2)t]

)
, (24)

with

d1 = eic1(s0+s1ε+s2ε
2+···+sn−1ε

n−1),

d2 = e−ic1(s0+s1ε+s2ε
2+···+sn−1ε

n−1),
(25)

c1 = 1

2

√
a2 + 4c2 + 4λja + 4λ2

j ,

c2 = 2λ2
j − c2 + 1

2
a2 − λja.

Here si ∈ C(i = 0,1,2, . . . ,n − 1),a,b,c ∈ R are the arbitrary
constants, ε is an infinitesimal parameter.

We are now in a position to consider the double degen-
eration of q[n] to obtain higher-order RW as in our earlier
investigations [40]. It is trivial to check that ψj (λ0) = 0 in
Eq. (24), which means that these eigenfunctions are degen-
erate at λ0 = ic − a

2 . Setting λ2j−1 → λ0 and substituting
ψ2j−1(j = 1,2, . . . ,n) defined by Eq. (24) back into Eq. (23),
the double degeneration, i.e., eigenvalue and eigenfunction
degeneration, occurs in q[n]. Next, q[n] now becomes an
indeterminate form 0

0 . We set λ2j−1 = λ0 + ε and set ψ2j−1

to be given by Eq. (24); we obtain nth-order RW solutions by
higher-order Taylor expansion of q[n] with respect to ε.

Theorem 3. An n-fold degenerate DT with a given eigen-
value λ0 is realized in the degenerate limit λj → λ0 of Tn. This
degenerate n-fold DT yields a new solution q[n] of the mKdV
equation starting with the seed solution q, where

q[n](x,t ; λ0) = q − 2i
N ′

2n

D′
2n

, (26)

with

D′
2n =

[
∂ni

∂εni

∣∣∣∣
ε=0

(D2n)ij (λ0 + ε)

]
2n×2n

,

N ′
2n =

[
∂ni

∂εni

∣∣∣∣
ε=0

(N2n)ij (λ0 + ε)

]
2n×2n

.

Here ni = [ i+1
2 ], [i] denotes the floor function of i.

In the following, to avoid the tedious mathematical steps
we encountered, we only present the expressions of the first-,
second-, and third-order RWs by using Theorem 3. In each
case, the solution q[n] describes the envelope of the RW, and
its square modulus contains information such as, e.g., wave
evolution above water surface, or the intensity of few-cycle
optical wave, etc.

First, we set n = 1, D2, and N2 to take the form of 2 × 2
determinants. By using the first-order Taylor expansion with
respect to ε in terms of elements of D2 and N2 through λ1 =
λ0 + ε, we determined N ′

2 and D′
2 by equating the coefficient of

√
ε, and then obtained the explicit expression for the first-order

RW as

q[1] = −ceia[x+t(a2−6c2)] A + 48ic2ta − 3

A + 1
, (27)

with A = 24ta2c2x + 24ta2c2s0 + 36t2a4c2 − 48c4tx −
48c4ts0 + 8c2xs0 + 144c6t2 + 4c2x2 + 4c2s2

0 .

Its evolution is presented in Fig. 1 (left) with the condition
d1 = d2 = 1 and the Taylor expansion at λ0 = ic − a

2 + ε, in
order to compare this with higher-order RWs. It is trivial to find
that |q[1]|2 = c2 when x → ∞ and t → ∞. This means that
the asymptotic plane of |q[1]|2 has the height c2. Particularly, let
a = 0 and s0 = 0; |q[1]|2 is a soliton propagating along a line
x = 6c2t with a nonvanishing boundary. We set c = −1,a =√

6,s0 = 0, and t → t/2, then q[1] gives u[2] of Ref. [38].
When n = 2, we construct the second-order RWs under

the assumption d1 = eic1(s0+s1ε), d2 = e−ic1(s0+s1ε),s0 = 0 from
Theorem 3. An explicit form of q[2] is constructed as

q[2] = ceia[x+t(a2−6c2)] B

C
. (28)

Here B and C are two degree 6 polynomials in x and t ,
which are given in Appendix A. From Fig. 1 (right), one finds
that under the assumption d1 = 1,d2 = 1, or equivalently s0 =
s1 = 0, the second-order rational solution admits a single high
maximum at the origin. By suitably adjusting the parameter
a one could control the decaying rate of the profile in the
(x,t) plane. This is a fundamental pattern. Furthermore, as
is shown in Fig. 8, when taking d1 �= 1 and d2 �= 1, the large
peak of the second RW is completely separated and forms a set
of three first-order rational solutions for sufficiently large s1;
meanwhile, s0 = 0 and actually forms an equilateral triangle.

When n = 3 and d1 = eic1(s0+s1ε+s2ε
2) and d2 =

e−ic1(s0+s1ε+s2ε
2), then Theorem 3 yields an explicit formula

of the third-order RW with parameters a,c,s0,s1,s2. When
a = 1.5,c = 1,s0 = s1 = s2 = 0, we have

q[3] = L1

L2
ei( 3

2 x− 45
8 t). (29)

Here L1 and L2 are two degree 12 polynomials in x and
t , which are given in Appendix B. This is the fundamental
pattern of the third-order RW, which is plotted in Fig. 2 (left)
with a different value of a.

In general, Theorem 3 provides an efficient tool to produce
analytical forms of higher-order RWs of the complex mKdV
equation. Actually, we have also constructed the analytical
formulas for fourth-, fifth-, and sixth-order RWs. However,
because of their long expressions describing these solutions,
we do not present them here but would provide them upon
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HE, WANG, LI, PORSEZIAN, AND ERDÉLYI PHYSICAL REVIEW E 89, 062917 (2014)

FIG. 1. (Color online) Fundamental pattern of the RW. The left panel is the evolution of |q [1]|2 (first-order RW), with specific parameters
a = 1.5,c = 1,s0 = 0. The right panel is |q [2]|2 (second-order RW), with specific parameters a = 1.44,c = 1,s0 = 0,s1 = 0.

request. The validity of all these higher-order RWs has been
verified by symbolic computation. According to the explicit
formulas of the nth-order RWs under fundamental patterns,
we find that their maximum amplitude is (2n + 1)2c2(n =
1,2,3,4,5,6) by setting x = 0 and t = 0 in |q[n]|2, and the
height of the asymptotic plane is c2, which is the same as that
of the RW of the NLS equation. This fact can be easily verified
through Figs. 1–3. All figures in this paper are plotted based
on these explicit analytical formulas of the solutions. Once the
explicit analytical higher-order RWs are known, our next aim
is to generate and understand underlying the dynamics of the
obtained different patterns by suitably selecting the value of
si .

IV. RESULTS AND DISCUSSION

The above discussion is a clear manifestation of the
evolution of the higher-order RWs from the Taylor expansion
of the degenerate breather solutions. A brief discussion about
the generating mechanism of higher-order RWs from the NEE
has already been reported by [40]. For our purpose now,
we customize our discussion only up to sixth-order RWs,

since higher-order RWs are difficult to construct owing to the
extreme complexity and tedious mathematical calculations. It
is quite obvious from our numerical analysis that the choice
of parameters such as d1 and d2 actually do generate three
different basic patterns of RW solutions. Let us discuss these
patterns now.

Fundamental patterns. When, e.g., d1 = d2 = 1, or equiv-
alently si = 0 (i = 0,1,2, . . . ,n − 1) in q[n], the rational
solutions of any order n have similar structures. In addition,
there are n(n+1)

2 − 1 local maxima on each side of the line
at t = 0. Starting from ∞, before the central optimum high
amplitude, there is a sequence of peaks with gradual increase
in height. Here one can observe that the number of first peaks
is n; then there is a row of n − 1 symmetric peaks with respect
to time t as shown in Figs. 1–3 for sixth-order RWs.

There are only two parameters a and c in the explicit forms
of the RWs under fundamental patterns. It is a challenge
problem to illustrate analytically the role of a and c in the
control of the profile for the higher-order RWs due to the
extreme complexity of the explicit forms of the nth-order RWs
(n � 2). So, we only study this problem for the first-order RW
|q[1]|2. To this end, we introduce a method, i.e., the contour

FIG. 2. (Color online) Fundamental pattern of the RW. The left panel is the evolution of |q [3]|2 (third-order RW), with specific parameters
a = 1.4,c = 1,s0 = 0,s1 = 0,s2 = 0. The right panel is |q [4]|2 (fourth-order RW), with specific parameters a = 1.48,c = 1,s0 = 0,s1 = 0,s2 =
0,s3 = 0.
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FIG. 3. (Color online) Fundamental patterns of the RWs. The left panel is the evolution of |q [5]|2 (fifth-order RW), with specific parameters
a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 0,s4 = 0. The right panel is |q [6]|2 (sixth-order RW), with specific parameters a = 1.5,c = 1,s0 =
0,s1 = 0,s2 = 0,s3 = 0,s4 = 0,s5 = 0.

line method, to analyze the contour profile of the red bright
spots in the density plot of Fig. 4, which intuitively shows the
localization characters such as length and width of the RW. On
the background plane with height c2, a contour line of |q[1]|2

with c = 1 is a hyperbola,

x2 − 12tx + 6ta2x + 36t2 − 72t2a2 + 9t2a4 − 1
4 = 0,

(30)

FIG. 4. (Color online) The density plots of the first-order RW |q [1]|2 with c = 1 and different values of a. From panels (a) to (c),
a = 1.5,2,2.5 in order. Here red (solid) and blue (dotted) lines are plotted for two asymptotes of contour lines at height c2, green (dashed)
line are plotted for a median of one triangle composed of above two asymptotes and a parallel line of x axis except t = 0. Two fixed pints are
located at (0,0.5) and (0,−0.5) in the three panels.
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FIG. 5. (Color online) Contour lines of the first-order RW with c = 1 and a = 1.5 (red solid line), 2 (dash ed green line), 2.5 (dotted blue
line). From panels (a) to (c), panels are plotted for contour lines of |q [1]|2 at height c2 (on asymptotic plane), c2 + 1, c2/2 in order. There
are fixed points located at (0,0.50) and (0, −0.50) in panel (a), (0,0.41) and (0, −0.41) in panel (b), (0,1.78) and (0,0.58), (0, −0.58), and
(0, −1.78) in panel (c).

which has two asymptotes,

l1 : x = (6 − 3a2 − 6a)t, l2 : x = (6 − 3a2 + 6a)t, (31)

and two nonorthogonal axes,

major axis : t = 0, imaginary axis(l3) : x = (6 − 3a2)t.

(32)

There are two fixed vertices—P1 = (0,0.50),P2 =
(0,−0.5)—on the (t,x) plane of all values of a. Here
l3 is also a median of one triangle composed of above two
asymptotes and a parallel line of the x axis except t = 0. We
combine the density plots and the above three lines in Fig. 4
with different values of a. At height c2 + 1, a contour line of
|q[1]|2 with c = 1 is given by a quartic polynomial

x4 + (12a2 − 24)tx3 + [
5
2 + (216 − 144a2 + 54a4)t2

]
x2

+ [(−864 + 432a2 − 216a4 + 108a6)t3

+ (15a2 − 30)t]x + (1296 + 648a4 + 81a8)t4

+ [
90 − 144a2 + (

45
2

)
a4

]
t2 − 7

16 = 0, (33)

which has two end points, P3 = [−
√

7
12a

, (−2+a2)
√

7
4a

]

and P4 = [
√

7
12a

,− (−2+a2)
√

7
4a

], along the t direction.
Moreover, there are two fixed points expressed by

P5 = [0,

√
−1−4c2+4

√
c2(c2+1)

2c
|c=1] = (0,0.41) and

P6 = [0,−
√

−1−4c2+4
√

c2(c2+1)

2c
|c=1] = (0,−0.41) on the

(t,x) plane of all values of a. At height c2

2 , a contour line of
|q[1]|2 with c = 1 is also given by a quartic polynomial

x4 + (12a2 − 24)tx3 + [
(216 − 144a2 + 54a4)t2 − 7

2

]
x2

+ [(−864 + 432a2 − 216a4 + 108a6)t3

+ (−21a2 + 42)t]x + (1296 + 648a4 + 81a8)t4

+ (−126 + 288a2 − 63
2 a4

)
t2 + 17

16 = 0, (34)

which is defined on interval [− 1
12a

, 1
12a

] of t . For
this contour line, there are four fixed points—
(0,1.78),(0,0.58),(0,−0.58),(0,−1.78)—on the (t,x)
plane of all values of a. Two centers of valleys of |q[1]|2 are
given by P7 = (0,

√
3

2c
),P8 = (0,−

√
3

2c
), which are independent
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with the value of a. Figure 5 is plotted for above contour lines
with different values of a = 1.5,2,2.5.

Based on the above analytical results, we could define the
length and width of the RW, which are two crucial characters of
a doubly localized wave-RW. Because the contour line of RW
on the background plane is not a closed curve, we cannot define
a length for RW on this plane. However, when we set d to be
a positive constant, the contour line at height c2 + d is closed.
Here c2 + d < 9c2 or, equivalently, d <

√
8c2 because the

max amplitude of the first-order RW (|q[1]|2) is 9c2. Without
loss of generality, and considering a recognizable height from
the asymptotic plane, we set d = 1 as before. We can use the
length of the area surrounded by the contour line at height
c2 + 1 as the length of the first-order RW. The length direction
is defined by l3, the width direction is orthogonal to it. The
reasons for this choice are (1) l3 passes through P3 and P4;
(2) l3 is parallel to the tangent line of hyperbola at two vertices;
(3) l3 is parallel to the tangent line of the contour line at P5 and
P6. Let k3 be the slope of l3. So the length of the first-order
RW is the distance of P3 and P4, i.e.,

dL =
√

7

6a

√
1 + (k3)2 =

√
7

6a

√
1 + (6 − 3a2)2. (35)

The width is defined as the projection of line segment P7P8 at
width direction, which is expressed by

dW =
√

3√
1 + (k3)2

=
√

3√
1 + (6 − 3a2)2

. (36)

dL and dW are plotted in Fig. 6 with fixed c = 1, which shows
that the length is decreased with a when a ∈ (0,

√
2) and is

increased with a when a >
√

2. However, the width has an
opposite increasing or decreasing trend with respect to a. When
a = √

2, the profile of first-order RW is parallel to the t axis,
then the length reaches its minimum and the width reaches its
maximum. This is the first role of a in the control of the RW.
Moreover, we know from k3 that the increase of a results in the

FIG. 6. (Color online) The length (red solid line) and the width
(dashed green line) of the first-order RW |q [1]|2 with fixed c = 1.
Note that a = √

2 is an extreme point of dL and dW .

rotation of RW in the clockwise direction. This is the second
role of a.

In above discussion for the role of a, we have set c = 1. If
c �= 1, it is a more interesting and complicated case, which can
be studied as above by using contour line method. To save the
space, we provide corresponding results without explanation,
which can be done in a similar way as above. In this case, there
are two asymptotes of the contour line of first-order RW |q[1]|2
at height c2

major axis : t = 0, imaginary axis(cl3) : x = (6c2 − 3a2)t.

(37)

In other words, the slope is k3c = 6c2 − 3a2. The two
vertices of the hyperbola are P1 = (0, 1

2c
) and P2 = (0,− 1

2c
)

on the (t,x) plane. For the contour line at height c2 + 1,

the two end points are P3 = [−
√

8c2−1
12ac2 , (−2c2+a2)

√
8c2−1

4ac2 ] and

P4 = [
√

8c2−1
12ac2 ,− (−2c2+a2)

√
8c2−1

4ac2 ] along the t direction. So the
length of the first-order RW is

dcL =
√

8c2 − 1

6c2a

√
1 + 9(−2c2 + a2)2, (38)

and the width of the first-order RW is

dcW =
√

3

c

1√
1 + 9(−2c2 + a2)2

, (39)

which are plotted in Fig. 7. These plots show visually the role
of a and c in the control of the first-order RW. For a given value
of a, dcL has two extreme points with respect to c. However,
for a given value of c, dcL has one extreme point with respect
to a. The slope k3c shows that the increasing of a and c results
in the rotation of the first-order RW with different direction.
Note that a = √

2c is a line of points for extreme value. Under
this condition, the profile of first-order RW is parallel to the t

axis, the minimum of the length is
√

4a2−1
3a3 , and the maximum

of the width is
√

3
c

.

Triangular patterns. The triangular structure can be ob-
tained by choosing the first nontrivial coefficient s1 
 1, while
the rest of the values are assumed to be zero. It can be seen from
Figs. 8–10 that the nth-order rational solutions have n(n+1)

2
peaks of equal height with a structure of equilateral triangular
type having n peaks at each edge.

Ring patterns. One can observe the ring structure or
pattern when n � 3 and the principle coefficient for nth-
order rational solution when sn−1 
 1, while the remaining
coefficients si are all zero. The rational solutions consist of
the outer circular shell of 2n − 1 first-order rational solutions,
while the center is an order (n − 2) rational solution of the
fundamental patterns as portrayed in Figs. 11 and 12. The
center order-(n − 2) RW can be decomposed further into dif-
ferent lower-order patterns according to the (n − 2)-reduction
rule of order by setting one of si (i = 0,1,2, . . . ,n − 3) to
nonzero, which are plotted in Figs. 13–15. For example, the
center order-4 RW of the sixth-order RW has a fundamental
pattern [Fig. 12 (right)], a ring plus a fundamental pattern
[Fig. 14 (right)], or a triangular pattern [Fig. 15 (right)]
of second-order RW, a triangular pattern [Fig. 15 (left)].
We call these forms as standard decomposition of the RW.
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FIG. 7. (Color online) The length (left) and width (right) of the first-order RW |q [1]|2 with two parameters a and c.

FIG. 8. (Color online) Triangular pattern of the second- and third-order RWs. The left panel is a density plot of |q [2]|2 (second-order RW),
with a = 1.44,c = 1,s0 = 0,s1 = 100. The right panel is a density plot of |q [3]|2 (third-order RW), with a = 1.44,c = 1,s0 = 0,s1 = 100,s2 = 0.

FIG. 9. (Color online) Triangular patterns of the fourth-order and fifth-order RWs. The left panel is a density plot of |q [4]|2 (fourth-order
RW), with a = 1.46,c = 1,s0 = 0,s1 = 100,s2 = 0,s3 = 0; the right panel is a density plot of |q [5]|2 (fifth-order RW), with a = 1.5,c = 1,s0 =
0,s1 = 100,s2 = 0,s3 = 0,s4 = 0.
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FIG. 10. (Color online) Triangular pattern of the sixth-order RW. The left panel is the evolution of |q [6]|2 (sixth-order RW) and the right
panel is the corresponding density plot with a = 1.5,c = 1,s0 = 0,s1 = 100,s2 = 0,s3 = 0,s4 = 0,s5 = 0.

FIG. 11. (Color online) Standard circular decomposition of the RW: inner peak surrounded by ring pattern. The left panel is a density
plot of |q [3]|2 (third-order RW) with a = 1.4,c = 1,s0 = 0,s1 = 0,s2 = 1000; the right panel is a density plot of |q [4]|2 (fourth-order RW) with
a = 1.48,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 1000.

FIG. 12. (Color online) Standard circular decomposition of the RW: a ring pattern with inner third-order (left) and fourth-order (right)
fundamental patterns. The left panel is a density plot of |q [5]|2 (fifth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 0,s4 = 100 000;
the right panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 0,s4 = 0,s5 = 100 000 000.
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FIG. 13. (Color online) Standard circular decomposition of the fourth- and fifth-order RWs. The left panel is a density plot of |q [4]|2
(fourth-order RW), with a = 1.45,c = 1,s0 = 0,s1 = 100,s2 = 0,s3 = 10 000 000, which is decomposed into an outer ring with an inner second
triangular pattern; the right panel is a density plot of |q [5]|2(fifth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 100,s2 = 0,s3 = 500 000,s4 =
100 000 000, which is decomposed into an inner peak surrounded by two rings.

This structure is similar to the so-called “wave clusters” as
reported in [50].

Another interesting fact worth mentioning here is that
the profiles of higher-order RW are actually a complicated
combination of above three basic patterns—“fundamental”
pattern, “ring” pattern, and “triangular” pattern—which can
provide further interesting patterns of the RWs. This can
be achieved by suitably selecting the different values of
si . In particular, one can generate multiring structures but
these rings do not possess 2n − 1 peaks and also do not
satisfy the rule of (n − 2)-reduction of order as mentioned
earlier in the case of ring pattern formation. Thus, we call
these formations nonstandard decomposition of the RWs.
Figures 16–20 represent a few examples of this kind of special
ring structures. One common feature, which we observed
from these examples, is the appearance of at least two ring

patterns with the same number of peaks. It should be noted
that the centermost profile of Fig. 18 (left) is a fundamental
pattern of a second-order RW, which clearly shows that Fig. 18
(left) is not a complete decomposition of the sixth-order RW.
On the other hand, Fig. 18 (right) presents the complete
decomposition. To arrive at a better understanding of the
nonstandard decomposition, we provide the distribution of
peaks in Table I. From Fig. 19 (left) the occurrence of two
ring patterns with a single inner peak can also be observed;
however, the inner ring consists of five triangular patterns. So
the distribution of peaks is 5 + 3 × 5 + 1.

In spite of having different structures, all types of RW
solutions possess a certain commonality as follows. The total
number of peaks admitted by nth-order solutions is n(n+1)

2 in
terms of a complete decomposition pattern. These structures
actually depend on the choice of the free parameters. Among

FIG. 14. (Color online) Standard circular decomposition of the fifth- and sixth-order RWs. The left panel is a density plot of |q [5]|2
(fifth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 50,s2 = 0,s3 = 0,s4 = 100 000 000, which is decomposed into a ring pattern with an inner
third triangular pattern; the right panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 0,s4 =
1 000 000,s5 = 100 000 000, which is decomposed into two ring patterns plus an inner second fundamental pattern.
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FIG. 15. (Color online) Standard circular decomposition of the sixth-order RW. The left panel is a density plot of |q [6]|2 (sixth-order
RW), with a = 1.5,c = 1,s0 = 0,s1 = 18,s2 = 0,s3 = 0,s4 = 0,s5 = 100 000 000, which is decomposed into a ring plus an inner fourth-order
triangular pattern; the right panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 7000,s4 = 0,s5 =
10 000 000 which is decomposed into three rings.

FIG. 16. (Color online) Nonstandard circular decomposition of the fourth-order RW: two rings. The left panel is the dynamical evolution
of |q [4]|2 (fourth-order RW) and the right panel is the corresponding density plot with a = 1.48,c = 1,s0 = 0,s1 = 0,s2 = 1000,s3 = 0.

FIG. 17. (Color online) Nonstandard circular decomposition of the fifth-order RWs: two rings plus an inner peak (left) and three rings
(right). The left panel is a density plot of |q [5]|2 (fifth-order RW), with a = 1.45,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 10 000,s4 = 0; the right
panel is a density plot of |q [5]|2 (fifth-order RW), with a = 1.46,c = 1,s0 = 0,s1 = 0,s2 = 1000,s3 = 0,s4 = 0.
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FIG. 18. (Color online) Nonstandard circular decomposition of the sixth-order RW: two ring patterns with an inner second fundamental
pattern (left) and three rings (right). The left panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 =
0,s4 = 10 000 000,s5 = 0; the right panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 15,s2 = 0,s3 = 0,s4 =
10 000 000,s5 = 0.

all parameters, the principle coefficient sn−1 is accountable for
the formation of a ring structure. The first nontrivial coefficient
s1 is responsible for the evolution of a triangular structure.
Furthermore, to see the difference between the RWs of the
complex mKdV and the NLS clearly, we use the first-order
RW [40] of the NLS, i.e.,

q
[1]
NLS = c2 Ã − 32c2[(−x + 2at)2 − 4c2t2] + 8

Ã
,

(40)
Ã = [4c2x2 − 16c2xta + 16t2(c4 + c2a2) + 1]2,

to calculate the contour lines at heights c2 and c2 + 1, and to
calculate the length and width by the same procedure we have
used in complex mKdV. Here the NLS equation is in the form
of

iqt + qxx + 2|q2|q = 0. (41)

Similar to the contour line method of the complex mKdV, we
get the slope of the imaginary axis of the hyperbola formed by
a contour line of the |q[1]

NLS|2 on the background plane with a
height c2:k3cNLS = 2a, the length of the RW

dcLNLS = 1

2c2

√
(−1 + 8c2)(1 + 4a2), (42)

and the width of the RW

dcWNLS =
√

3

c
√

1 + 4a2
. (43)

The dynamical evolution of the first-order RW |q[1]
NLS|2 of the

NLS is plotted in Fig. 21; contour lines at heights c2 and c2 + 1
of the first-order RWs of the complex mKdV and the NLS are
plotted in Fig. 22. These pictures and analytical formulas of
length and width show that, for the first-order RWs of the

FIG. 19. (Color online) Nonstandard circular decomposition of the sixth-order RW: three rings plus an inner peak (left) and three rings
(right). The left panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 10 000,s3 = 0,s4 = 0,s5 = 0; the
right panel is a density plot of |q [6]|2 (sixth-order RW), with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 0,s3 = 1 000 000,s4 = 0,s5 = 100 000 000.
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FIG. 20. (Color online) Nonstandard circular decomposition of the sixth-order RW: three rings. The left panel is the dynamical evolution of
|q [6]|2 (sixth-order RW) and the right panel is the corresponding density plot with a = 1.5,c = 1,s0 = 0,s1 = 0,s2 = 1000,s3 = 1 000 000,s4 =
0,s5 = 100 000 000.

complex mKdV and the NLS, they are very similar to each
other apart from a remarkable tilt with respect to the axes
and a remarkable shortening of length of them with the same
values of a and c. In other words, the inclusion of third-order
dispersion and time-delay correction is responsible for a strong
rotation and a strong compression effects in the first-order RW
of the complex mKdV equation. In particular, if a = 0, |q[1]

NLS|2
is still a RW, but |q[1]|2 of the complex mKdV is a soliton
traveling along l3 which is no longer doubly localized in x and
t directions.

In terms of applications, the investigation of the above
investigated higher-order RW solutions will be useful to
understand the generation of high-power waves and their
possible splitting, etc. As we have discussed earlier, very
recently, using the non-slowly varying envelope approximation
(SVEA), the complex mKdV equation has been derived
and the generation of few-cycle optical pulses have been
reported [42,43]. In addition, it has been pointed out that these
types of few-cycle optical pulses require no phase matching
(a main issue in nonlinear optics), which makes a strong
contrast and provides an interesting aspect when compared
with the longer pulses derived by using the SVEA method.
From these recent studies it is also interesting to note that
these types of few-cycle optical pulses are very similar to the
generation of high-power and very short RW-type ultrashort
pulses. For example, in nonlinear photonic crystal fiber, the
above waves may be connected to the generation of few-cycle
optical pulses which will be useful to realize the so-called
SCG. This type of white light continuum coherence source will
find a range of applications in optical coherence tomography,
optical meteorology, wavelength division multiplexing, flu-

orescence microscopy, flow cytometry, atmospheric sensing,
etc.[1,42,43].

V. CONCLUSIONS

In this paper, we applied the DT to construct the higher-
order RW-type rational solutions as well as the evolution of
RWs for the complex mKdV equation. Based on detailed
numerical and analytical investigations, we classified the
higher-order RWs with respect to their intrinsic structure.
We use the contour line method to define the length and
width of the first-order RW and then provide their analytical
formulas related to two parameters a and c. We illustrate
clearly, by analytical formulas and figures, that the differences
between the first-order RWs of the mKdV and the NLS are
mainly due to strong rotation, as well as strong compression
effects. Furthermore, we observed that there are three principle
types, namely, fundamental pattern, ring pattern, and triangular
pattern. The composition of these three principle patterns is
mainly because of higher-order RWs. We also provided several
further new patterns of the higher-order RWs of this model. The
ring patterns obtained in this paper are similar to the “atom”
structure reported in [50]. This explains the generalization and
evolution of higher-order RWs in terms of the solution. On the
other hand, by changing the free parameters in the DT, we have
also constructed more complicated (and interesting) structures.
We deduced from our stimulated examples in Figs. 16–20
that the nonstandard decomposition deserves further studies
because there are presently unknown rules of the decomposi-
tion. Applying our construction of RW solutions to different
completely integrable NEEs, it is interesting to investigate
some analogs between the evolution and decomposition of

TABLE I. Distribution of peaks on rings by non-standard decomposition,

Order Distributions of peaks on rings (L, left; R, right)

4 5 + 5 (Fig. 12)
5 7 + 7 + 1 (Fig. 13L) 5 + 5 + 5 (Fig. 13R)
6 9 + 9 + 3 (Fig. 14R) 5 + 10 + 5 + 1 (Fig. 15L) 7 + 7 + 7 (Fig. 15R) 11 + 5 + 5 (Fig. 16)
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FIG. 21. (Color online) The first-order RW (|q [1]
NLS|2) of the NLS

with a = 1.5 and c = 1. Panel (a) is the dynamical evolution of |q [1]
NLS|2

and the panel (b) is the corresponding density plot.

higher-order RWs of these different integrable equations. It is
essential to find further conserved quantities for the kind of
solutions. These studies may help us for better understanding
of the occurrence of deep ocean waves with large amplitude
as well as the generation of few-cycle optical pulses emitted
by high-power lasers which are used for the recently invented
SCG sources, etc.

If we compare our results with the work in [38] on the RW
solutions of the complex mKdV, our results have following
advantages and developments.

(i) Our method is considerably simpler as well as more
systematic. From Theorem 3, one can directly obtain
the higher-order RWs without calculating eigenfunc-
tions ψ

[i]
1 and φ

[i]
1 (i = 0,1,2,3) as in [38].

(ii) We applied the contour line method to find the
analytical description of the length and width of
the first-order RW of the complex mKdV and the
NLS equation. We illustrated clearly, using suitable
analytical formulae and figures, that the differences
between the first-order RWs of the mKdV and the NLS
are due to a strong rotation and a strong compression
effects. Note that, setting a = 0, |q[1]|2 reduces to a
soliton on a background plane at height c2, but |q[1]

NLS|2
cannot.

(iii) We proposed and proved a convenient way to control
the patterns and evolutions of the RW by standard and
nonstandard decomposition with suitable choices of
si .

(iv) We generated interesting patterns for fourth-, fifth-,
and sixth-order RWs.

With respect to the future research in this exciting area, we
shall apply the contour line method to the first-order RW of
the different NLS-type equations. For the higher-order RWs,
because the degree of polynomials in its explicit form is more
than 4, it is not easy to get the analytical expressions of the
asymptotes for its contour lines in general. Thus, how to get
the analytical results on their length and width is an interesting,
difficult, and important problem, which deserves further study.

FIG. 22. (Color online) Contour lines of the first-order RW of the complex mKdV (|q [1]|2, red solid lines) and NLS (|q [1]
NLS|2, green dashed

lines), with a = 1.5 and c = 1. The left panel is plotted at height c2 (on the asymptotical plane); the right panel is plotted at height c2 + 1. Two
lines have two common pints: (0,0.50),(0, −0.50) in the left panel and (0,0.41),(0, − 0.41) in the right panel.
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APPENDIX A

In Eq. (28), L1 are L2 are given by

B := 2 239 488a4c14t6 + 46 656a12c6t6 + 2 985 984c18t6 + 559 872a8c10t6 + 746 496a6c10t5x + 93 312a10c6t5x

− 1 492 992a4c12t5x − 186 624a8c8t5x + 1492 992a2c14t5x − 2 985 984c16t5x + 1 244 160c14t4x2 − 248 832a6c8t4x2

− 995 328a2c12t4x2 + 622 080a4c10t4x2 + 77 760a8c6t4x2 − 276 480c12t3x3 + 34 560a6c6t3x3 − 124 416a4c8t3x3

+ 248 832a2c10t3x3 + 34 560c10t2x4 + 8640a4c6t2x4 − 27 648a2c8t2x4 + 1152a2c6tx5 − 2304c8tx5 + 64c6x6

− 331 776c6a6t4 − 518 400c12t4 + 155 520c8a4t4 − 11 664c4a8t4 + 290 304c10t3x − 15 552c4a6t3x + 103 680c8a2t3x

− 176 256c6a4t3x − 58 752c8t2x2 − 6912c6a2t2x2 − 7776c4a4t2x2 + 4992c6tx3 − 1728c4a2tx3 − 144c4x4

+ 124 416ac10s1t
3 + 31 104a5c6s1t

3 − 165 888a3c8s1t
3 + 20 736a3c6s1t

2x − 41 472ac8s1t
2x + 3456ac6s1tx

2

− 18 000c6t2 − 1620c2a4t2 − 1080c2a2tx + 5 616c4tx − 180c2x2 + 864c4as1t + 144c4s2
1 + 45 + i(2 985 984ac14t5

+ 1 492 992a5c10t5 + 186 624a9c6t5 − 497 664a5c8t4x + 995 328a3c10t4x − 1 990 656ac12t4x + 248 832a7c6t4x

− 331 776a3c8t3x2 + 124 416a5c6t3x2 + 497 664ac10t3x2 − 55 296ac8t2x3 + 27 648a3c6t2x3 + 2304ac6tx4

+ 207 360c8at3 − 31 104c4a5t3 − 13 824c6at2x − 20 736c4a3t2x − 3456c4atx2 + 20 736c8s1t
2 − 41 472a2c6s1t

2

+ 5184a4c4s1t
2 + 3456a2c4s1tx − 6912c6s1tx + 576c4s1x

2 − 2 160ac2t + 144s1c
2)

and

C := 2 239 488a4c14t6 + 2 985 984c18t6 + 46 656a12c6t6 + 559 872a8c10t6 + 746 496a6c10t5x − 1 492 992a4c12t5x

− 186 624a8c8t5x − 2 985 984c16t5x + 93 312a10c6t5x + 1 492 992a2c14t5x + 1 244 160c14t4x2 − 995 328a2c12t4x2

+ 622 080a4c10t4x2 + 77 760a8c6t4x2 − 248 832a6c8t4x2 + 248 832a2c10t3x3 + 34 560a6c6t3x3 − 124 416a4c8t3x3

− 276 480c12t3x3 − 27 648a2c8t2x4 + 8640a4c6t2x4 + 34 560c10t2x4 − 2304c8tx5 + 1 152a2c6tx5 + 64c6x6

+ 995 328c10a2t4 + 279 936c8a4t4 − 82 944c6a6t4 + 3888c4a8t4 − 269 568c12t4 + 124 416c10t3x + 5184c4a6t3x

− 51 840c6a4t3x − 145 152c8a2t3x − 17 280c8t2x2 − 6912c6a2t2x2 + 2592c4a4t2x2 + 384c6tx3 + 576c4a2tx3

+ 48c4x4 − 165 888a3c8s1t
3 + 124 416ac10s1t

3 + 31 104a5c6s1t
3 + 20 736a3c6s1t

2x − 41 472ac8s1t
2x + 3456ac6s1tx

2

+ 20 016c6t2 + 972c2a4t2 + 6912c4a2t2 + 648c2a2tx − 2448c4tx + 108c2x2 − 2592c4as1t + 144c4s2
1 + 9.

APPENDIX B

In Eq. (29), L1 are L2 are given by

L1 := −4 939 273 445 868 140 625t12 − 545 023 276 785 450 000t11x − 388 407 392 651 700 000t10x2

− 34 025 850 934 560 000t9x3 − 12 374 529 519 456 000t8x4 − 841 946 352 721 920t7x5

− 204 871 837 925 376t6x6 − 10 322 713 903 104t5x7 − 1 860 148 592 640t4x8 − 62 710 087 680t3x9

− 8 776 581 120t2x10 − 150 994 944tx11 − 16 777 216x12 + 2 300 237 292 280 725 000t10

+ 500 080 291 038 360 000t9x + 178 207 653 254 544 000t8x2 + 20 160 748 631 347 200t7x3

+ 4 231 975 119 851 520t6x4 + 253 682 249 269 248t5x5 + 40 317 552 230 400t4x6 + 880 347 709 440t3x7

+ 141 203 865 600t2x8 − 1 447 034 880tx9 + 75 497 472x10 + 257 120 426 548 112 400t8

− 88 521 031 030 049 280t7x − 1 841 385 225 323 520t6x2 − 617 799 343 104 000t5x3

− 88 747 774 156 800t4x4 − 8 252 622 766 080t3x5 − 200 693 514 240t2x6 + 1 415 577 600tx7

+ 235 929 600x8 + 12 647 412 412 496 640t6 + 42 148 769 126 400t5x − 2 996 161 228 800t4x2
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− 15 902 996 889 600t3x3 + 313 860 096 000t2x4 − 8 139 571 200tx5 + 707 788 800x6

− 149 676 507 590 400t4 + 2 148 738 969 600t3x − 1 622 998 425 600t2x2 + 31 186 944 000t3x

− 928 972 800x4 − 95 215 564 800t2 + 21 598 617 600tx − 464 486 400x2 + 58 060 800

+ i(−6 540 279 321 425 400 000t11 − 601 404 995 073 600 000t10x − 423 057 306 879 360 000t9x2

− 29 901 007 761 408 000t8x3 − 10 648 770 814 771 200t7x4 − 552 411 244 265 472t6x5

− 130 559 642 173 440t5x6 − 4 494 741 995 520t4x7 − 779 700 142 080t3x8 − 13 589 544 960t2x9

− 1 811 939 328tx10 − 303 419 904 173 280 000t9 + 263 517 097 430 016 000t8x

+ 29 562 711 599 923 200t7x2 + 7 820 253 397 647 360t6x3 + 799 710 056 939 520t5x4

+ 58 500 443 013 120t4x5 + 5 243 865 661 440t3x6 + 40 768 634 880t2x7 + 6 794 772 480tx8

+ 10 822 374 648 023 040t7 − 15 805 156 998 758 400t6x − 366 298 181 959 680t5x2

+ 157 459 297 075 200t4x3 − 6 736 379 904 000t3x4 − 249 707 888 640t2x5 + 16 986 931 200tx6

+ 2 321 279 745 269 760t5 − 164 322 282 700 800t4x + 7 849 554 739 200t3x2 − 700 710 912 000t2x3

+ 38 220 595 200tx4 + 4 992 863 846 400t3 − 967 458 816 000t2x − 33 443 020 800tx2 − 8 360 755 200t)

L2 := 4 939 273 445 868 140 625t12 + 545 023 276 785 450 000t11x + 388 407 392 651 700 000t10x2

+ 34 025 850 934 560 000t9x3 + 12 374 529 519 456 000t8x4 + 841 946 352 721 920t7x5

+ 204 871 837 925 376t6x6 + 10 322 713 903 104t5x7 + 1 860 148 592 640t4x8

+ 62 710 087 680t3x9 + 8 776 581 120t2x10 + 150 994 944tx11 + 16 777 216x12

+ 1 671 541 529 351 175 000t10 − 201 221 180 459 640 000t9x + 29 583 374 214 960 000t8x2

− 8 646 206 984 294 400t7x3 − 205 872 145 551 360t6x4 − 102 185 078 390 784t5x5

− 5 361 951 375 360t4x6 − 141 416 202 240t3x7 − 16 349 921 280t2x8 + 2 202 009 600tx9

+ 25 165 824x10 + 214 192 109 547 903 600t8 + 4 346 367 735 790 080t7x

+ 3 783 154 346 910 720t6x2 − 1 075 635 551 969 280t5x3 + 40 942 170 316 800t4x4

+ 1 840 480 911 360t3x5 + 84 333 035 520t2x6 + 849 346 560tx7 + 141 557 760x8

+ 3 537 485 306 138 880t6 + 789 853 361 080 320t5x + 130 057 245 388 800t4x2

− 11 222 478 028 800t3x3 + 402 245 222 400t2x4 − 4 034 396 160tx5 + 613 416 960x6

+ 90 779 142 700 800t4 − 6 216 180 019 200t3x − 269 186 457 600t2x2 + 11 988 172 800tx3

+ 221 184 000x4 + 213 178 521 600t2 − 5 009 817 600tx + 199 065 600x2 + 8 294 400.
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