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Nonautonomous matter waves in a spin-1 Bose-Einstein condensate
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To investigate nonautonomous matter waves with time-dependent modulation in a one-dimensional trapped
spin-1 Bose-Einstein condensate, we hereby work on the generalized three-coupled Gross-Pitaevskii equations
by means of the Hirota bilinear method. By modulating the external trap potential, atom gain or loss, and coupling
coefficients, we can obtain several nonautonomous matter-wave solitons and rogue waves including “bright” and
“dark” shapes and arrive at the following conclusions: (i) the external trap potential and atom gain or loss can
influence the propagation of matter-wave solitons and the duration and frequency of bound solitonic interaction,
but they have little effect on the head-on solitonic interaction; (ii) through numerical simulation, stable evolution
of the matter-wave solitons is realized with a perturbation of 5% initial random noise, and the spin-exchange
interaction of atoms can be affected by the time-dependent modulation; (iii) under the influence of a periodically
modulated trap potential and periodic atom gain or loss, rogue waves can emerge in the superposition of localized
character and periodic oscillating properties.
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I. INTRODUCTION

As a phenomenon existing in condensed matter, atomic,
nuclear, and particle physics [1], the Bose-Einstein condensate
(BEC) has been observed in a vapor of rubidium-87 atoms
confined by a magnetic field [2] and also has been produced
in certain atomic gases such as of sodium, lithium, hydrogen,
helium, and potassium atoms [3–7]. In magnetic traps, the
atoms that carry spins still behave like scalar particles, because
the spin degree of freedom is constrained [1–8].

Since a sodium atom BEC has been confined in an optical
dipole trap, restrictions of magnetic traps can be eliminated [8].
In contrast with magnetic traps, the spin of atoms is proven to
be free in optical traps [8–11]. Therefore, we can investigate
the spinor properties of such a BEC, including its ground-state
structures with interaction parameters and the spin waves and
vortices in the condensed atomic gas [9–11]. For instance, in
the spin-1 atomic BEC, the energetic and dynamic stabilities
of coreless vortices trapped with a three-dimensional optical
potential and a Ioffe-Pritchard field have been studied [12].
Homogeneous stationary states with their existence, bifurca-
tions, and energy spectra in the spin-1 BEC have been analyzed
[13]. In addition, production of matter-wave solitons in the
BEC of lithium atoms have been reported, while propagation
and interaction of the solitons have been observed [14,15].

The spin-1 BEC can be described via a macroscopic
wave function � = (�1, �0, �−1)T with three components,
�j (j = −1, 0, 1), and the mean-field Hamiltonian can be
written as [9–11,16,17]

H =
∫

dr

{
1∑

j=−1

�∗
j

[
− �

2

2M
∇2 + Utrap(r)

]
�j

+ c0

2
n2

0 + c2

2
|F|2

}
, (1)
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where the superscript T denotes the transpose, ∗ denotes the
complex conjugate, ∇2 is the Laplacian, � is the reduced
Planck constant, r is the relative space coordinate vector
including three components x̂, ŷ, and ẑ, M is the atomic mass,
Utrap(r) stands for the external trap potential, the particle den-
sity is n0 = |�1|2 + |�0|2 + |�−1|2, the spin density vector
is F = (F x̂, F ŷ, F ẑ) defined by Fϑ = ∑1

j1, j2=−1�
∗
j1
f ϑ

j1j2
�j2

with f ϑ
j1j2

represented as the element at the j1-th row and j2-th
column of the spin-1 rotational matrix f ϑ (ϑ = x̂, ŷ, or ẑ),
and the coupling constants c0 = (g0 + 2 g2)/3 and c2 = (g2 −
g0)/3 denote the mean-field and spin-exchange interaction,
with gF related to the corresponding s-wave scattering length
aF of the total hyperfine spin F = 0, 2 channels as gF =
4π�

2aF/M [11,17,18]. Deduced from a variational principle
i � ∂t ′�j = δH/δ�∗

j [11,17,18], the evolution of spinor wave
functions in the quasi-one-dimensional spin-1 BEC with
the external potential Utrap(r) = 0 can be expressed as the
following coupled nonlinear Gross-Pitaevskii (GP) equations
[11,17,18]:

i � ∂t ′�1 = − �
2

2M
∂2
x ′�1 + (c0 + c2) (|�1|2 + |�0|2) �1

+ (c0 − c2) |�−1|2�1 + c2�
2
0 �∗

−1, (2a)

i � ∂t ′�0 = − �
2

2M
∂2
x ′�0 + (c0 + c2) (|�1|2 + |�−1|2) �0

+ c0 |�0|2�0 + 2 c2�1�−1�
∗
0 , (2b)

i � ∂t ′�−1 = − �
2

2M
∂2
x ′�−1 + (c0 + c2) (|�0|2 + |�−1|2) �−1

+ (c0 − c2) |�1|2�−1 + c2�
2
0 �∗

1 , (2c)

where δ denotes the functional derivative, i is the imaginary
unit, x ′ and t ′ are the scaled space and time coordinates, while
the one-dimensional coupling constants are c0 = (g0 + 2g2)/3
and c2 = (g2 − g0)/3, with the modified gF represented
as [11,17,18]

gF = 4 �
2aF

Ma2
⊥

1

1 − C(aF/a⊥)
, F = 0, 2, (3)
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C = −ζ (1/2) ≈ 1.46, ζ as the Riemann zeta function, and a⊥ as the size of the ground state in relative transverse motion
[11,17,18]. For the dynamic properties of Eqs. (2), an integrable case has been proposed with the coupling constants c0 = c2 ≡
−κ < 0 [18–20]. Through the transformations � = (�1, �0, �−1)T → (ψ1,

√
2 ψ0, ψ−1)T , t = κ t ′/�, and x = x ′ √2Mκ/�,

Eqs. (2) can be rewritten in dimensionless forms as [18–21]

i ψ1, t + ψ1, xx + 2 (|ψ1|2 + 2 |ψ0|2) ψ1 + 2 ψ2
0 ψ∗

−1 = 0, (4a)

i ψ0, t + ψ0, xx + 2 (|ψ1|2 + |ψ0|2 + |ψ−1|2) ψ0 + 2 ψ1ψ−1ψ
∗
0 = 0, (4b)

i ψ−1, t + ψ−1, xx + 2 (|ψ−1|2 + 2 |ψ0|2) ψ−1 + 2 ψ2
0 ψ∗

1 = 0, (4c)

where ψj (j = −1, 0, 1) are the three components of the
relative wave function � with the scaled space coordinate
x and time t . By means of the Hirota bilinear method
and Darboux transformation, multisoliton and rogue-wave
solutions of Eqs. (4) have been derived [18,20,21], and
the interaction between the polar and ferromagnetic solitons
without the effect of the external trap potential has also been
illustrated [18,20].

From the experiments of two-body interactions in BECs,
a tunable resonance structure, called the Feshbach reso-
nance, has been observed in the cross sections for elastic
and inelastic interactions of ultracold atoms [22–30]. The
Feshbach resonance occurs when the energy of a molecular
(quasi-)bound state is tuned to the energy of two interacting
atoms with an external field, which leads to the observed
modification of the atomic scattering length and provides
remarkable opportunities for the study of nonautonomous
matter waves in the BEC with tuned interatomic interaction
[22–30]. Nonautonomous matter waves subjected to a certain
external time-dependent force have several features that differ
from those of classical matter waves in an autonomous system,
which extend the concept of matter waves and have been
investigated in nonspin BEC [31–41]. In this paper, we will
focus our attention on the properties of nonautonomous matter
waves in trapped spin-1 BECs by tuning the interatomic
interaction near the Feshbach resonance. Thus, we consider
the generalized nonautonomous system

i ψ1, t = −ψ1, xx + [Utrap(x, t) + i 
(t)]ψ1

+ [
A

(1)
1 (t) |ψ1|2 + A

(1)
0 (t) |ψ0|2 + A

(1)
−1(t) |ψ−1|2

]
ψ1

+C1(t) ψ2
0 ψ∗

−1, (5a)

i ψ0, t = −ψ0, xx + [Utrap(x, t) + i 
(t)]ψ0

+ [
A

(0)
1 (t) |ψ1|2 + A

(0)
0 (t) |ψ0|2 + A

(0)
−1(t) |ψ−1|2

]
ψ0

+C0(t) ψ1 ψ−1 ψ∗
0 , (5b)

i ψ−1, t = −ψ−1, xx + [Utrap(x, t) + i 
(t)]ψ−1

+ [
A

(−1)
1 (t) |ψ1|2 + A

(−1)
0 (t) |ψ0|2

+A
(−1)
−1 (t) |ψ−1|2

]
ψ−1 + C−1(t) ψ2

0 ψ∗
1 , (5c)

which is the mean-field approximation for the dynamics of
the one-dimensional trapped spin-1 BEC. Here Utrap(x, t)
represents the time-dependent external trap potential [31–37],
the time-dependent gain or loss term 
(t) corresponds to the
mechanism of loading external atoms into the BEC through
optical pumping or depleting atoms from the BEC continu-
ously [31–34,42], and the coupling coefficients A

(j1)
j2

(t) and

Cj1 (t) (j1, j2 = −1, 0, 1) are related to the atomic scattering
length, which can vary if one tunes the interatomic interaction
near the Feshbach resonance [31–37]. There are three special
cases of Eqs. (5) that should be mentioned:

(i) When U (t) = 
(t) = A
(1)
−1(t) = A

(−1)
1 (t) = 0, A

(1)
1 (t) =

A
(0)
1 (t)=A

(0)
0 (t)=A

(0)
−1(t)=A

(−1)
−1 (t)= − 2, A

(1)
0 (t)=A

(−1)
0 (t) =

−4, and C1(t) = C0(t) = C−1(t) = −2, Eqs. (5) can be re-
duced to the autonomous system, i.e., Eqs. (4) [18–21].

(ii) When ψ0 = 0, Eqs. (5) can be reduced to two-coupled
GP equations in the two-component trapped BEC including the
time-dependent gain or loss [31–33]. The bright-soliton and
dark-soliton solutions of the two coupled GP equations have
been calculated under the influence of several time-dependent
external potentials [31–33].

(iii) When ψ0 = 0 and ψ1 = ψ−1, Eqs. (5) can be reduced
to the single GP equation that represents the dynamics of
one mean-field wave function in the nonspin BEC [34–41].
The Darboux transformation and rogue-wave solutions of the
single GP equation have been derived [38–41]. By modulating
the time-dependent harmonic oscillator potential, the nonau-
tonomous matter-wave solitons, which interact elastically
and propagate with varying amplitudes, speeds, and spectra,
have been described [35], and the parametric resonance for
solitons has been investigated through numerical simulation
[36]. By means of analytical and numerical methods, the
features of nonautonomous matter-wave solitons near the
Feshbach resonance have been revealed under the effect of
time-dependent nonlinearity and external trap potential [37].

However, to our knowledge, the nonautonomous matter
waves of Eqs. (5) with the time-dependent external trap poten-
tial Utrap(x, t) and gain or loss term 
(t) in the spin-1 BEC have
not been widespread as yet. In Sec. II, under some constraints
of the variable coefficients that will be derived, Eqs. (5)
will be bilinearized through an introduced auxiliary function.
Based on the bilinear forms, one- and two-soliton solutions
will be derived. Through the different parameters chosen in
Sec. III, propagation and interaction of the nonautonomous
matter-wave solitons from Eqs. (5) will be illustrated and
analyzed under the respective effects of such external trap
potentials as the expulsive potential, periodically modulated
trap potential, and kink-like-modulated trap potential. In
Sec. IV, we will perform numerical simulation to show that
the evolution of nonautonomous matter-wave solitons can be
stable with a perturbation of 5% random noise via some chosen
initial conditions. The spin-exchange interaction of atoms,
which is related to the interaction of matter-wave solitons, will
also be investigated. In addition, under the same constraints
derived in Sec. II, rogue-wave-like solutions of Eqs. (5)
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will be obtained in Sec. V; these describe the dynamics of
nonautonomous rogue waves, i.e., the rogue waves formed by
the accumulation of energy and atoms toward their central part
and simultaneously affected by time-dependent nonlinearity
and external trap potential [40,41]. Finally, Sec. VI will present
our conclusions.

II. BILINEAR FORMS AND SOLITON
SOLUTIONS OF EQS. (5)

Particularly, we will, in line with Refs. [31–41], choose the
harmonic-like trap potential as

Utrap(x, t) = U (t) x2 (6)

to investigate the effect of external trap potential on the
propagation and interaction of the matter-wave solitons. To get
the bilinear forms of Eqs. (5), we will present the following
constraints on the variable coefficients:

A
(1)
1 (t) = A

(0)
1 (t) = A

(−1)
1 (t) + C−1(t) = A1(t), (7a)

A
(1)
0 (t) = A

(0)
0 (t) + C0(t) = A

(−1)
0 (t) = A0(t), (7b)

A
(1)
−1(t) + C1(t) = A

(0)
−1(t) = A

(−1)
−1 (t) = A−1(t), (7c)

U (t) = −
(t)2 − 1

2

d 
(t)

dt
. (7d)

Through the dependent-variable transformations

ψj = Gj

F
e

1
2 
(t)x2i , j = −1, 0, 1, (8)

with the real function F and complex functions
Gj (j = −1, 0, 1) of x and t , we can derive the bilinear forms
of Eqs. (5):

iDt Gj · F + 2 i x 
(t)Dx Gj · F + D2
x Gj · F

= (−1)j+1 Cj (t) S G∗
−j , j = −1, 0, 1, (9a)

D2
x F · F = −

1∑
j=−1

Aj (t) |Gj |2, (9b)

G2
0 − G1G−1 = SF, (9c)

by means of an introduced auxiliary function S, and D is the
bilinear operator defined as [43]

Dm
x a(x) · b(x) = ∂m

∂x̃m
a(x + x̃) b(x − x̃)

∣∣∣∣
x̃=0

, (10a)

Dn
t a(t) · b(t) = ∂n

∂t̃n
a(t + t̃) b(t − t̃)

∣∣∣∣̃
t=0

, (10b)

where m and n are positive integers, a and b are functions
of x and t , while x̃ and t̃ stand for the small increments. To
obtain some analytic solutions of Eqs. (5), we present the other
constraints:

A1(t) = C−1(t) = α1 e−4
∫


(t)dt , (11a)

A0(t) = 2 C0(t) = α0 e−4
∫


(t)dt , (11b)

A−1(t) = C1(t) = α−1 e−4
∫


(t)dt , (11c)

where the αj (j = −1, 0, 1) are real parameters. Constraints
(7) and (11) indicate the important interconnections of time-
dependent nonlinearity and external trap potential and form a
sufficient condition which theoretically ensures the existence
of nonautonomous matter-wave solintons and rogue waves in
the trapped spin-1 BEC. Based on constraints (7) and (11),
we can derive one-soliton, two-soliton, and rogue-wave-like
solutions below.

First, we expand Gj , F , and S in power series of a small
parameter ε as [43]

Gj = g
(j )
1 ε + g

(j )
3 ε3 + g

(j )
5 ε5 + · · · , j = −1, 0, 1, (12a)

F = 1 + f2 ε2 + f4 ε4 + f6 ε6 + · · · , (12b)

S = s2 ε2 + s4 ε4 + s6 ε6 + · · · , (12c)

where g
(j )
m (j = −1, 0, 1,m = 1, 3, 5, . . .), fn, and sn (n =

2, 4, 6, . . .) are functions of x and t to be determined.
Substituting expressions (12) into bilinear forms (9) and
collecting the coefficients of ε with the same power, we derive
the following cases:

Case 1:

Gj = β
(j )
1 eη1 + c

(j )
11 e2η1+η∗

1 , j = −1, 0, 1, (13a)

F = 1 + b11 eη1+η∗
1 + d11 e2η1+2η∗

1 , (13b)

S = �1 e2η1 ; (13c)

Case 2:

Gj =
2∑

m=1

β(j )
m eηm +

2∑
m=1

2∑
n=1

c(j )
mne

2ηm+η∗
n

+
2∑

m=1

[
β

(j )
2 b1m + β

(j )
1 b2m + c(j )

m

]
eηm+η∗

m+η3−m

+
2∑

m=1

2∑
n=1

l(j )
mne

2ηm+2η∗
n+η3−m

+
2∑

m=1

l(j )
m eηm+η∗

m+2η3−m+η∗
3−m

+
2∑

m=1

p(j )
m e2ηm+2η∗

m+2η3−m+η∗
3−m,

j = −1, 0, 1, (14a)

F = 1 +
2∑

m=1

2∑
n=1

bmn eηm+η∗
n +

2∑
m=1

2∑
n=1

dmn e2ηm+2η∗
n

+
2∑

m=1

(
dm e2ηm+η∗

m+η∗
3−m + d∗

m e2η∗
m+ηm+η3−m

)

+
2∑

m=1

2∑
n=1

qmn e2ηm+2η∗
n+η3−m+η∗

3−n

+ (b11 b22 + b12 b21 + d0) eη1+η∗
1+η2+η∗

2

+ q0 e2η1+2η∗
1+2η2+2η∗

2 , (14b)
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FIG. 1. (Color online) Head-on interaction between the two solitons formed by |ψj |2 (j = 1,0,−1) via expressions (8) and (14) with the pa-
rameters 
(t) = ρ1 tanh(2ρ1t), τ1 = 0.8 + 0.4i, τ2 = 0.5 − 0.6i, β

(1)
1 = 0.4, β

(0)
1 = 0.5, β

(−1)
1 = 0.5, β

(1)
2 = 0.4, β

(0)
2 = 0.5, β

(−1)
2 = 0.625,

α1 = α−1 = −1, w
(0)
1 = w

(0)
2 = 0, and ρ1 = 0.15.

S = �1 e2η1 + �2 e2η2 + [�(0, 0) − �(1,−1)] eη1+η2

+
2∑

m=1

2∑
n=1

hmn eηm+η∗
n+2η3−m +

2∑
m=1

hm e2ηm+2η∗
m+2η3−m

+h0 e2η1+η∗
1+2η2+η∗

2 , (14c)

where

α2
0 − 4 α1 α−1 = 0, (15)

�m = (
β(0)

m

)2 − β(1)
m β(−1)

m ,

ηm = km(t) x + i wm(t),

km(t) = τm e−2
∫


(t)dt ,

wm(t) =
∫

τ 2
m e−4

∫

(t)dtdt + w(0)

m , m = 1, 2, (16)

β
(j )
m , w(0)

m , and τm (j = −1, 0, 1,m = 1, 2) are complex param-
eters, and the expressions of other quantities above are given
in the Appendix due to their lengths. Through transformations
(8), expressions (13) and (14) correspond to the one- and
two-soliton solutions of Eqs. (5).

III. PROPAGATION AND INTERACTION OF THE
MATTER-WAVE SOLITONS UNDER EXTERNAL

TRAP POTENTIALS

From the soliton solutions in Sec. II, we can derive
the velocities Ṽm (m = 1, 2) and characteristic lines for the

matter-wave solitons as [44,45]

Ṽm = 2 x 
(t) + (τm − τ ∗
m) e−2

∫

(t)dt ,

x e−2
∫


(t)dt − (τm − τ ∗
m)

∫
e−4

∫

(t)dtdt + c̃m

τm + τ ∗
m

= 0,

m = 1, 2, (17)

where c̃m (m = 1, 2) are the real parameters related to the
amplitudes of the relevant matter-wave solitons. Then we will
analyze the propagation and interaction of the matter-wave
solitons under the respective effects of an expulsive potential,
a periodically modulated trap potential, and a kink-like-
modulated trap potential as follows.

A. Expulsive potential

For the expulsive parabolic trap potential, i.e., U (t) = −ρ2
1

with ρ1 a real constant, we can deduce a certain condition

(t) = ρ1 tanh(2ρ1t) that the time-dependent gain or loss
term meets, and under which the characteristic lines can be
written as

x sech(2ρ1t) − τm − τ ∗
m

2ρ1
tanh(2ρ1t) + c̃m

τm + τ ∗
m

= 0,

m = 1, 2. (18)

From expressions (18), it is seen that the propagation directions
of the matter-wave solitons can be affected by the parameter
ρ1 related to the expulsive potential. As shown in Figs. 1 and
2, one soliton in the polar state (�1 
= 0) and the other in the

FIG. 2. (Color online) Bound interaction between the two solitons formed by |ψj |2 (j = 1,0,−1) via expressions (8) and (14) with the pa-
rameters 
(t) = ρ1 tanh(2ρ1t), τ1 = 1, τ2 = 0.8, β

(1)
1 = 0.4, β

(0)
1 = 0.6, β

(−1)
1 = 0.5, β

(1)
2 = 0.5, β

(0)
2 = 0.4, β

(−1)
2 = 0.32, α1 = α−1 = −1,

w
(0)
1 = w

(0)
2 = 0, and ρ1 = 0.03.
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FIG. 3. (Color online) Density plots of the bound interaction between two solitons formed by |ψ1|2 via expressions (8) and (14) with the
parameters 
(t) = ρ1 tanh(2ρ1t), τ1 = 0.8, τ2 = 1, β

(1)
1 = β

(1)
2 = 0.5, β

(0)
1 = β

(0)
2 = 0.4, β

(−1)
1 = β

(−1)
2 = 0.3, α1 = α−1 = −1, and w

(0)
1 =

w
(0)
2 = 0. (a) ρ1 = 0; (b) ρ1 = 0.03; (c) ρ1 = 0.06.

ferromagnetic state (�2 = 0) [18,20] propagate under the con-
trol of the expulsive potential. In Fig. 1, the two solitons have a
head-on interaction; the interaction between adjacent solitons
is presented in Fig. 2. Furthermore, we find that the expulsive
potential affects the interaction between adjacent solitons. By
taking one component ψ1 as an example, a detailed comparison
is performed in Fig. 3 via different choices of parameter ρ1.
Thereinto, Fig. 3(a) shows the bound interaction between
two polar solitons that propagate nearly parallel without an
external trap potential. When ρ1 increases in Figs. 3(b) and
3(c), the range of solitonic interaction becomes smaller, with
the expulsive potential intensifying, and the solitons propagate,
respectively, in the confinement of the trap potential.

B. Periodically modulated trap potential

When

U (t) = ρ2w̃ cos(w̃t + θ0) + ρ2
2 [cos(2w̃t + 2θ0) − 1 + w̃]

2 [1 + ρ2 cos(w̃t + θ0)]2
,


(t) = − ρ2 sin(w̃t + θ0)

1 + ρ2 cos(w̃t + θ0)
, (19)

we can perform propagation and interaction of the matter-
wave solitons under a periodically modulated trap potential,

where |ρ2| < 1, w̃, and θ0 are, respectively, the amplitude,
frequency, and starting phase of the modulation. To get explicit
expressions for the characteristic lines, we take w̃ = 2 and
θ0 = 0 for simplicity and derive

x

1 + ρ2 cos(2t)

+ (τm − τ ∗
m)

{(
ρ2

2 − 1
)− 3

2 arctanh

[(
ρ2 − 1

ρ2 + 1

) 1
2

tan(t)

]

− ρ2 sin(2t)

2
(
ρ2

2 − 1
)

[1 + ρ2 cos(2t)]

}
+ c̃m

τm + τ ∗
m

= 0,

m = 1, 2. (20)

It is noted that the singular points exist in the characteristic
lines if the imaginary parts of the τm (m = 1, 2) are nonzero.
Thus, we illustrate the bound interaction between the polar
and ferromagnetic solitons with real τm (m = 1, 2) in Fig. 4
and contrast the polar-polar solitonic interaction of one
component ψ1 via different ρ2 values in Fig. 5. By comparison,
we find that, besides the propagation path, the period of
solitonic interaction can be modulated through the periodic
trap potential.

FIG. 4. (Color online) Bound interaction between the two solitons formed by |ψj |2 (j = 1,0,−1) via expressions (8) and (14) with
the parameters 
(t) = −ρ2 sin(wt + θ0)/[1 + ρ2 cos(wt + θ0)], τ1 = 1.2, τ2 = 1, β

(1)
1 = 0.6, β

(0)
1 = 0.5, β

(−1)
1 = 0.3, β

(1)
2 = 0.8, β

(0)
2 = 0.5,

β
(−1)
2 = 0.3125, α1 = α−1 = −1, w

(0)
1 = w

(0)
2 = 0, w̃ = 2, θ0 = 0, and ρ2 = 0.8.
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FIG. 5. (Color online) Density plots of the bound interaction between two solitons formed by |ψ1|2 via expressions (8) and (14) with
the parameters 
(t) = −ρ2 sin(wt + θ0)/[1 + ρ2 cos(wt + θ0)], τ1 = 1.2, τ2 = 1, β

(1)
1 = 0.6, β

(0)
1 = 0.5, β

(−1)
1 = 0.3, β

(1)
2 = 0.8, β

(0)
2 = 0.5,

β
(−1)
2 = 0.3, α1 = α−1 = −1, w

(0)
1 = w

(0)
2 = 0, w̃ = 2, and θ0 = 0. (a) ρ2 = 0; (b) ρ2 = 0.45; (c) ρ2 = 0.9.

FIG. 6. (Color online) Head-on interaction between the two solitons formed by |ψj |2 (j = 1,0,−1) via expressions (8) and (14) with the
parameters 
(t) = ρ3[1+tanh(2ρ3t)], τ1 = 0.4 + 0.3i, τ2 = 0.5−0.2i, β

(1)
1 = 0.3, β

(0)
1 = 0.4, β

(−1)
1 = 0.5, β

(1)
2 = 0.8, β

(0)
2 = 1, β

(−1)
2 = 1.25,

α1 = α−1 = −1, w
(0)
1 = w

(0)
2 = 0, and ρ3 = 0.1.

FIG. 7. (Color online) Bound interaction between the two solitons formed by |ψj |2 (j=1,0,−1) via expressions (8) and (14) with the
parameters 
(t) = ρ3[1 + tanh(2ρ3t)], τ1 = 1.2, τ2 = 1, β

(1)
1 = 0.6, β

(0)
1 = 0.5, β

(−1)
1 = 0.3, β

(1)
2 = 0.8, β

(0)
2 = 0.5, β

(−1)
2 = 0.3125, α1 =

α−1 = −1,w
(0)
1 = w

(0)
2 = 0, and ρ3 = 0.1.
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C. Kink-like-modulated trap potential

Next, we set U (t) = −2ρ2
3 [1 + tanh(2ρ3t)], which corre-

sponds to a kink-like-modulated trap potential with a gain or
loss term of 
(t) = ρ3[1 + tanh(2ρ3t)]. Under that condition,
the matter-wave solitons can keep their initial states until the
external trap potential begins to take effect near t = 0, and the
characteristic lines can be expressed as

2x

1 + e4ρ3t
+ (τm − τ ∗

m)

×
[

1

ρ3
ln(1 + e4ρ3t ) − 1

ρ3(1 + e4ρ3t )
− 4t

]
+ c̃m

τm + τ ∗
m

= 0,

m = 1, 2. (21)

With the propagation path chosen via expression (21), the
head-on interaction and bound interaction between a polar
soliton and a ferromagnetic soliton are shown in Figs. 6
and 7, respectively. To get more details about the influence
of the trap potential, we take the component ψ1 and plot
(in Fig. 8) the polar-polar solitonic interaction in three cases
for ρ3 = 0, ρ3 = 0.02, and ρ3 = 0.04. As ρ3 increases, the
period of solitonic interaction becomes short and the solitons
separate from each other earlier. Under the constraint of an
external trap potential, the solitons can propagate along their
own paths and their interaction seems to be nearly eliminated
after a period of time.

IV. NUMERICAL SIMULATION

By means of the time-splitting spectral method, which has
been used to study coupled GP equations for spinor BECs
[46–48], we numerically study the dynamic stability of the
matter-wave solitons of Eqs. (5) under the condition of an
expulsive potential and a constant gain or loss term. In the finite
computational region x ∈ [xmin,xmax] with periodic boundary
condition ψj (xmin,t) = ψj (xmax,t), we choose a spatial mesh
size �x > 0 and a temporal step size �t > 0 for Ñ = (xmax −
xmin)/�x an even positive integer, and the grid points are given
by xk = xmin + k�x (k = 0, 1, 2, . . . , Ñ − 1) and tn = n�t

(n = 0, 1, 2, . . .). In the simulation, with an initial random
noise added to the initial data ψj (xk,0) (j = −1, 0, 1, k =
1, 2, . . . , Ñ − 1), the evolution of the densities |ψj (x,t)|2,
numbers of the three components, Nj = ∫ +∞

−∞ |ψj (x,t)|2dx

(j = −1, 0, 1), total number Ntot = N1 + N0 + N−1, and
magnetization N1 − N−1 in different cases will be illustrated.
Because of the atom gain or loss, the atom numbers are no
longer conserved, and we can derive

Nj (t) = Nj (t)|t=0 e2
∫ t

0 
(γ )dγ , j = −1, 0, 1. (22)

From expressions (8) and (13), we first examine the stability
of one-soliton solutions in the ferromagnetic state and polar
state, respectively. For accuracy of computation, we set the
positions of the solitons to minimize their amplitudes and
phases on the boundary. It can be observed from Figs. 9 and
10 that the evolutions of both the ferromagnetic soliton and
polar soliton can be dynamically stable under the effect of
additional random noise, and atom numbers can be accurately
predicted via expression (22).

To examine the robustness of solitonic interaction,
we perform a head-on interaction and a bound interaction

between a ferromagnetic soliton and a polar soliton under
the same external trap potential as above. For the head-on
interaction, the initial condition is given by ψmix

j (xk,0) =
ψ ferro

j (xk,0) + ψ
polar
j (xk,0) (j = −1, 0, 1, k = 1, 2, . . . , Ñ −

1), where ψ ferro
j (xk,0) and ψ

polar
j (xk,0) correspond to the

initial data of the ferromagnetic soliton and the polar soliton,
respectively, and the two solitons should be separated far from
each other initially to ensure that there is hardly any interaction
between them. For the bound interaction, we set the initial
condition from expressions (8) and (14).

As shown in Figs. 11, 12, and 13, the evolutions of two
solitons including two types of interaction (the head-on inter-
action and bound interaction) are stable with a perturbation
of 5% random noise in the numerical simulation. From the
evolution of N1 (solid blue line) and N0 (dotted red line),
we can investigate the spin-exchange interaction during the
two-soliton interaction.

In the case of the head-on interaction, we can hardly find
evidence for spin-exchange interaction from Fig. 11 when the
solitons propagate at a higher speed; on the other hand, the
spin-exchange interaction occurs in Fig. 12 while two lower-
speed solitons interact with each other, and the proportion of
atom numbers of the three components is redistributed after
the interaction.

When the bound interaction between two adjacent solitons
arises, continual spin-exchange interaction can be observed
(Fig. 13). Under the effect of relevant atom loss, expulsive
potential, and nonlinearity, the period of the bound interaction
is no longer a constant, as seen in Figs. 3(a) and 8(a), but
turns to be a varied one in Fig. 13. Simultaneously, the
frequency of the spin-exchange interaction increases and the
atoms of the three components interchange more rapidly due
to the time-dependent modulation in the nonautonomous BEC
system. More on the solitonic interactions can be seen, e.g., in
Refs. [49–54].

V. ROGUE-WAVE-LIKE SOLUTIONS OF EQS. (5)

Moreover, under constraints (7) and (11), we also derive
rogue-wave-like solutions of Eqs. (5) in the following forms:

ψj = μj

{
1 + δj [1 + L(t) i ]

P (t) x2 + Q(t) x + R(t)

}
e[− 1

2 
(t)x2+W (t)] i ,

j = −1, 0, 1, (23)

where μj and δj (j = −1, 0, 1) are real parameters, and L(t),
P (t), Q(t), R(t), and W (t) are real functions with respect to t .
There are two cases of undetermined quantities to be discussed.

(1) When μ2
0 = μ1 μ−1,

ξ1 = α−1 μ2
−1 + α0 μ2

0 + α1 μ2
1, δ1 = δ−1 = δ0,

P (t) = −1

2
δ0 ξ1 e−4

∫

(t)dt , Q(t) = σ1 e−2

∫

(t)dt ,

W (t) = −
∫

2 P (t)

δ0
dt, L(t) = −

∫
4 P (t)

δ0
dt,

R(t) = −1

4
δ0 [1 + L(t)2] − σ 2

1

2 δ0 ξ1
. (24)
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FIG. 8. (Color online) Density plots of the bound interaction between two solitons formed by |ψ1|2 via expressions (8) and (14) with
the parameters 
(t) = ρ3[1 + tanh(2ρ3t)], τ1 = 0.8, τ2 = 0.6, β

(1)
1 = 0.1, β

(0)
1 = 0.4, β

(−1)
1 = 0.3, β

(1)
2 = 0.5, β

(0)
2 = 0.4, β

(−1)
2 = 0.3, α1 =

α−1 = −1,and w
(0)
1 = w

(0)
2 = 0. (a) ρ3 = 0; (b) ρ3 = 0.015; (c) ρ3 = 0.03.

FIG. 9. (Color online) (a)–(c) Density evolution of the three components. (d) Evolution of the numbers of the three components,
total number, and magnetization. Initial data in the numerical simulation are derived from expressions (8) and (13) with a random
noise level of 5% added. Here we choose xmin = −24, xmax = 24, Ñ = 211, �t = 0.001, and T = 20, and other parameters are given by

(t) = 0.03, α1 = α−1 = −1, τ1 = 0.8, w1(t)|t=0 = −0.5i, and β

(1)
1 = β

(0)
1 = β

(−1)
1 = 0.7. The Ntot values are 3.35, 6.10, and 11.11 at t = 0,

10, and 20, respectively.

FIG. 10. (Color online) (a)–(c) Density evolution of the three components. (d) Evolution of the numbers of the three components,
total number, and magnetization. Initial data in the numerical simulation are derived from expressions (8) and (13) with a random
noise level of 5% added. Here we choose xmin = −24, xmax = 24, Ñ = 211, �t = 0.001, and T = 20, and other parameters are given by

(t) = −0.03, α1 = α−1 = −1, τ1 = 1, w1(t)|t=0 = −2.4i, β

(1)
1 = β

(0)
1 = 1, and β

(−1)
1 = 0.9. The Ntot values are 8.36, 4.58, and 2.52 at t = 0,

10, and 20, respectively.
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FIG. 11. (Color online) (a)–(c) Density evolution of the three components. (d) Evolution of the numbers of the three components, total
number, and magnetization. Initial data in the numerical simulation are given by ψmix

j (xk,0)’s (j = −1, 0, 1, k = 1, 2, . . . , Ñ − 1) with
a random noise level of 5% added. Here we choose xmin = −48, xmax = 48, Ñ = 212, �t = 0.001, and T = 20, and other parameters
are given by 
(t) = 0.03, α1 = α−1 = −1, τ1 = 0.8 + 1.8i, w1(t)|t=0 = −18i, β

(1)
1 = β

(0)
1 = β

(−1)
1 = 0.7, τ2 = 1 − 1.7i, w2(t)|t=0 = 18i,

and β
(1)
2 = β

(0)
2 = 1,β

(−1)
2 = 0.9. The Ntot values are 11.70, 21.32, and 38.85 at t = 0, 10, and 20, respectively.

FIG. 12. (Color online) (a)–(c) Density evolution of the three components. (d) Evolution of the numbers of the three components, total
number, and magnetization. Initial data in the numerical simulation are given by ψmix

j (xk,0)’s (j = −1, 0, 1, k = 1, 2, . . . , Ñ − 1) with
a random noise level of 5% added. Here we choose xmin = −28, xmax = 28, Ñ = 212, �t = 0.001, and T = 20, and other parameters
are given by 
(t) = −0.03, α1 = α−1 = −1, τ1 = 0.8 + 0.3i, w1(t)|t=0 = −11i, β

(1)
1 = β

(0)
1 = β

(−1)
1 = 0.7, τ2 = 1 − 0.3i,w2(t)|t=0 =

8i, and β
(1)
2 = β

(0)
2 = 1,β

(−1)
2 = 0.9. The Ntot values are 11.70, 6.42, and 3.52 at t = 0, 10, and 20, respectively.

FIG. 13. (Color online) (a)–(c) Density evolution of the three components. (d) Evolution of the numbers of the three components, total
number, and magnetization. Initial data in the numerical simulation are derived from expressions (8) and (14) with a random noise level of 5%
added. Here we choose xmin = −28, xmax = 28, Ñ = 212, �t = 0.001, and T = 20, and other parameters are given by 
(t) = −0.03, α1 =
α−1 = −1, τ1 = 0.8, w1(t)|t=0 = 0, β

(1)
1 = β

(0)
1 = β

(−1)
1 = 0.7, τ2 = 1, w2(t)|t=0 = 0, β

(1)
2 = β

(0)
2 = 1, and β

(−1)
2 = 0.9. The Ntot values are

11.76, 6.46, and 3.54 at t = 0, 10, and 20, respectively.
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FIG. 14. (Color online) Rogue waves in the periodic oscillation formed by |ψj |2 (j = 1,0,−1) via expressions (23) and (25) with the
parameters 
(t) = 0.7 sin(4t)/[1 + 0.7 cos(4t)], δ0 = 1, μ1 = 0.15, μ0 = 0.4, μ−1 = −0.25, σ2 = 0, and α0 = −4.

(2) When μ2
0 
= μ1 μ−1,

μ1

μ−1
= − α0

2α1
= −2α−1

α0
, ξ2 = α−1 μ2

−1 + α0 μ2
0 + α1 μ2

1,

δ1 = δ0

⎡⎣1 ∓
√

−μ1 μ−1
(
μ2

0 − μ1 μ−1
)

μ1 μ−1

⎤⎦ ,

δ−1 = δ0

⎡⎣1 ±
√

−μ1 μ−1
(
μ2

0 − μ1 μ−1
)

μ1 μ−1

⎤⎦ ,

P (t) = −1

2
δ0 ξ2 e−4

∫

(t)dt , Q(t) = σ2 e−2

∫

(t)dt ,

W (t) = −
∫

P (t)

δ0
dt, L(t) = −

∫
2 P (t)

δ0
dt,

R(t) = −1

2
δ0 [1 + L(t)2] − σ 2

2

2 δ0 ξ2
. (25)

It is noted that expressions (24) correspond to the rogue-wave-
like solutions with the three components ψj (j = −1, 0, 1)
evolving in the same shape, so we pay attention to solutions
(23) with the quantities satisfying expressions (25) only when
μ2

0 
= μ1 μ−1. Under the influence of a periodically modulated
trap potential and a periodic atom gain or loss, the rogue waves
can emerge in the superposition of localized character and
periodic oscillating properties as shown in Fig. 14. Different
from the other two “bright” components ψ1 and ψ−1, the
middle component ψ0 can evolve like a nonautonomous rogue
wave in the “dark” shape.

VI. CONCLUSIONS

As the mean-field approximation for the dynamics of the
one-dimensional trapped spin-1 BEC with a time-dependent
external trap potential and atom gain or loss, Eqs. (5) have
been investigated in this paper. Under constraints (7) and (11),
soliton solutions (13) and (14) through transformations (8)
have been derived by means of bilinear forms (9), and rogue-
wave-like solutions (23) of Eqs. (5) have also been obtained.
Via different choices of parameters, we have calculated the
propagation and interaction of nonautonomous matter-wave
solitons and determined the evolution of nonautonomous rogue
waves in Figs. 1–14 under the respective effects of a expulsive

potential, a periodically modulated trap potential, and a kink-
like-modulated trap potential. From the illustrations, we have
the following conclusions for Eqs. (5):

(i) Through the derivation of expressions (18), (20), and (21)
for the characteristic lines, we have found that the external trap
potential and atom gain or loss can influence the propagation of
matter-wave solitons, but they have little effect on the head-on
solitonic interaction, as shown in Figs. 1 and 6.

(ii) From Figs. 2, 4, and 7, we have observed that the
duration and frequency of the bound solitonic interaction can
be influenced by the external trap potential and atom gain or
loss. Investigating Figs. 3, 5, and 8, we have found that the
stronger the expulsive potential is, the shorter the duration of
bound interaction that can be observed (as seen in Fig. 3); in the
case of the periodically modulated trap potential, the frequency
of the bound interaction will approach that of the external
trap potential (as seen in Fig. 5); for the kink-like-modulated
trap potential, the bound interaction will experience a higher
frequency and vanish earlier when the external trap potential
becomes stronger (as seen in Fig. 8).

(iii) By means of numerical simulation, it can be seen
that taking the expulsive potential and constant gain or loss
term as an example, we have realized the stable evolution of
a ferromagnetic soliton and a polar soliton, including their
propagation (as seen in Figs. 9 and 10), head-on interaction
(as seen in Figs. 11 and 12), and bound interaction (as seen in
Fig. 13) with a perturbation of 5% initial random noise. The
spin-exchange interaction of atoms, which is related to the in-
teraction of matter-wave solitons, can be affected by the time-
dependent modulation in the nonautonomous BEC system.

(iv) Under the influence of a periodically modulated
trap potential and periodic atom gain or loss, rogue waves,
including “bright” and “dark” shapes, can emerge in the
superposition of localized character and periodic oscillating
properties, as shown in Fig. 14.
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APPENDIX

With the subscripts m, n = 1, 2, the quantities in expressions (13) and (14) are presented as follows:

�(j1, j2) = β
(j1)
1 β

(j2)
2 + β

(j2)
1 β

(j1)
2 , j1, j2 = −1, 0, 1, (A1)

�m,n = α1β
(1)
m β(1) ∗

n + α0β
(0)
m β(0) ∗

n + α−1β
(−1)
m β(−1) ∗

n , (A2)

bmn = − �m,n

2 (τm + τ ∗
n )2

, (A3)

c(j )
mn = − (−2)|j | α−j �m β

(−j ) ∗
n

4 (τm + τ ∗
n )2

, j = −1, 0, 1, (A4)

c(j )
m = 1

2 (τ1 + τ ∗
m) (τ2 + τ ∗

m)

[
α−j�

(0, 0)β(−j ) ∗
m + α0�

(j, 0)β(0) ∗
m + αj�

(j, j )β(j ) ∗
m

]
, j = ±1, (A5)

c(0)
m = 1

4 (τ1 + τ ∗
m) (τ2 + τ ∗

m)

{
2 α−1�

(0,−1)β(−1) ∗
m + α0β

(0) ∗
m [�(0, 0) + �(1,−1)] + 2 α1�

(1, 0)β(1) ∗
m

}
, (A6)

dmn = α2
0 �m �∗

n

16 (τm + τ ∗
n )4

, (A7)

dm = α2
0 �m [�(0, 0) ∗ − �(1,−1) ∗]

16 (τm + τ ∗
1 )2 (τm + τ ∗

2 )2
, (A8)

d0 = α2
0 |�(0, 0) − �(1,−1)|2 − 4 (�1, 1 �2, 2 + �1, 2 �2, 1)

16 (τ1 + τ ∗
1 ) (τ1 + τ ∗

2 ) (τ2 + τ ∗
1 ) (τ2 + τ ∗

2 )
, (A9)

l(j )
mn = α2

0 β
(j )
3−m �m �∗

n (τ1 − τ2)2

16 (τ1 + τ ∗
n )2 (τ2 + τ ∗

n )2 (τm + τ ∗
n )2

, j = −1, 0, 1, (A10)

l(j )
m = − (−2)|j | α−j �3−m (τ1 − τ2)2

4 (τ3−m + τ ∗
1 )2 (τ3−m + τ ∗

2 )2

[
c(−j ) ∗
m +

2∑
n=1

bmn β
(−j ) ∗
3−n

]
, j = −1, 0, 1, (A11)

qmn = − α2
0 �m �∗

n |τ1 − τ2|4 �3−m, 3−n

32 (τ1 + τ ∗
1 )2 (τ1 + τ ∗

2 )2 (τ2 + τ ∗
1 )2 (τ2 + τ ∗

2 )2 (τm + τ ∗
n )2

, (A12)

p(j )
m = − (−2)|j | α−j β

(−j ) ∗
3−m α2

0 �3−m |�m|2 (τ1 − τ2)2 |τ1 − τ2|4
64 (τ1 + τ ∗

m)4 (τ2 + τ ∗
m)4 (τ1 + τ ∗

3−m)2 (τ2 + τ ∗
3−m)2

, j = −1, 0, 1, (A13)

q0 = α4
0 |�1|2 |�2|2 |τ1 − τ2|8

256 (τ1 + τ ∗
1 )4 (τ1 + τ ∗

2 )4 (τ2 + τ ∗
1 )4 (τ2 + τ ∗

2 )4
, (A14)

hmn = − (τ1 − τ2)2 �3−m �m,n

2 (τ1 + τ ∗
n )2 (τ2 + τ ∗

n )2
, (A15)

hm = α2
0 (τ1 − τ2)4 �3−m |�m|2

16 (τ1 + τ ∗
m)4 (τ2 + τ ∗

m)4
, (A16)

h0 = α2
0 (τ1 − τ2)4 �1 �2 [�(0, 0) ∗ − �(1,−1) ∗]

16 (τ1 + τ ∗
1 )2 (τ1 + τ ∗

2 )2 (τ2 + τ ∗
1 )2 (τ2 + τ ∗

2 )2
. (A17)
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