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Stochastic resonance with a mesoscopic reaction-diffusion system

Hitoshi Mahara,1,2,* Tomohiko Yamaguchi,2 and P. Parmananda1

1Department of Physics, India Institute of Technology Bombay, Powai, Mumbai 400076, India
2AIST, Higashi 1-1-1, Central 5-2, Tsukuba, Ibaraki, Japan

(Received 12 November 2013; published 12 June 2014)

In a mesoscopic reaction-diffusion system with an Oregonator reaction model, we show that intrinsic noise can
drive a resonant stable pattern in the presence of the initial subthreshold perturbations. Both spatially periodic and
aperiodic stochastic resonances are demonstrated by employing the Gillespies stochastic simulation algorithm.
The mechanisms for these phenomena are discussed.
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I. INTRODUCTION

Noise is regarded commonly as an undesirable disturbance
that decreases the order of information. However, biological
systems use noise efficiently and detect the otherwise unde-
tectable signals [1–5]. This phenomenon, called stochastic
resonance (SR), has been observed in and documented
for numerous physical and chemical systems [6–17]. Zero-
dimensional systems respond to a time series of subthreshold
signals with noise [6–14]. Inhomogeneous two-dimensional
systems detect spatial subthreshold information with noise
[15–17]. The SR in inhomogeneous systems is deemed useful
for image processing: a photo image is enhanced with noise in
a nonlinear system [15], edge detection and phase separations
have been demonstrated in a reaction-diffusion system [16,17].

Biological and chemical systems are influenced by either
external or internal noises or by both. External noise comes
from the environment and internal noise is induced by the fluc-
tuations of the number of molecules. Chemical reactions can be
described with the concentrations of chemical species and their
corresponding differential equations with time if the number
of molecules is large enough. However, these fluctuations due
to noise become relatively large and unavoidable if the system
and the number of molecules become small. These fluctuations
in such scenarios are called intrinsic noise. Gillespie developed
an algorithm to calculate the stochastic behavior of chemical
reactions [18–20]. This algorithm was based on the chemical
master equation and Monte Carlo methods and called the
stochastic simulation algorithm (SSA). The SSA is used to
investigate the influence of intrinsic noise in many systems
[21–24]. While most of the reported studies involving SR
have been carried out using external noise, some recent studies
have employed intrinsic noise as well to show that the system
described with the SSA can detect both periodic and aperiodic
time series [21–24]. These results seem to indicate that intrinsic
noise, if employed judiciously, is capable of exhibiting the SR
phenomena.

The effect of intrinsic noise has also been studied in
inhomogeneous systems that are called mesoscopic systems
[25–32]. Several kinds of methods are developed to calculate
these mesoscopic systems [27–32]. The SSA can also be mod-
ified and extended to investigate, numerically, the coupling
between the chemical reactions and the intercellular kinetics
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in biological systems [25,26]. This extended method is called
the reaction-diffusion SSA [33]. In this way, the influence
of intrinsic noise was judiciously studied in mesoscopic
reaction-diffusion systems. Because of this intrinsic noise,
these systems show dynamical behaviors different from those
observed in the corresponding macroscopic systems. For
example, spatial pulses are pinned stably in a mesoscopic
system, even though pulses move and an adjustment of
the distances between the pulses occurs in the macroscopic
counterpart [31]. In another case, inhomogeneous patterns
appear in the parameter regions wherein only homogenous
states can be observed for the corresponding macroscopic
system [32]. However, to the best of our knowledge, there
are no studies involving the SR with inhomogeneous system
using the reaction-diffusion SSA. To reiterate, the SR with
time, using the SSA, has already been reported [21–24]. In this
paper, we demonstrate that a mesoscopic reaction-diffusion
system shows stable response patterns that respond regularly
to spatially periodic and aperiodic initial perturbations. We call
these phenomena the spatially periodic stochastic resonance
(S-PSR) and the spatially aperiodic stochastic resonance (S-
ASR), following the previous paper of Ref. [24]. Furthermore,
we discuss the mechanisms of the S-PSR and S-ASR.

II. MODEL SYSTEM

In the present work, we use the Oregonator model
that shows the core chemical reactions of the Belousov-
Zhabotinsky (BZ) reaction [34,35]. This model consists of
the five reaction steps shown below:

A + Y
k1−→ X + P, (1a)

X + Y
k2−→ 2P, (1b)

A + X
k3−→ 2X + 2Z, (1c)

2X
k4−→ A + P, (1d)

B + Z
k5−→ f Y, (1e)

where k1–k5 are the reaction rate constants for the five chemical
steps, respectively. f is a stoichiometric factor. The capital
letters represent the numbers of molecules of chemical species:
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FIG. 1. The schematic view of the system with spatial coordinates p, q, and r . N cubic cells are the line in one dimension. The volume of
each cell is � = dp × dq × dr , dp = dq = dr . The molecules can go to the neighbor cells with diffusion.

A = [BrO−
3 ], B = [CH2(COOH)2], X = [HBrO2], Y = [Br−],

Z = [Ce(IV)], and P = [BrCH(COOH)2]. For simplicity, the
numbers of molecules A, B, and P are kept constant. The other
three for the chemical species X, Y , and Z are the variables.

A mesoscopic reaction diffusion system consists of cubic
subsystems (cells) whose volume is � = dp × dq × dr,dp =
dq = dr . The N cubic cells are in line and the length of the
system is N × dp (Fig. 1). Within the SSA, the propensity
functions for the above five reactions in the j th cell are

ã1,j = k1AYj/�, (2)

ã2,j = k2XjYj/�, (3)

ã3,j = k3AXj/�, (4)

ã4,j = k4Xj (Xj − 1)/�, (5)

ã5,j = k5BZj/�, (6)

respectively. The suffix j indicates the cell number. In the
present system, the molecules go to the next neighbor cells
because of diffusion. Therefore, the following propensity
functions for the diffusion of chemical species are calculated.

In the case that the molecules X, Y , and Z go to the left-side
cell, respectively,

ã6,j = DXXj/(dp)2, (7)

ã7,j = DY Yj/(dp)2, (8)

ã8,j = DZZj/(dp)2. (9)

In the case that the molecules X, Y , and Z go to the right-side
cell, respectively,

ã9,j = DXXj/(dp)2, (10)

ã10,j = DY Yj/(dp)2, (11)

ã11,j = DZZj/(dp)2. (12)

These propensity functions for diffusion have been calculated
following the recipe provided in the work of Bernstein [30].
The DX, DY , and DZ are the diffusion coefficients of the
chemical species X, Y , and Z, respectively. The system has

no flux boundary conditions. Therefore, the molecules cannot
go out through the right and left sides of the edge wall of the
system.

We now discuss the implementation of the reaction-
diffusion SSA in our model system. The states in every cell
are known at the time t . First, the summation of the above
propensity functions for each cell is calculated

Sj =
11∑

i

ãi,j . (13)

The tie step, i.e., the waiting time δt for homogeneous
system is calculated with this function. If this function is used
for calculating the waiting time in the present system, this
waiting time might differ from one cell to another. However,
the waiting time in all of the cells should be the same for
simulating the present system. Therefore, we introduce the
12th propensity function which corresponds to a no-event
(neither reaction nor diffusion takes place) in the j th cell.
We represent the largest one of the summation Eq. (13) as
Smax and define the 12th propensity function for j th cell as
follows:

ã12,j = Smax − Sj . (14)

The ith event (reaction, diffusion, or no-event) is chosen
with a probability ãi,j /Smax in each cell, after a waiting time
δt . This waiting time can be applied to every cell because of
the existence of the 12th propensity function, Eq. (14). The
waiting time is determined with the probability distribution
function P [δt | s(t)] = Smax exp(−Smaxδt). The state vector
s(t) = (X1,Y1,Z1,Xj ,Yj ,Zj , . . . ,XN,YN,ZN ) which has 3N

components is updated to

s(t + δt) = s(t) +
N∑

j

vj . (15)

The vector vj = (dX1,dY 1,dZ, . . . ,dXj ,dY j ,dZj , . . . ,

dXN,dYN,dZN ) depends on which event occurs in the j th
cell. If the first reaction occurs in the j th cell, dXj = 1 and
dY j = −1. The components becomes as follows in other
cases: dXj = −1 and dY j = −1 for the second reaction,
dXj = 1 and dZj = 2 for the third reaction, dXj = −2 for
the fourth reaction, respectively. For the fifth reaction, dZj is
−1 and dY j is 2 with 70% probability or dY j is 1 with 30%
probability because the stoichiometric factor is not an integer
and we use the parameter f = 1.7. If the diffusion events
are selected in the j th cell, the component of vj should be
dXj−1 = 1 and dXj = −1 for the sixth event, dY j−1 = 1 and
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dY j = −1 for the seventh event, dZj−1 = 1 and dZj = −1
for the eighth event, dXj+1 = 1 and dXj = −1 for the ninth
event, dY j+1 = 1 and dY j = −1 for the tenth event, and
dZj+1 = 1 and dZj = −1 for the 11th event. The components
of the vector vj that are not mentioned above are all zero for
all the events. If the 12th event is selected in the j th cell all
components of the vector vj are equal to zero.

III. RESULTS

Here, we present numerical results that indicate that
the mesoscopic reaction-diffusion system shows the S-PSR
and S-ASR phenomena with SSA. The parameters are set
to k1 = 0.274, k2 = 1.11 × 106, k3 = 15.54, k4 = 3.0 × 103,
and k5 = 5.0. To get stable patterns asymptotically, the
diffusion coefficients are set to DX = 0.01, DY = 0.0, and
DZ = 100.0. Here, we defined the unit of volume (u.v.) as the
size that contains 1.0 × 108 molecules while the concentration
is 1.0 mol/L. Therefore, we use the unit length (u.l.) that is
[1.0 × 108/(NA × 1.0mol/L)]1/3 = 0.166 μm, where NA =
6.022 × 1023mol−1 is the Avogadro number. The number of
the chemical species A and B depends on the volume of the
cubic cell. To keep the discussion simple, the concentrations
for A and B are fixed to 0.4 and 0.1 M, respectively.
Consequently, the number of molecules A and B are set
to the nearest integer of [(NA[mol−1] × 0.4[mol/L])1/3] ×
�[u.v.] = 0.4 × � × 1.0x108[.] and 0.1 × � × 1.0 × 108[.],
respectively. Hereafter, the concentrations of the chemical
species x, y, and z are described with the unit that is the number
per u.v. Furthermore, the unit of the diffusion coefficients was
chosen to be (u.l.)2s−1. The length of the system is about
920 u.l. (Fig. 1).

The present Oregonator system is an excitable media
under the above conditions (see the Appendix). Subsequently,
we modified the initial configuration of x spatially and the
response of the system, represented with the spatial profile of
the chemical concentration z, is recorded. The system shows a
stable pulse in the z variable if a sufficiently large perturbation
is provided in x. However, if the given perturbation does not
exceed its threshold value the system goes back to the steady
homogeneous state. The present system is given subthreshold
perturbations and sometime responds to it with the help of
intrinsic noise. We tune the amplitude of this intrinsic noise
by varying �. The amplitude becomes larger as the volume
decreases.

To quantitatively measure the agreement with the input and
output spatial profiles, a power norm C0, defined below, is
computed as follows:

C0 = 〈(x(p) − 〈x〉)(z(p) − 〈z〉)〉. (16)

This is the modified version of the correlation function nor-
mally used for quantify time-dependent stochastic resonance
phenomena [10,13,24]. Here, 〈.〉 denotes the spatial average.
The profile z(p) represents the final concentration of z at p.
The profile x(p) is the initial concentration at p when t = 0.
Finally, this power norm is averaged over 50 trials for each
volume. This means that, in reality, the norm is averaged over
around 300 stimuli since five to seven stimuli exist in each
trial.

A. Spatially periodic stochastic resonance

The S-PSR phenomena are observed in the mesoscopic
reaction-diffusion system with the reaction-diffusion SSA. The
initial conditions are chosen such that the numbers for the
chemical species X, Y , and Z are the nearest integer of the
fixed point (xfp,yfp,zfp) = (18.087,1231.951,449.712). Six
square pulse perturbations are applied to X initially. The width
of this pulse is 12 u.l. and the number X is perturbed to the
lower nearest integer of (19.0xfp) × �. All distances between
these pulses are the same 138 u.l. These perturbations have
almost the same profile as shown in Fig. 6(d) and can be
considered as subthreshold for the present mesoscopic system
since the corresponding macroscopic system shows no stable
pulses for these conditions (see the Appendix).

The system is calculated 50 times for each values of �,
i.e., different amplitudes of the intrinsic noise. Figure 2 shows
the profiles of the initial perturbations and responses for three
values: large, intermediate, and small. The system responds
to only a few of the subthreshold perturbations in the case
where the cell volumes are large, i.e., the noise intensity is low

FIG. 2. Data for S-PSR. Panels (a), (c), and (e) show the final
stable profile of z in the cases that spatially periodic perturbation
are given initially as shown in panels (b), (d), and (f), respectively.
The length and the volume of the cells are (a, b) dp = 1.71 u.l. and
� = 5.04 u.v.; (c, d) dp = 0.63 u.l. and � = 0.25 u.v.; and (e, f)
dp = 0.4 u.l. and � = 0.064 u.v.
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FIG. 3. The power norm C0 against the cell volume � for S-PSR.

[Figs. 2(a) and 2(b)]. The system responds to almost all of the
perturbations in the case that the cell volume is appropriate
[Figs. 2(c) and 2(d)]. Many peaks appeared even in the region
where the system is not perturbed, in the case where the cell
volume is small [Figs. 2(e) and 2(f)]. Therefore, the output
in the intermediate case for the optimal noise value becomes
more correlated with the spatially periodic input perturbations
as compared to other cases. From these initial and final profiles,
we calculate C0 using Eq .(16). The simulation results are
extremely robust since for different initial conditions as well as
different noise seeds similar features were observed. Figure 3
shows C0 against �. This curve is almost unimodal and
the maximal regularity corresponds to the optimum value of
� = 0.25. Thus the mesoscopic BZ reaction-diffusion system
shows an S-PSR phenomenon.

B. Spatially aperiodic stochastic resonance

To demonstrate S-ASR, we use the same conditions as of
the previous simulations except for the distance between the
subthreshold perturbations. These distances are now chosen
randomly between 48 to 228 u.l.. The width and the height of
these perturbations are identical to the ones used before and
therefore should be considered as subthreshold. The system is
calculated 50 times for each volume �. Figure 4 shows the
output profiles in the three cases: � is large, intermediate, and
small. Analogous to the S-PSR, the system does not respond
to several perturbations for the large volume case. The system
responds to almost all the perturbations in the intermediate
volume case. Many false or spuriouspeaks appear in the system
for the case when the volume is small. Therefore, the output
in the intermediate case becomes more correlated with the
spatially aperiodic input perturbations as compared to other
scenarios. From these initial and final profiles, we calculate
C0 using Eq. (16). Figure 5 shows the C0 versus � graph. The
maximal regularity corresponds to the optimum � = 0.42,
similar to that observed in S-PSR. Thus the mesoscopic BZ
reaction-diffusion system shows an S-ASR phenomenon.

FIG. 4. Data for S-ASR. Panels (a), (c), and (d) show the final
stable profile of z in the cases that spatially aperiodic perturbation
are given initially as shown in panels (b), (d), and (f), respectively.
The length and the volume of the cell are (a, b) dp = 1.71 u.l. and
� = 5.04 u.v.; (c, d) dp = 0.75 u.l. and � = 0.42 u.v.; and (e, f)
dp = 0.4 u.l. and � = 0.064 u.v.

FIG. 5. The power norm C0 against the cell volume � for S-ASR.
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IV. SIMULATION DETAILS

The S-PSR and S-ASR phenomena are shown to exist in
our mesoscopic system. The mechanism is similar to the other
SR phenomena, reported in the literature. The noise regulates
the probability of the system response to the subthreshold
perturbations. This probability is low if the intrinsic noise
amplitude is small, i.e., the cell volume is large. Therefore, the
system responds to a few of the subthreshold perturbations.
This probability increases as the noise amplitude increases
and, therefore, the system shows a more correlated response to
the subthreshold spatial pulse train. However, this probability
increases also in the region that the system is not perturbed.
Upon further augmentation of the noise amplitude, firings
occur even in the region where the system is not perturbed.
These firing phenomena induce extra pulses and the correla-
tion between input and the output decreases. Consequently,
unimodal curves of C0 versus noise strength emerge and there
exists an optimal noise amplitude where maximal correlation
with the subthreshold perturbations is observed.

The model dynamics have a useful feature facilitating the
emergence of the spatial stochastic resonance behavior. The
present system has a solitary pulse solution which is different
from the Turing patterns. The Turing pattern is a spatially peri-
odic pattern that can be invoked with tiny levels of noise [36].
This implies that the mesoscopic reaction diffusion system
would always show Turing patterns in the presence of intrinsic
noise. Therefore, the system that shows Turing instability is not
appropriate for studying the S-PSR and S-APSR phenomena.
Moreover, Turing patterns have their own wavelengths and
therefore the system might ignore periodic or aperiodic input
spatial signals if their signal period is not coincident with its
own wavelengths. Consequently, to observe SR with Turing
instability, one needs to suppress all the features of Turing
patterns. Unfortunately, we could not achieve this required
suppression. As a result, we chose a system that shows a one
pulse solution. Such solutions can be found in various models:
the Gray-Scott model [37,38], Fitz-Hugh and Nagumo model
[39], Gierer-Meinhardt model [40], and so on.

A solitary pulse has a repulsive feature with respect to
other pulses in the continuous reaction diffusion system
[38,40]. This feature induces autotuning of the distances
between the pulses and, subsequently, a rearrangement of
pulses occurs. Therefore, this feature is for the present SR
phenomena. The motion of this pulse is suppressed if the
diffusion coefficients are sufficiently small, i.e., the system
is a discrete system [16,39]. Then the present system should
be a discrete system, i.e., the system is not an approximation
of the continuous system as mentioned in Ref. [33]. This
means the present cubic cells should be real compartments.
It is well known that the discrete system shows curious
phenomena that cannot be observed in continuous systems
with the same parameters [16,39,41–45]. These phenomena
can be observed in an inhomogeneous system that consists
of biological cells [44,45]. Furthermore, the discreteness of
the molecule numbers can also induce this suppression of
pulse movement [31]. In this paper, in conjunction with the
fact that the molecular numbers are discrete, we chose the
values of diffusion coefficients, especially DX, smaller than
the ordinal value whose order is 1.0 ∼ 0.1 × 10−5 cm2s−1 =

3629 ∼ 362.9 (u.l.)2s−1. This ensures suppression of the pulse
motion in our mesoscopic system and consequently the pulses
stay eternally at the location where they begin to fire initially.

These special features ensure that the model system has
the potential to induce stable resonant responses to spatially
periodic or aperiodic input perturbations and therefore can
exhibit the S-PSR and S-ASR phenomena.

V. CONCLUSION AND DISCUSSION

In the present work, we introduce the propensity function
of no-event to calculate every cell with the same time incre-
ments in reaction-diffusion SSA. Subsequently, we succeeded
in demonstrating the stochastic resonance against spatially
periodic and aperiodic initial perturbations in a mesoscopic
reaction-diffusion system. The system has an intrinsic noise
whose strength is a function of the cell size. This noise enables
the system to respond to subthreshold perturbations. The
results of the correlation calculation indicate that an optimum
volume exists where a maximal correlation between the input
subthreshold spatial perturbations and the system response is
observed. In simulation details, the mechanisms and some nec-
essary conditions for the emergence of these phenomena are
outlined. It is realized that the existence of one pulse solutions
are important to invoke S-PSR and S-ASR. Our numerical
results can be verified in any experimental system as long as it
can exhibit a stable solitary pulse solution. For this to happen
three conditions need to be met: (1) the system is excitable; (2)
the ratio of the diffusion coefficients for the inhibitor and the
activator satisfy the Turing instability condition; and (3) the

FIG. 6. Results in the macroscopic reaction diffusion system. (a)
Final stable profile of z for initial profile of x in (b). The initial
perturbations are overthreshold. The system responds to the initial
perturabations and it shows the pulses’ pattern. (c) Final stable profile
of z for initial profile of x in (d). All of the perturbations are of
subthreshold value and the system goes to a homogeneous state.
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system is a desecrate system, i.e., the cubic cells should be real
compartments like biological cells. It is well known that the
BZ aerosol sodium bis(2-ethyl-1- hexyl) sulfosuccinate (AOT)
system can show both steady patterns and the solitary pulse
solution [46]. Therefore, the BZ-AOT experimental system is
a suitable candidate system to test our predictions as it seems
phenomenologically similar to the system chosen in our simu-
lations if the discreteness of diffusion coupling can be realized.
This experimental system with mesoscopic dimensions should
be able to validate our numerical predictions.
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APPENDIX: MACROSCOPIC SYSTEM

The ordinal macroscopic reaction-diffusion system is de-
scribed as

∂x

∂t
= k1ay − k2xy + k3ax − 2k4x

2 + Dx∇2x, (A1)

∂y

∂t
= −k1ay + k2xy + k5f bz + Dy∇2y, (A2)

∂z

∂t
= 2k3ax − k5bz + Dz∇2z. (A3)

Here a,b, and the variables represent the concentrations
of each chemical species. The unit of the concentration
is changed from mol/L to number per u.v. to compare
easily to the results of the simulation in the main text.
The system is calculated numerically with the fourth-order
Runge-Kutta method and the finite difference discretization
method is applied to the diffusion terms (dp = 1.0,dt =
0.00001).

The parameters are set identical to the ones used in the main
text and the reaction-diffusion system is an excitable media.
This system shows a stable pulse for superthreshold perturba-
tions as shown in Fig. 6. Initially the system is set to the stable
steady state (xfp,yfp,zfp) = (18.087,1231.951,449.712) uni-
formly. The concentration x is perturbed to 26.0xfp in six
parts of the system in Fig. 2(b). The width of one perturbed
region is 12 u.l. and the distance between these regions
is 138 u.l. The stable pulses appear where the locations
are subjected to superthreshold perturbations. On the other
hand, the system becomes homogeneous if the perturba-
tions are subthreshold [Figs. 6(c) and 6(d)]. The threshold
value exists between x = 20.0 ∼ 21.0xfp for our numerical
calculations.
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