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Wave transport and statistical properties of an open non-Hermitian quantum
dot with parity-time symmetry
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A basic quantum-mechanical model for wave functions and current flow in open quantum dots or billiards
is investigated. The model involves non-Hertmitian quantum mechanics, parity-time (PT ) symmetry, and
PT -symmetry breaking. Attached leads are represented by positive and negative imaginary potentials. Thus
probability densities, currents flows, etc., for open quantum dots or billiards may be simulated in this way
by solving the Schrödinger equation with a complex potential. Here we consider a nominally open ballistic
quantum dot emulated by a planar microwave billiard. Results for probability distributions for densities, currents
(Poynting vector), and stress tensor components are presented and compared with predictions based on Gaussian
random wave theory. The results are also discussed in view of the corresponding measurements for the analogous
microwave cavity. The model is of conceptual as well as of practical and educational interest.
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I. INTRODUCTION

In ballistic wave transport through various resonators
connected to the surroundings via input and output leads
or other probes, one frequently encounters scattering wave
fields φ(r) with generic morphology and statistical behavior.
Examples are open quantum dots or cavities, planar microwave
billiards, acoustic reverberation rooms, optical cavities and
microchip lasers, special electric RLC networks, etc. [1–5].
Many times the analysis of the underlying dynamics of
such systems may be reduced to Schrödinger or Helmholtz
types of equations. In many cases the different systems may
then be mapped formally onto each other. For example,
two-dimensional nanosized quantum dots may be emulated
by macroscopic planar microwave resonators [6]. Quantum
wave functions, currents, etc., may thus be inferred from
measurements on classical microwave analogs.

There is a great deal of interest in the modeling of systems
as above. The main purpose of the present paper is to elaborate
a basic heuristic model for electron states in open quantum dots
(alternatively “cavities,” “billiards,” “corrals,” “resonators,”
etc.). In a recent paper we have argued that quantum transport
may be modeled by means of imaginary potentials to simulate
the source and the sink for the carriers [7,8]. The model origi-
nates from early phenomenological inelastic nuclear scattering
theory [9,10] in which nuclear absorption is accounted for by
a fictitious imaginary scattering potential. In our case, such
a potential would act as a sink. This type of modeling was
thus elaborated on in Refs. [7,8] by introducing an additional
imaginary potential of opposite sign playing the role of a
source. Having both the source and the sink embedded within
the system, we may thus study the flow of particles from one
lead to another while keeping the system formally closed. This
is a neat simplification from a computational point of view. In
addition, multileads, inelastic scattering events, etc., may be
incorporated in the same simple fashion. At the same time
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there is the conceptual complication of non-Hermiticity. In
this respect our model also offers obvious educational merits.

The method of imaginary potentials for source and drain
as outlined in Refs. [7,8] has been applied to a “two-
lead” planar [two-dimensional (2D)] quantum dot in a gated
AlxGa(1−x)As/GaAs heterostructure [11]. Particle densities
and probability current flows for a selected set of low-energy
states were compared with analog measurements for an equally
shaped microwave resonator [12]. The resemblance between
the two cases is noteworthy for the typical resonant states
selected in that study.

The aim of the present work is to extend this kind of analysis
to another class of states, namely, high-frequency chaotic states
in an open billiard. We will thus ask the question whether the
present approach will yield, for example, the well-established
universal statistics for probability density and current distri-
butions. Since we make use of non-Hermitian Hamiltonians
(NHHs), results of this kind are of principle interest and are
not obvious beforehand. In the same way we will also discuss
the statistical distribution for the somewhat esoteric Pauli
quantum-mechanical stress tensor from 1933 [13–15]. Usually
the Pauli stress tensor makes only a small contribution to the
total stress. Here we are fortunate to have a system in which
the Pauli stress tensor is singled out and may be studied in
detail.

As already indicated, the present model falls within the
general framework of non-Hermitian quantum mechanics
(NHQM) [16–19], which is gaining growing attention in a
number of fields. Here we may mention especially inelastic
quantum scattering and transport by complex potentials V

[20–26] and optical waveguides [27–29] that are all examples
of applied NHQM. Eigenvalues of a non-Hermitian Hamilto-
nian are generally complex. However, of special concern here
is that they may turn out to be real under certain conditions
[16–19]. A necessary prerequisite is then that we deal with
parity-time (PT ) invariance [parity p̂ → −p̂, x̂ → −x̂ and
time operations p̂ → −p̂, x̂ → x̂, i → −i, respectively) As
we will see, we must also have V (x̂) = V ∗(−x̂). In other
words,PT symmetry requires that the real part of the potential
V is an even function of position x̂. Examples of PT quantum
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mechanics are found in Refs. [27–29] for optical wires. It
seems, however, that PT invariance has received less or
no attention in conventional condensed matter physics and
nanodevices as here.

The outline of the article is as follows. In Sec. II we
summarize quantum mechanics with complex potentials and
at the same time put our model into the general framework
of PT invariance. In the same section we also discuss how a
particular device should be designed to ensure PT symmetry
and thereby real eigenvalues and ballistic transport. Section
III presents an application to a planar microwave resonator,
an analog system to a quantum two-dimensional quantum dot.
Computational methods and the nature of the PT -symmetric
numerical solutions are also presented in the same section.
To get more insight into the nature of these solutions,
we discuss briefly a simple but useful approach based on
standard perturbation theory as it illustrates PT symmetry in
a simple and transparent way. The interaction of close levels
is also considered as it demonstrates PT -symmetry breaking.
Statistical properties and numerics for density, current, and
stress-tensor distributions are discussed in Sec. IV, together
with brief comments on recent measurements and theory [30].
A discrepancy between theory and measurements observed
previously for the stress tensor is shown to disappear with
increasing frequency. The stress tensor, which until Ref. [30]
has passed unnoticed in the context of wave function statistics,
is of fundamental interest as it provides a delicate test of theory
with its direct dependence on second-order derivatives of a
wave function. A brief summary and concluding remarks are
given in Sec. V.

II. WORKING OF IMAGINARY POTENTIALS

A. Conventional QM

Fictitious imaginary potentials to mimic quantum transport
and flow in an open ballistic quantum dot were described in
Ref. [7]. For convenience, here we summarize the key steps
starting from conventional QM. The basic ingredients are as
follows: the time-dependent Schrödinger equation,

i�∂�/∂t = − �
2

2m
�� + V �, (1)

where V is the potential which is real and m is the mass of the
particle; the probability current density.

J = �

2mi
[�∗∇� − (∇�∗)�]; (2)

and the continuity equation,

∂�/∂t + ∇ · J = 0, (3)

where � = |�|2 is the probability density.
The Pauli quantum-mechanical stress tensor (QST) is

defined as [13–15] (see also Ref. [31])

Tα,β = �
2

4m

(
−�∗ ∂2�

∂xα∂xβ

− �
∂2�∗

∂xα∂xβ

+ ∂�

∂xα

∂�∗

∂xβ

+ ∂�∗

∂xα

∂�

∂xβ

)
. (4)

It features naturally in (semiconductor) quantum hydrodynam-
ics [15] in which one deals with a “probability fluid.” Flow lines
and vorticity patterns are in that case closely related to QST.

If one restricts oneself to stationary states, the Schrödinger
equation in (1) turns into its time-independent form

− �
2

2m
�φ(r) + V (r)φ(r) = Eφ(r), (5)

where E is the energy of the particle. For clarity we introduce
the notations �(r,t) → φ(r) exp(−iEt/�), J(r,t) → j(r), and
�(r,t) → ρ(r).

B. Role of imaginary potentials

According to (3) there is a conservation relation between
�(r,t) and J(r,t) that holds for real potentials V . The idea
of a potential containing also an imaginary component was,
as mentioned, introduced long ago as an heuristic way of
describing absorption in nuclear scattering [9,10], i.e., in
situations when particle conservation is not mandatory, in
contrast to the present case of ballistic transport.

Assume that the complex V is generally

V = VR + iVI , (6)

where VR and iVI are the real and imaginary parts, respectively.
The generalized version of the continuity relation in (3) is
then [10]

∂�(r,t)/∂t + ∇ · J(r,t) = 2VI

�
�(r,t). (7)

Since �(r,t) is positive, the term on the right-hand side
acts as a source or sink for positive or negative values of
VI , respectively. To make this more transparent one may
integrate (7) over a volume 
 bounded by the surface A.
Following [10] we then have

∂

∂t

∫



�(r,t)dr = −
∫

A

J(r,t) · ndA + 2

�

∫



VI�(r,t)dr, (8)

where n is the unit vector normal to the surface. If the system
is well contained in 
, the surface term vanishes, implying
that the normalization integral decreases with time if VI is
negative, i.e., particles are being absorbed. For positive VI ,
on the other hand, the normalization increases as particles are
created in this case.

As in Ref. [7] here we combine the two processes to study
probability current flow (wave transport), vortices, etc., by
giving VI different signs in different parts of the system. For
example, to simulate the probability current density flowing
between input and output leads in a cavity, we may simply
replace the extended leads by two regions in which VI is
nonzero and of opposite signs. The condition for a steady,
well-balanced, and lossless flow between the two regions is

〈VI 〉 =
∫




VI�(r,t)dr = 0. (9)

Therefore the expectation value of the Hamiltonian operator
〈H 〉 is real despite V = VR + iVI being non-Hermitian.
Furthermore, the corresponding eigenvalues are real when VR

is independent of time. As we will see in the following sections,
our elementary approach of using ±iVI for a source and
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sink to emulate the probability current densities and transport
properties of a cavity works quite well in such cases (in general
also for other types of probes). With a current thus flowing from
a source to sink, we refer to the cavity as an open one [7,19].
The situation is thus akin to the current flowing between the
poles in an ordinary battery. As we will see below, however,
there may also be closed vortical currents that do not contribute
to the net flow through the cavity.

C. Conservation of probability density

The continuity equation (8) requires that 〈VI 〉 = 0 for states
with stationary probability densities and currents. The problem
with this condition is that φ(r) must be known before choosing
VI . Also, even if this condition holds for one state, it is unlikely
to do so for the other ones that generally would turn out to
have complex eigenvalues. So, in general, VI needs to be
chosen with respect to a specific state that is to be studied.
One may view this as a “selective filtering” of a particular
mode. However, the system is not generally PT symmetric
in a situation as this. One should therefore incorporate PT
symmetry already in the design of a particular device in the
following way. For geometrically symmetric confinements
with V (x̂) = V ∗(−x̂), PT symmetry and condition (9) are
easy to meet, at least if |VI (r)| is chosen to be sufficiently
small and the levels are well separated (cf. Sec. III C). If so,
the states in such systems are in practice either symmetric
or antisymmetric and the probability density is consequently
symmetric. Thus, by choosing an antisymmetric imaginary
potential, one satisfies the above conditions.

In the following we will focus on geometrically symmet-
ric systems [VR(x) = VR(−x)] which makes the following
simulations more easy to handle. As we will see, there are
some interesting features associated with the complex level
interactions of odd and even states.

III. APPLICATIONS TO A PLANAR NOMINALLY
SYMMETRIC MICROWAVE RESONATOR

As indicated in the Introduction, quantum systems may
be emulated many times by classical analogs. Well-known
examples are various flat microwave resonators for which
there is a one-to-one correspondence between the Helmholtz
equation and the stationary Schrödinger equation, including
the Dirichlet boundary conditions [2,6], i.e.,

(� + k2)φ(r) = 0. (10)

Here φ(r) represents the perpendicular electric field Ez(x,y)
that mimics the quantum state; the QM wave number k =√

2mE/� is replaced here by k = ω/c, where ω is the angular
frequency of the transverse magnetic (TM) mode and c is
the speed of light. The Poynting vector is the analog to the
probability current density (in the following denoted by j as
in QM). Experimental studies of generic phenomena such as
wave morphology, flow patterns, etc., are thus possible.

In the following we focus on the cavity shown in Fig. 1,
which is designed after a cavity used in a number of systematic
microwave experiments [6,12], which in turn have been
inspired by measurements of conductance and wave function
scarring in source-drain biased open quantum dots with very
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FIG. 1. A nominally symmetric hard-wall 2D cavity of height
21 cm and width 22 cm used in the calculations. The shaded rectangle
is the region used to sample data for the statistical analysis. The cavity
is shaped after a particular quantum dot [11]; at the bottoms of the
two “quasileads” there are regions in which VI is positive or negative
(dark and white regions, respectively). The steps along the boundaries
indicate the rectangular computational grid.

much the same geometric form [11]. In our case we must, how-
ever, supplement the above equation with a complex term as

(� + k2 + iVI )φ(r) = 0, (11)

with VI (x) = −VI (−x). Except for the small source and drain
regions in Fig. 1, the two equations are identical.

A. Computational method

To solve the 2D Eq. (11) one must turn to numerical
methods because of the irregular form of the cavity in Fig. 1.
We have chosen the finite difference method (FDM) [32] in
which the (x,y) space is discretized into a lattice (xi,yj ), with
each point representing an eigenfunction φ(xi,yj ). Hence (11)
is turned into a (complex) matrix equation which may be solved
with standard computer software.

The points (xi,yj ) are chosen to span a rectangular grid
which is convenient from a computational point of view.
More important, however, is that we may stay close to
experiments [30]. In these experiments, the sample points
were placed as a rectangular grid, just as the grid points in
FDM. The number of points were chosen to ensure sufficient
numerical accuracy. The numericalPT -invariant solutions are
used in the following sections to evaluate the various statistical
properties for densities, the Poynting vector (current), and the
stress tensor distributions.

B. Numerical solutions for φ(xi , y j ): General features

Computed eigenvalues all turn out to be real except in the
regions of close level interaction as in Sec. III D. Below we will
present the typical behavior of the PT -symmetric solutions in
two different frequency regimes. In addition, we will consider
the case when two states are very close in energy and the
reordering that may take place as the strength of VI is varied.
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ρ=|φ|2

T
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FIG. 2. Plots for frequency 3.09 GHz. Top left: |φ|2. Top right:
The current j. Bottom left: The stress tensor component Txx . Bottom
right: The stress tensor component Tyy .

Figures 2 and 3 show the computed densities |φ(xi,yj )|2,
currents j, and stress tensor components Tαβ in low- and
high-frequency regimes. In the first case the results are clearly
structured with a simple “particle-in-a-box” type of behavior.
In the second case the wavelength is much shorter than the
dimensions of the enclosure. Hence the results are more
fragmented this time.

C. Perturbation method for small |VI |
To gain deeper insight into the nature of the solutions, one

may turn to conventional perturbation theory. If E0
n and φ0

n

ρ=|φ|2 j

T
xx

T
yy

FIG. 3. Plots for frequency 31.98 GHz. Top left: |φ|2. Top right:
The current j. Bottom left: The stress tensor component Txx . Bottom
right: The stress tensor component Tyy .

refer to the case VI = 0, the lowest-order correction to the
unperturbed wave function is

φn = φ0
n + iδφn, (12)

with

δφn =
∑

m,m�=n

〈m|VI |n〉
E0

n − E0
m

φ0
m. (13)

This means that the change of wave function with the onset of
a finite VI is purely imaginary. In our case VI is odd (cf. Fig. 1).
Hence symmetric states will only combine with antisymmetric
ones and vice versa in the perturbation expansion (13). The
states (12) therefore illustrate ±1 PT invariance in a simple
and transparent way. This kind of basic approach also turns
out to be a practical calculational tool when levels are clearly
separated and VI is small.

D. Complex interaction of levels and PT -symmetry breaking

There are some salient features when a pair of even and odd
states are close in eigenfrequencies. At VI = 0 the states are
obviously real. As VI is made finite, however, the two states
will, as just mentioned, acquire imaginary components by a
mixing among the unperturbed states. Following degenerate
perturbation theory the level shifts are, however, real as long
as |VI | is sufficiently small.

Figure 4 shows |φ(xi,yj )| (absolute values for clarity) for
two states with close frequencies. Obviously there is a simple
mix of states that is very similar to the unperturbed pair φ0

28
and φ0

29. Here the value of |VI | = 0.05π2 cm−2 is relatively
small. As a consequence, the imaginary parts are much less
than the real ones.

As |VI | is gradually increased, a complex reordering of
the two states occurs. In this region the real and imaginary
components of the wave functions have similar weights and
the mixing is nearly symmetric. Eigenvalues are then complex,
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FIG. 4. Real and imaginary components of wave functions φ28

and φ29 for |VI | = 0.05π 2 cm−2.
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FIG. 5. Real and imaginary components of wave functions φ28

and φ29 for |VI | = 10π 2 cm−2.

i.e., there is a complex level interaction and PT symmetry is
broken at the same time.

On further increase of |VI | beyond the region for reordering
and complex level interaction the levels once more become
real, but the two wave functions are now almost purely
imaginary, as seen in Fig. 5, i.e., there is a phase rotation.

One component of the complex wave functions in Figs. 4
and 5 is thus dominant. In the region of level reordering,
however, the real and imaginary components of the wave
functions have, as mentioned, similar weights. This means
that φ28 and φ29 become almost linearly dependent differ-
ing only by a phase factor, i.e., φ29 ≈ iφ28. At this point
the eigenvalues become complex and the states become
nonstationary. Related issues on wave function mixing and
crossover of complex levels are found, for example, in
Refs. [33–36].

IV. STATISTICAL DISTRIBUTIONS

Chaotic quantum systems (and their analogs) have been
shown to follow generic statistical distributions regarding
density [2,37] (area scaled as ρ = A|φ|2), currents (j,jα) [37],
and stress tensor components (Txx and Txy) [30]. These
distributions relate to Gaussian random waves and may be
derived from the assumption that in each point the wave
function can be described as a random superposition of
monochromatic plane waves, as long as the point is sufficiently
far from the boundary.

As a measure of openness of a cavity, one introduces a
mixing parameter ε that ranges from 0 to 1. When ε → 1
the cavity becomes fully open, and ε → 0, on the other hand,
means that it is closed. This parameter is determined as [37]

ε =
√

〈q2〉
〈p2〉 . (14)

Here, the wave function

φ(r) = p(r) + iq(r) (15)

has been phase rotated so that q and p are statistically
uncorrelated, i.e., 〈pq〉 = 0, and also 0 � ε � 1 [37]. Here
we will focus on the cavity shown in Fig. 1. The dents on
the sides of the cavity are introduced to suppress bouncing
modes, which could bring elements of order to the system.
The following distributions are obtained within conventional
HQM assuming Gaussian random fields [37].

A. Probability density distributions

The statistical distribution of the density ρ = A|φ|2, here
rescaled with respect to the area A of the cavity, is [37] (see
also Refs. [2,38])

P (ρ,ε) = μe(−μ2ρ)I0(μνρ), (16)

where I0 is the modified Bessel function of zeroth order and

μ = 1

2

(
1

ε
+ ε

)
, ν = 1

2

(
1

ε
− ε

)
. (17)

In the limit ε → 0 one recovers the Porter-Thomas distribution

P (ρ) = 1√
2πρ

e−ρ/2, (18)

which is the probability density distribution for wave functions
that are invariant under time reversal and may be chosen to be
real [37].

In the other limit ε → 1, the state is evidently complex with
broken time symmetry and (16) then turns into the Rayleigh
distribution [38]

P (ρ) = e−ρ. (19)

As seen in (18), the Porter-Thomas distribution is singular
in ρ = 0, while the Rayleigh distribution remains finite.
In the real case, |φ|2 = p2, thus only p needs be zero to
have a zero density. This occurs along nodal lines. In the
complex case, on the other hand, |φ|2 = p2 + q2. Now both
the independent functions p and q must both vanish for |φ|2
to be zero. This happens only when the intersection points
between the nodal lines belonging to p and q, respectively.
For a completely chaotic case both p2 and q2 obey the
Porter-Thomas distribution (if properly rescaled with respect
to A) and, when added together, their sum |φ|2 = p2 + q2

follows the Rayleigh distribution.

B. Numerical probability density distributions

Numerically obtained density distributions are shown in
Figs. 6 and 7; guided by measurements, 1472 interior grid
points (see Fig. 1) were normally used. However, at frequen-
cies higher than utilized experimentally (5.5–10 GHz [30])
an increased resolution was required to bring simulations and
the present random wave theory into quantitative agreement.
The graphs in Figs. 6 and 7 clearly show the crossover from
a practically closed system that obeys the Porter-Thomas
distribution to an open system with a Rayleigh distribution.

062910-5



B. WAHLSTRAND, I. I. YAKIMENKO, AND K.-F. BERGGREN PHYSICAL REVIEW E 89, 062910 (2014)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

1.4

p

P
(p

)

FIG. 6. Numerical probability density distribution (solid line)
obtained as an average over 11 wave functions with frequencies
between 4.8 and 5.92 GHz and the predictions from the Gaussian
random wave theory (dashed curve) in (16); 〈ε〉 = 0.124.

As mentioned above, not all points are included to avoid
possible effects of boundary symmetry. We thus find a slight
dependence on frequency among the states being sampled, but
the overall results are quite satisfactory. We do indeed find
that NHQM with fictitious imaginary probes works in practice
for the present PT -symmetric system. At the relatively
high frequencies studied the method yields results in good
agreement with predictions from conventional HQM random
wave theory and statistics collected for realistic cavities. There
is a slight dependence on frequency, but the overall agreement
is nevertheless good.

At lower frequencies, on the other hand, one finds that
fluctuations increase in magnitude and as a consequence there
are deviations from the ideal distribution in (16). This happens
because the wavelength increases in this case to the extent that
boundary effects become noticeable as in Fig. 2. This general
behavior is expected and well known.
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0.8
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1.4
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P
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)

FIG. 7. Same as in the previous figure but for frequencies between
30.85 and 31.5 GHz and 〈ε〉 = 0.640.

C. Current distributions

The corresponding statistics for the current (jα and j = |j|)
flowing within the cavity follow the distributions [37]

P (jα) = 1√
2
〈
j 2
α

〉e−
√

2|jα |/〈j 2
α 〉, (20)

P (j ) = 4j

〈j 2〉K0

(
2

j√
〈j 2〉

)
, (21)

where K is the modified Bessel function of the second kind.
The theory is valid for isotropic flow, i.e., the current is not
biased towards any direction. This is a reasonable assumption
as long as the net flow is weak [39]. Consequently the
distributions for the current components jx and jy are also
isotropic.

D. Numerical distributions for currents

Figures 8 and 9 show numerical distributions of the different
current components, jx , jy , and j =

√
j 2
x + j 2

y . As above, only
a section of the cavity has been sampled. There is a clear
difference between these distributions; the low-frequency case
shows poor agreement with the random wave theory above,
while at higher frequencies there is a clear isotropic behavior
and the distribution for the total current is much improved.
As above, the frequency is thus the most important factor
to obtain good agreement with the random wave theory. The
small shift in P (jy) is an effect of the net current within the
finite sampled region, an effect that seems negligible at least
in the high-frequency region.

E. Pauli stress tensor distributions

As for the irregular cases above, the stress tensor compo-
nents Txx , Tyy , and Txy have been shown to follow specific

FIG. 8. The numerical distributions (solid line) obtained as an
average over 11 wave functions between 4.80 and 5.92 GHz with
〈jy〉/〈j〉 = 0.149. Top: The distribution of j/〈j〉. Bottom left and
right: The distributions of jx/

√
〈j 2

x 〉 and jy/
√

〈j 2
y 〉, respectively.

Theoretical distributions (20) and (21) are shown as dashed curves.
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generic distributions [30]. As before, the distribution of
these quantities has been derived using the approach of
random fields as above. As for the current distributions,
the theoretical distributions of the stress tensor components
are assumed to be isotropic, i.e., there is no preferred
direction. Thus Txx and Tyy obey identical distributions. The
explicit expression for the different components follows from

Ref. [30],

P (Tαβ) = 1

2π

∫ ∞

−∞
θαβ(a)e−iaTαβ da, (22)

where θαβ is the characteristic function for components αβ.
Because of symmetry, only two different θαβ are needed, one
for Txx (θxx) and one for Txy (θxy). The explicit expressions are

θxx(a) = 8√
(1 − ia)(1 − iε2a)[a − i(

√
24 + 4)][ε2a − i(

√
24 + 4)]

× 1√
[a + i(

√
24 − 4)][ε2a + i(

√
24 − 4)]

, (23)

θxy(a) = 2√[
2 + (

a
2

)2][
2 + (

ε2a
2

)2][
1 + (

a
2

)2][
1 + (

ε2a
2

)2] . (24)

F. Numerical stress tensor distributions

Averaged stress tensor distributions for low and high
frequencies are displayed in Figs. 10 and 11. As in the
previous section there is poor agreement with the Gaussian
random wave theory at lower frequencies while the fit is quite
satisfactory in the other case. As before, the frequency plays a
crucial role for agreement with predictions from random wave
theory. There is also good agreement with the simulations
of quantum transport in an open Sinai billiard with leads
explicitly included [30]. Apparently there are no effects of a
finite net current as suggested by experiments [30]. The reason
is that the frequency is much higher in the present case, which
allows for an improved spatial resolution. The asymmetric
velocity distribution in Ref. [30] thus turns symmetric at higher
frequencies.

FIG. 9. The numerical distributions (solid line) obtained as an
average over 11 wave functions between 30.85 and 31.15 GHz
with 〈jy〉/〈j〉 = 0.143. Top: The distribution of j/〈j〉. Bottom left
and right: The distributions of jx/

√
〈j 2

x 〉 and jy/
√

〈j 2
y 〉, respec-

tively. Theoretical distributions (20) and (21) are shown as dashed
curves.

V. SUMMARY AND CONCLUDING REMARKS

We have explored further a basic model for wave transport
in open ballistic cavities such as quantum billiards, microwave
resonators, etc., and put it into the general context of PT
invariance. The model makes use of imaginary potentials
which mimic, for example, connects to the source and drain of
a quantum dot. The model was applied to a planar quantum or
microwave cavity in Ref. [7]. Wave function morphology and
flow patterns for low-energy or low-frequency modes were
found to be in good agreement with experiments.

The purpose of the present paper was to probe the model
further by extending the previous studies to high frequencies
at which chaotic dynamics is to be expected. The complex
PT -invariant solutions of a Schrödinger or Helmholtz equa-
tion with imaginary potentials were analyzed in terms of
the universal HQM statistical distributions for wave chaotic

FIG. 10. The numerical distributions for the different stress tensor
components (solid line) obtained as an average over 11 wave functions
with frequency between 4.80 and 5.92 GHz. Top left and right: The
distributions of Txx and Tyy , respectively. Bottom left: The distribution
of Txy . Predictions from the Gaussian random wave theory (22)–(24)
are shown as dashed curves.
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FIG. 11. The numerical distribution of the different stress tensor
components (solid line) obtained as an average over 11 wave functions
with frequency between 30.85 and 31.15 GHz. The distributions
of Txx and Tyy , respectively. Bottom left: The distribution of Txy .
Predictions from the Gaussian random wave theory (22)–(24) are
shown as dashed curves.

systems, in this case, the conventional random wave statistical
distributions for densities, currents, and the Pauli stress tensor
components. The agreement between the present approach
and the universal distributions from HQM Gaussian random
wave theory is quite satisfactory provided that PT symmetry
is obeyed. (This point is important. If there would be a PT
breaking, there would obviously be a breakdown of particle
conservation, etc.) In particular, the above good results for

the stress tensor components are most encouraging since they
probe higher derivatives, i.e., we get a more stringent test of
the model. We have also found good qualitative agreement
with experiments [30], but note that the experimental regime
needs to be extended to higher frequencies and smaller mesh
for improved resolution. This point is of principle interest as
the random wave Gaussian distributions derive from HQM
rather than NHQM.

In summary, we conclude that our basic non-Hermitian
model with imaginary potentials for the source and drain works
well for nominally PT -symmetric ballistic quantum dots or
cavities. It is relatively easy to apply from a computational
point of view as the more cumbersome external leads may be
avoided. We have also found that simple perturbation theory
may be quite useful for soft imaginary potentials. It may be
employed, for example, for “quick scanning and optimization”
of the impact of different positions of (multi)leads to guide,
for example, the design of more complex devices and also
for networks as outlined in Ref. [25] and possibly filtering.
These aspects should be of great practical value when dealing
with transport in open 3D objects such as cubes, terahedra,
ellipsoids, cylindrical rods, etc., and ensembles of objects such
as these. In such cases finite difference computations tend to
be overly demanding in terms of time and memory. Finally,
PT -symmetry breaking and phase rotations associated with
complex level repulsions invite further studies, both theoretical
and experimental, including also dimensions higher than two.
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U. Kuhl, and H. J. Stöckmann, Phys. Rev. E 77, 066209 (2008);
,79, 019901(E) (2009).

[31] J. S. M. Anderson, P. W. Ayers, and J. I. Rodriguez Hernandez,
J. Phys. Chem. A 114, 8884 (2010).

[32] A. Iserles, A First Course in the Numerical Analysis of Differen-
tial Equations (Cambridge University Press, Cambridge, U.K.,
2003).

[33] A. Richter, Phys. Scr., T 90, 22 (2001).
[34] For a topical review on non-Hermitian Hamilton operators and

the physics of open quantum systems, see I. Rotter, J. Phys. A
42, 153001 (2009).

[35] Quantum Physics with non-Hermitian Operators: Theory and
Experiment, edited by J. Bird, R. Kaiser, I. Rotter, and
G. Wunner, special issue of Fortschr. Phys. 61 (2-3) (2013).

[36] S. Bittner, B. Dietz, H. L. Harney, M. Miski-Oglu, A. Richter,
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