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Experimental observation of a transition from amplitude to oscillation death in coupled oscillators
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We report the experimental evidence of an important transition scenario, namely the transition from amplitude
death (AD) to oscillation death (OD) state in coupled limit cycle oscillators. We consider two Van der Pol
oscillators coupled through mean-field diffusion and show that this system exhibits a transition from AD to OD,
which was earlier shown for Stuart-Landau oscillators under the same coupling scheme [T. Banerjee and D.
Ghosh, Phys. Rev. E 89, 052912 (2014)]. We show that the AD-OD transition is governed by the density of
mean-field and beyond a critical value this transition is destroyed; further, we show the existence of a nontrivial
AD state that coexists with OD. Next, we implement the system in an electronic circuit and experimentally
confirm the transition from AD to OD state. We further characterize the experimental parameter zone where
this transition occurs. The present study may stimulate the search for the practical systems where this important
transition scenario can be observed experimentally.
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The suppression of oscillation has been attracting the
attention of researchers due to its ubiquity in diverse fields
like physics, biology, and engineering [1]. In coupled oscilla-
tors, there exists two distinct types of oscillation quenching
processes, namely amplitude death (AD) and oscillation
death (OD). Although AD and OD are two structurally
different phenomena, their clear distinction has been made
only recently in pioneering works reported in Refs. [1–3]
(see Ref. [1] for an extensive review on OD). In AD, all
the coupled oscillators populate a common stable steady state
that was unstable otherwise and thus gives rise to a stable
homogeneous steady state (HSS) [4]. But, in the case of
OD, due to symmetry breaking bifurcation, the oscillators
populate different coupling-dependent stable steady states,
resulting in stable inhomogeneous steady states (IHSS). Thus,
the stabilization of HSS gives rise to AD, and the stabilization
of IHSS gives birth to OD.

In this context, Koseska et al. [2] first proved that, despite
their different origins, AD and OD can simultaneously occur in
a diffusively coupled system of oscillators; more significantly,
they reported an important transition phenomenon, namely
the transition from AD to OD. They established the analogy
between this transition and the Turing-type bifurcation [5] in
spatially extended systems. The AD-OD transition in identical
Stuart-Landau oscillators is reported in Ref. [3] for the
dynamic [6] and conjugate [7] coupling schemes. In Ref. [8],
diverse routes to AD-OD transition have been shown in
identical nonlinear oscillators that are coupled diffusively with
an additional repulsive coupling link. Recently, the present
authors have reported the AD-OD transition in Stuart-Landau
oscillators coupled via mean-field diffusion [9]. In that paper,
we have shown that the AD-OD transition is governed by the
mean-field density parameter. Also, we have reported a novel
nontrivial AD state that coexists with OD for a certain param-
eter zone and which is destroyed by the parameter mismatch.

Although OD and AD have been separately observed pre-
viously in a number of different dynamical systems [10–12],
to the best of our knowledge, hitherto no experimental
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confirmation of the predicted AD-OD transition has been
reported.

In this paper, we report the experimental evidence of
AD-OD transition in coupled oscillators. For this we consider
two Van der Pol oscillators [13] in their stable oscillation
mode coupled via mean-field diffusion. The paradigmatic
Van der Pol oscillator is widely used for the demonstration
and understanding of nonlinear dynamics; further, it has a
rich connection with engineering and biological systems [14].
The choice of the mean-field coupling is motivated by the
fact that it is one of the important coupling schemes owing
to its presence in many natural systems [12,15,16]. Also,
experimental observation of AD-OD transition in this coupling
scheme is comparatively easy because, as we showed in
Ref. [9], there exists a wide parameter region where OD is the
only existing state, which is in contrast to the other diffusive
coupling schemes where, in general, OD is accompanied by
limit cycle oscillations [17]. We at first carry out theoretical
and numerical analyses to explore the dynamical behaviors
of the coupled Van der Pol oscillators and characterize the
AD-OD transition. Next, the coupled system is implemented in
electronic circuit to experimentally demonstrate the transition.
Experimental results show the evidence of AD-OD transition
for a wide range of parameter values.

We consider two Van der Pol (VdP) oscillators interacting
through mean-field diffusive coupling; mathematical model of
the coupled system is given by

ẋ1,2 = y1,2 + ε(QX − x1,2), (1a)

ẏ1,2 = a1,2(1 − x2
1,2)y1,2 − x1,2. (1b)

Here X = 1
2

∑2
i=1 xi is the mean field of the coupled sys-

tem. The individual VdP oscillator shows a near sinusoidal
oscillation for small a1,2, and relaxation oscillation for large
a1,2. The coupling strength is given by ε; Q is called the
mean-field density parameter that determines the density of
mean-field diffusion [12,16]; 0 � Q < 1. As the limiting case
we take two identical VdP oscillators: a1,2 = a. From Eq. (1)
we can see that the system has the following fixed points: the
origin (0,0,0,0) is the trivial fixed point, and two additional
coupling-dependent fixed points: (i) (x1

∗, y1
∗, −x1

∗, −y1
∗)
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where x1
∗ = y1

∗
ε

and y1
∗ =

√
ε2 − ε

a
. (ii) (x1

†, y1
†, x1

†, y1
†)

where x1
† = y1

†

ε(1−Q) and y1
† =

√
ε2(1 − Q)2 − ε(1−Q)

a
.

The eigenvalues of the system at the origin are

λ1,2 = (a − ε) ±
√

(a + ε)2 − 4

2
, (2a)

λ3,4 = [a − ε(1 − Q)] ±
√

[a + ε(1 − Q)]2 − 4

2
. (2b)

From eigenvalue analysis we derive that the two pitchfork
bifurcation (PB) points, PB1 and PB2, emerge at the following
coupling strengths:

εPB1 = 1

a
, (3a)

εPB2 = 1

a(1 − Q)
. (3b)

The IHSS (x1
∗, y1

∗, −x1
∗, −y1

∗) emerges at εPB1 through a
symmetry breaking pitchfork bifurcation. The other nontrivial
fixed point (x1

†, y1
†, x1

†, y1
†) comes into existence at εPB2,

which gives rise to an unique nontrivial HSS (to be discussed
later in this paper). From Eq. (2) we can see that no Hopf
bifurcation of trivial fixed point occurs for a > 1; in that case,
only pitchfork bifurcations exist. Thus, for a > 1 no AD, and
AD-OD transition are possible. For any a < 1, equating the
real part of λ1,2 and λ3,4 to zero, we get two Hopf bifurcation
points at

εHB1 = a, (4a)

εHB2 = a

1 − Q
. (4b)

We use XPPAUT package [18] to compute the bifurcation
branches. Figure 1(a) shows the bifurcation diagram of x1,2

with ε for Q = 0.3 and a = 0.35 [without any loss of
generality, throughout this paper, we use a = 0.35 (a < 1)]. It
is observed that at εHB2 = 0.5, AD is born through an inverse
Hopf bifurcation; whether at εHB1 = 0.35, an unstable limit
cycle is born. This AD (stable HSS) state becomes unstable
trough a supercritical pitchfork bifurcation (PB1) to give
birth to OD (stable IHSS) at εPB1 = 1/a = 2.857. Now, with
increasing Q value, εHB2 moves toward εPB1, and at a particular
Q value, say Q∗, HB2 collides with PB1: Q∗ = (1 − a2). At
Q = Q∗, the AD state, and thus the AD-OD transition, cease
to take place. Figure 1(b) shows this scenario for a = 0.35,
and Q = Q∗ = 0.8775. Now, for Q > Q∗, εHB2 > εPB1, i.e.,
HB2 point moves to the right hand side of PB1; subsequently,
the IHSS now becomes stable at εHBS through a subcritical
Hopf bifurcation, where

εHBS = 1√
(1 − Q)

. (5)

This is derived from the eigenvalues of the nontrivial fixed
point (x1

∗, y1
∗, −x1

∗, −y1
∗) given by

λ1,2 = −b1
∗ ±

√
b1

∗2 − 4c1
∗

2
, (6a)

λ3,4 = −b2
∗ ±

√
b2

∗2 − 4c2
∗

2
, (6b)

FIG. 1. (Color online) Bifurcation diagram (using XPPAUT) of
two mean-field-coupled identical Van der Pol oscillators (a = 0.35).
Gray (red) lines, stable fixed points; black lines, unstable fixed points;
solid circle (green), stable limit cycle; open circle (blue), unstable
limit cycle. HB1,2 and HBS are Hopf bifurcation points; PB1,2 and
PBS are pitchfork bifurcation points. (a) Q = 0.3 (< Q∗): AD-OD
transition takes place; coexistence of OD (x1 = −x2) and nontrivial
AD (NT-AD) (x1 = x2) is also shown [shaded (cyan) region].
(b) Q = 0.8775 (=Q∗): AD vanishes, AD-OD transition just de-
stroyed. (c) Q = 0.95 (>Q∗): no AD-OD transition, only OD. (d)
Phase diagram in ε − Q space. With increasing Q, collision of HB2
and PB1 destroys the AD-OD transition scenario.

where b1
∗ = ε − a(1 − x∗

1
2), c1

∗ = 1 + 2ax∗
1y∗

1 − aε(1 − x∗
1

2),
b2

∗ = ε(1 − Q) − a(1 − x∗
1

2), c2
∗ = 1 + 2ax∗

1y∗
1 − aε(1 − Q)

(1 − x∗
1

2). Using Eq. (5), for Q = 0.95, we get εHBS ≈ 4.472
that matches with Fig. 1(c).

The second nontrivial fixed point (x1
†, y1

†, x1
†, y1

†) that was
created at εPB2 becomes stable through a subcritical pitchfork
bifurcation at εPBS:

εPBS = 2 − Q

2a(1 − Q)2
. (7)

This is derived from the eigenvalues corresponding to (x1
†,

y1
†, x1

†, y1
†), which are same as Eq. (6) except now the “∗”

signs are replaced by “†” sign. From Fig. 1(a) we have, εPBS ≈
4.956, that exactly matches with Eq. (7). For ε > εPBS, stable
IHSS (OD) (i.e., x∗

1 = −x∗
2 ) coexists with the nontrivial AD

(NT-AD) state (i.e., x
†
1 = x

†
2) [shaded (cyan) region in

Fig. 1(a)]. The attribute nontrivial is used because it results
from the stabilization of nontrivial HSSs (x†,y†). Further, the
observed NT-AD is unique because unlike conventional AD,
the NT-AD state is born via a subcritical pitchfork bifurcation.
Also, contrary to AD, the NT-AD state is completely destroyed
by parameter mismatch [9]. The whole bifurcation scenario in
the ε − Q parameter space is shown in Fig. 1(d) for a = 0.35.
We can see that, with increasing Q, at Q = 0.8775, collision
of HB2 with PB1 destroys the AD-OD transition. It also shows
the coexisting region of NT-AD and OD.

Next, we implement the coupled system in electronic
circuit. Figure 2 shows the electronic circuit diagram of two
mean-field-coupled Van der Pol oscillators. Shaded (blue)
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FIG. 2. (Color online) Experimental circuit diagram of the mean-
field-coupled VdP oscillators. A, A1–A4, and AQ are realized with
TL074 op-amps. All the unlabeled resistors have value R = 10 k�.
C = 10 nF, Ra = 286�, Vα = 0.1 v. Box denoted by “B” are op-
amp-based buffers; inverters are realized with the unity gain inverting
op-amps. ⊗ sign indicates squarer using AD633. Inset (in the middle
part) shows the oscillation from the uncoupled VdP oscillators: upper
trace (yellow) Vx1, lower trace (cyan) Vx2 (y axis: 10 v/div, x axis:
250 μs/div).

regions in the upper and lower portions represent the individual
VdP oscillators [19]. We use TL074 (quad JFET) op-amps and
AD633 analog multiplier chips (having differential inputs);
output of the multiplier is scaled by a factor of 0.1. ±
15 v power supplies are used; resistors (capacitors) have ±5%
(±1%) tolerance. The unlabeled resistors have value R =
10 k�. The op-amp AQ is used to generate the mean field:
VQ = − 2RQ

R

∑2
j=1

Vxj

2 , which is subtracted from Vx1,2 using
op-amps denoted by A. One can see that Rε determines the
coupling strength, and RQ determines the mean-field density.
The voltage equation of the circuit can be written as:

CRV̇xi = Vyi + R

Rε

⎡
⎣2RQ

R

2∑
j=1

Vxj

2
− Vxi

⎤
⎦ , (8a)

CRV̇yi = R

Ra

(
Vα − V 2

xi

10

)
Vyi

10
− Vxi. (8b)

Here, i = 1,2. Equation (8) is normalized with respect to
CR, and thus now becomes equivalent to Eq. (1) for the
following normalized parameters: u̇ = du

dτ
, τ = t/RC, ε = R

Rε
,

Q = 2RQ

R
, a = R

100Ra
, 10Vα = 1, xi = Vxi

Vsat
, and yi = Vyi

Vsat
. Vsat

is the saturation voltage of the op-amp. In the experiment we
take Vα = 0.1 v, and C = 10 nF; we choose a = 0.35 by taking
Ra = 286 � [using a precision potentiometer (POT)]. We vary
the coupling strength ε and mean-field density Q by varying
Rε and RQ, respectively (using precision POTs). For the
uncoupled case, the individual oscillations have a frequency
of 1.7 kHz, and are shown in Fig. 2 (inset). Next, at first we
fixed Q = 0.3 by taking RQ = 1.5 k� and vary Rε . With the
increasing coupling strength (i.e., decreasing Rε) we observed

FIG. 3. (Color online) Experimental real time traces [(b) and (d)]
of Vx1 and Vx2 along with the numerical time series plots [(a) and (c)]
of x1 and x2. (a) Q = 0.3, (b) RQ = 1.5 k�: complete synchronized
limit cycle at Rε = 32 k� (ε = 0.31), AD at Rε = 19.2 k�

(ε = 0.53), and OD at Rε = 2.14 k� (ε = 4.67). (c) Q = 0.95, (d)
RQ = 4.75 k� : complete synchronized limit cycle at Rε = 2.70 k�

(ε = 3.70) and OD state Rε = 700 � (ε = 14.28). [(b), (d) y axis:
10 v/div; x axis: 250 μs/div].

the transition from limit cycle (complete synchronized) state to
AD at Rε = 30.9 k�, and then a transition from AD to OD state
at Rε = 3.8 k�. In Fig. 3(b), using the experimentally obtained
snapshots of the waveforms [with a digital storage oscilloscope
(Tektronix TDS2002B, 60 MHz, 1 GS/s)], we demonstrate
different dynamical behaviors for the following parameter
values: complete synchronized limit cycle at Rε = 32 k�,
AD at Rε = 19.21 k�, and OD at Rε = 2.14 k�. For the
comparison purpose, we also show the numerical results (using
fourth order Runge-Kutta method with step-size 0.01) taking
ε values that are equivalent to Rε (note that ε = R

Rε
); Fig. 3(a)

shows this with limit cycle (for ε = 0.31), AD (for ε = 0.53),
and OD (for ε = 4.67). It can be seen that the numerical and
experimental results are in close agreement with each other. As
we increase RQ, the AD region reduces; for RQ � 4.32 k�,
no AD occurs and the limit cycle state directly transits into OD
state beyond a certain coupling strength. This is in agreement
to the theory that for Q > Q∗ (=0.8775) no AD-OD transition
takes place. Note the close proximity between Q∗ and

experimental value of Q∗, i.e., Q∗
expt = 2R∗

Q

R
= 0.864. Next,

we take Q = 0.95 (>Q∗) by taking RQ = 4.75 k�. Here,
in accordance with the theory, we observed direct transition
from limit cycle (complete synchronized) to the OD state
(at Rε = 1.95 k�); Fig. 3(d) shows this scenario: limit cycle
(at Rε = 2.7 k�) and OD state (at Rε = 700 �). Figure 3(c)
shows the same in numerical simulation having limit cycle (at
ε = 3.7) and OD (at ε = 14.28). We repeat the experiment for
a large number of values of RQ and note the Rε values where
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FIG. 4. (Color online) Experimental phase diagram in the R

Rε

(ε)— 2RQ

R
(Q) space. Open circle, experimental transition points from

limit cycle to AD; solid circle, experimental transition points from
AD to OD; open square, experimental transition points from limit
cycle to OD. Theoretical curves (line) are also shown, which closely
match with the experimental points.

AD, OD, and AD-OD transition occur. To represent the whole
experimental scenario, we plot the experimental phase diagram
in R

Rε
(ε)— 2RQ

R
(Q) space (Fig. 4). Theoretically obtained

curves are also plotted in the same graph. It is noteworthy that

the experimental points are in close proximity to the theoretical
curves. The slight deviation from the theoretical result occurs
due to the inherent parameter fluctuation in electronic circuit,
and also the possible parameter mismatches present between
the oscillators. We further note that, due to this inherent param-
eter mismatch, we could not observe the NT-AD state, which
is in agreement with the findings of the authors of Ref. [9],
that any parameter mismatch destroys the NT-AD state.

In conclusion, we have experimentally observed the tran-
sition from amplitude death to oscillation death state in
mean-field-coupled limit cycle oscillators. We have chosen the
paradigmatic Van der Pol oscillators coupled via mean-field
diffusion and implemented the system in electronic circuit. By
changing the coupling strength for a fixed mean-field parame-
ter, we have experimentally observed the transition from AD to
OD if the mean-field parameter has a value less than a threshold
value. Beyond that threshold value, no AD occurs, and limit
cycle oscillation directly transforms into an OD state. We have
corroborated the experimental results by suitable theory and
bifurcation analysis. We believe that apart from electronic
circuits the AD-OD transition scenario can be observed
experimentally in laser and neuronal systems that may reveal
the practical application of this transition in those systems.

D.G. acknowledges DST, India for providing the INSPIRE
fellowship.
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