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This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation
over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI1SI2S)
epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where
network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining
extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival
threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a
region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence
is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously
prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers.
Little to no overlapping of the layers’ central nodes is the key determinant of coexistence. For example, we
show both analytically and numerically that positive correlation of network layers makes it difficult for a virus
to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other
virus is more difficult.
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I. INTRODUCTION

Multiple viral spreading within a single population involves
very rich dynamics [1], attracting substantial attention [2–4].
Moreover, applications of these types of models extend beyond
physiological viruses, as “virus” may refer to products [5],
memes [6,7], or pathogens [8,9], for example. However,
multiple virus propagation is a mathematically challenging
problem. One source of complexity of this problem is multiple
interaction possibilities among viruses. For example, viruses
may be reinforcing [10], weakening [11], exclusive [12], or
asymmetric [3,13].

In the competitive spreading scenario, if infected by one
virus, a node (individual) cannot be infected by the other virus.
This type of model has implications in such applications as
product adoption (e.g., Apple vs Android smart phones), virus-
antidote propagation, meme propagation, opposing opinions
propagation, and so on. Several researchers have addressed
this problem. Newman [12] employed bound percolation to
study the spread of two Susceptible-Infected-Removed (SIR)
viruses in a host population through a single contact network
where a virus takes over the network, then a second virus
spreads through the resulting residual network. The paper
proved a coexistence threshold above the classical epidemic
threshold, indicating the possibility of coexistence in the SIR
model. Karrer and Newman [1] extended the work to the more
general case where both viruses spread simultaneously. Poletto
et al. [9] studied the impact of mobility patterns on propagation
of two competitive SIR pathogens within a host population. For
SIS epidemic spreading, Wang et al. [14] studied competitive
viruses and proved that exclusive, competitive SIS viruses
cannot coexist in scale-free networks. Moreover, for an
arbitrary network, Prakash et al. [15] proved that competitive
SIS virus cannot coexist. Meanwhile, Beutel et al. [16] showed
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coexistence of viruses in the case of SIS viruses with partial
immunity (where a node can be infected by both viruses
simultaneously).

The competitive spreading problem becomes particularly
complicated if the network layers through which viruses
propagate are distinct. Current knowledge of how hybridity of
underlying topology influences the fate of pathogens is very
limited. These systems are usually mathematically intractable,
hindering conclusive results on spreading of multiple viruses
on multilayer networks. Funk and Jansen [2] extended the bond
percolation analysis of two competitive viruses to the case of a
two-layer network, investigating effects of layer overlapping.
Granell et al. [11] studied the interplay between disease and
information copropagation in a two-layer network consisting
of one physical contact network spreading the disease and a
virtual overlay network propagating information to stop the
disease. They found a metacritical point for the epidemic
onset leading to disease suppression. Importantly, this critical
point depends on awareness dynamics and the overlay network
structure. Wei et al. [17] studied SIS spreading of two
competitive viruses on an arbitrary two-layer network, deriving
sufficient conditions for exponential die out of both viruses.
They also introduced a statistical tool, EigenPredict, to predict
viral dominance of one competitive virus over the other [4].

In this paper, we address the problem of two competitive
viruses propagating in a host population where each virus has
a distinct contact network for propagation. Specifically, we
study an SI1SI2S model as the simplest extension of the SIS
model for single-virus propagation to competitive spreading
of two viruses on a two-layer network. From a topology point
of view, our study is comprehensive because our multilayer
network is allowed to have any arbitrary structure.

Our paper is most relevant to research in [17] and [4]. Wei
et al. conjectured in [17] and numerically observed in [4]
that “the meme whose first eigenvalue [18] is larger tends to
prevail eventually in the composite networks.” However, we
challenge this argument in two respects. First, the definition
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of viral dominance in [4] is related to comparison of fractions
of nodes infected by each virus. However, for two viruses
with two different contact networks, having a larger first
eigenvalue is not a direct indicator of a higher final fraction
of infected nodes. In fact, it is possible to create two distinct
network layers where a meme spreading in the population
with a smaller first eigenvalue takes over a much larger
fraction of the population. Therefore, we find that the definition
of viral dominance presented in [4] cannot be corroborated
with eigenvalues without restriction to a specific family
of networks.

Second, and of paramount interest in this paper, first
eigenvalues are graph properties [19] of each layer in isolation,
with no information about layers interrelation, and thus cannot
capture the joint influence of the network layers, unless some
sort of symmetry or homogeneity is assumed. In fact, the
generation of one layer in their synthetic multilayer network
via the Erdős Réyni model [4] dictated a homogeneity in their
multilayer networks, creating a biased platform for further
observations of layer interrelations. Our work characterizes
the competitive spreading problem more accurately than that
presented by Wei et al. [4], as our analytical results clearly
express the effect of layers’ interrelation.

The main outcome of our analysis is discovery and proof
of a region for long-term coexistence of competitive viruses in
nontrivial multilayer networks. Interestingly, the coexistence
region cannot be attributed to any single-layer contact network
topology. We show that when the contact graphs of each virus
are the same, i.e., the contact network is single-layer, either
both viruses die out, or there is only one absolute winner. In
other words, it is not possible for both viruses to survive in the
long term over a single-layer contact network. Furthermore, the
winner is solely determined by epidemic-related parameters,
irrespective of the underlying contact topology. However,
when the contact graphs are distinct, i.e., the contact topology
is a two-layer network, a new phenomenon emerges: Both
viruses can coexist long term. Furthermore, the fate of the
viruses depends on epidemic-related parameters as well as on
the topology of the multilayer network. In particular, we show
no or little overlapping of central nodes across the layers is a
key determinant of coexistence.

Our results are not limited to any homogeneity assumption
or degree distribution or to any network model arguments.
Our analytical results determine extinction, coexistence, and
absolute dominance of the viruses by introducing concepts
of survival threshold and absolute-dominance threshold. Fur-
thermore, for numerical simulations, we employ a multilayer
network generation framework to obtain a set of networks so
that individual layers have identical graph properties while
the interrelation of network layers varies. Therefore, any
difference in outputs is purely the result of interrelation. Thus,
we offer a paradigmatic contribution to shed light on topology
hybridity in multilayer networks.

II. COMPETITIVE SPREADING IN
MULTILAYER NETWORKS

In this paper, we study a continuous time SI1SI2S model of
two competitive viruses propagating on a two-layer network,
initially proposed in discrete time [17,20].

A. Multilayer network topology

Consider a population of size N among which two
viruses propagate, acquiring distinct transmission routes. For
example, an airborne pathogen and a blood-borne pathogen
spread within a population through different transmission
routes. Represented mathematically, the network topology is
a multilayer network because two link types are present; one
type allows transmission of virus 1, and the other type allows
transmission of virus 2. We represent this multilayer network
as G(V,EA,EB), where V is the set of vertices (nodes) and EA

and EB are sets of edges (links). With labeled vertices from 1
to N , adjacency matrices A � [aij ]N×N and B � [bij ]N×N

correspond to edge sets EA and EB , respectively, where
aij = 1 if node j can transmit virus 1 to node i; otherwise,
aij = 0, and similarly bij = 1 if node j can transmit virus 2
to node i; otherwise, bij = 0. We assume the network layers
are symmetric, i.e., aij = aji and bij = bji . Corresponding to
adjacency matrices A, we define dA as the node-degree vector,
i.e., dA,i = ∑N

j=1 aij , DA � diag{dA} as the diagonal matrix
of node degrees, λ1(A) as the largest eigenvalue (or spectral
radius) of A, and vA as the normalized dominant eigenvector,
i.e., AvA = λ1(A)vA and vT

AvA = 1. We similarly define dB ,
DB , λ1(B), and vB for adjacency matrix B.

Unlike simple, single-layer graphs, multilayer networks are
rather new in network science. To begin, we define simple
graphs as GA(V,EA) and GB(V,EB ) to refer to each isolated
layer of the multilayer network G(V,EA,EB). This allows us
to argue multilayer network G in terms of simple graph GA

and GB properties and their interrelation. Figure 1 shows a
schematic of the two-layer network.

B. SI1SI2S model

The SI1SI2S model is an extension of continuous-time SIS
spreading of a single virus on a simple graph [21,22] to
modeling of competitive viruses on a two-layer network. In
this model, each node is either “Susceptible,” “I1-Infected,”
or “I2-Infected” (i.e., infected by virus 1 or 2, respectively),
while virus 1 spreads through EA edges and virus 2 spreads
through EB edges.

GA

GB

FIG. 1. (Color online) Schematic of two-layer contact topology
G(V,EA,EB ), where a group of nodes shares two distinct interactions.
In our SI1SI2S model, virus 1 transmits exclusively via EA links (red)
while virus 2 transmits only through EB links (black). Dotted vertical
lines reiterate that individual nodes are the same in both layers of G.
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In this competitive scenario, the two viruses are exclusive: A
node cannot be infected by virus 1 and virus 2 simultaneously.

Consistent with SIS propagation on a single graph
(cf. [21,22]), the infection and curing processes for viruses
1 and 2 are characterized by (β1,δ1) and (β2,δ2), respectively.
To illustrate, the curing time for I1-infected node i has an
exponential distribution characterized by curing rate δ1 > 0.
The infection of a susceptible node i is a Poisson process
which effectively occurs at rate β1Yi(t), where Yi(t) is the
number of I1-infected neighbors of node i at time t in layer
GA. The effective infection rate of a virus, defined as the ratio
of the infection rate over the curing rate, measures the expected
number of attempts of an infected node to infect its neighbor
before recovering [23], thus quantifying contagiousness of a
virus per contact. Curing and infection processes for virus 2 are
similarly described. Figure 2 diagrams the SI1SI2S competitive
epidemic spreading model over a two-layer network.

The SI1SI2S model is essentially a coupled Markov process.
For a network with arbitrary structure, this model becomes
mathematically intractable due to the exponential explosion
of its Markov state space size [24]. To overcome this issue
with coupled Markov processes, it is common to apply closure
techniques resulting in approximate models with much smaller
state space size; however, this is at the expense of accuracy.
Specifically, a first order mean-field type approximation [24]
suggests the following differential equations for the evolution
of infection probabilities of viruses 1 and 2, denoted by p1,i

and p2,i for node i, respectively,

ṗ1,i = β1(1 − p1,i − p2,i)
∑N

j=1
aijp1,j − δ1p1,i , (1)

ṗ2,i = β2(1 − p1,i − p2,i)
∑N

j=1
bijp2,j − δ2p2,i , (2)

for i ∈ {1, . . . ,N}, with the state-space size of 2N . This model
is an extension of the NIMFA model [21] for SIS spreading
on simple graphs.

FIG. 2. (Color online) Schematic of a contact network with the
node-level stochastic transition diagram for node i, according to the
SI1SI2S epidemic spreading model. Parameters β1 and δ1 denote
virus 1 infection rate and curing rate, respectively, and Yi(t) is the
number of node i neighbors in layer GA infected by virus 1 at time
t . Similarly, β2 and δ2 denote virus 2 infection rate and curing rate,
respectively, and Zi(t) is the number of node i neighbors in layer GB

infected by virus 2 at time t .

Our competitive virus propagation model [Eqs. (1) and (2)]
exhibits rich dynamical behavior dependent on epidemic
parameters and contact network multilayer structure. Accord-
ingly, values of effective infection rates τ1 � β1

δ1
and τ2 � β2

δ2
of viruses 1 and 2 yield several possible outcomes for the
SI1SI2S model [Eqs. (1) and (2)]. In particular, both viruses
may become extinct ultimately, or one can remove the other
one, or both will coexist.

C. Problem statement

Linearization of our SI1SI2S model [Eqs. (1) and (2)] at
the healthy equilibrium (i.e., p∗

1,i = p∗
2,i = 0,i ∈ {1, . . . ,N})

demonstrates the exponential extinction condition for both
viruses. When τ1 < 1/λ1(A) and τ2 < 1/λ1(B), any initial
infections exponentially die out. In this paper, we refer to such
critical value as a no-spreading threshold because a virus with
a lower effective infection rate is too weak to spread in the
population even in the absence of any viral competition.

Wei et al. [17] detailed the no-spreading condition: If
τ1 < 1/λ1(A), virus 1 does not spread and exponentially
dies out. Importantly, exponential extinction of both viruses
occurs only if τ1 < 1/λ1(A) and τ2 < 1/λ1(B) simultaneously.
Also, dynamical interplay between the competitive viruses
does not affect the no-spreading thresholds τ 0

1 = 1/λ1(A) and
τ 0

2 = 1/λ1(B) for virus 1 and virus 2. These thresholds remain
independent of virus competition characteristics and network
layer interrelation. Exponential extinction is the only analytical
outcome in Wei et al. [17]. If the effective infection rate
of one of the viruses is below its no-spreading threshold,
the competitive spreading problem reduces to single-virus
propagation. However, our paper addresses the case where
for both viruses τ1 > 1/λ1(A) and τ2 > 1/λ1(B). In this case,
the healthy equilibrium is unstable, and consequently at least
one of the two viruses persists.

Problem I. Assume the effective infection rates of each virus
are larger than their no-spreading threshold, i.e., τ1 > 1/λ1(A)
and τ2 > 1/λ1(B).

(1) Will both viruses survive (coexistence), or will one
virus completely remove the other (absolute dominance)?

(2) Which characteristics of a multilayer network structure
allow for coexistence?

This problem is essentially a two-virus problem, and so
we are interested in predicting what happens to the viruses
for given values of the pair (τ1,τ2). Will both die out? Will
one dominate the other? Will both coexist? To answer these
questions, we focus only on one virus instead of studying the
two viruses at the same time. With no loss of generality, we
choose virus 1. In this approach, we consider virus 2 as an
external factor reducing the susceptibility of the population
for virus 1. Therefore, instead of the initial two-virus problem,
we study the fate of virus 1 given that virus 2 has the capability
to infect the population and its effective infection rate is τ2 >

1/λ1(B). We investigate whether virus 1 dies out or it survives
when competing with virus 2. In case it survives, it may coexist
with virus 2, or it may be the absolute winner, removing virus 2
completely from the population. Formally, solving the two-
virus problem boils down to studying the fate of virus 1 given
virus 2.
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Problem II. Assume that the effective infection rate of
virus 2 is τ2 and that it is greater than the no-spreading
threshold of virus 2, i.e., τ2 > 1/λ1(B).

(1) For which values of τ1 will virus 1 survive?
(2) For which values of τ1 will virus 1 survive and be the

absolute winner, removing virus 2 completely?
Problem I and Problem II are equivalent. We address

Problem II by introducing two critical values for the ef-
fective infection rate, namely, survival threshold τc1 and
absolute-dominance threshold τ

†
1 . We then argue that absolute-

dominance threshold of one virus corresponds to the survival
threshold of the other virus. This further simplifies the problem
to finding the survival threshold of virus 1.

These questions pertain to long-term behaviors of com-
petitive spreading dynamics. To address these questions, we
perform a steady-state analysis of SI1SI2S model. Specifically,
bifurcation techniques are used to find two critical values,
survival threshold and absolute-dominance threshold, deter-
mining if a virus will survive and whether it can completely
remove the other virus. Significantly, we go beyond these
threshold conditions and examine interrelation of network
layers. Using eigenvalue perturbation, we find interrelations
of dominant eigenvectors and node-degree vectors of network
layers are critical determinants in ultimate behaviors of
competitive viral dynamics.

III. MAIN RESULTS

Dynamics of the competitive spreading SI1SI2S model is
rather complicated, and its mathematical analysis might look
cumbersome. Therefore, we have moved all the deductions
and proofs to the Appendix section and only report the final
results. The mathematical tools that we use in this study are
equilibrium analysis, bifurcation theory, and the eigenvalue
perturbation.

A. Equilibrium analysis and threshold equations

The SI1SI2S competitive virus propagation model [Eqs. (1)
and (2)] yields the equilibrium equations

p∗
1,i

1 − p∗
1,i − p∗

2,i

= τ1

∑
aijp

∗
1,j , (3)

p∗
2,i

1 − p∗
1,i − p∗

2,i

= τ2

∑
bijp

∗
2,j , (4)

for i ∈ {1, . . . ,N}, where p∗
1,i and p∗

2,i are, respectively, virus 1
and virus 2 equilibrium infection probabilities of node i. When
τ1 > 1/λ1(A) and τ2 > 1/λ1(B), equilibrium equations (3)
and (4) suggest that the SI1SI2S competitive spreading model
have at least the following three equilibrium points:

(1) disease-free equilibrium (p∗
1,i = 0,p∗

2,i = 0) ∀ i ∈
{1, . . . ,N}, where all the nodes are healthy,

(2) virus 2 absolute-dominance equilibrium (p∗
1,i =

0,p∗
2,i = yi > 0) ∀ i ∈ {1, . . . ,N}, where nodes are only in-

fected by virus 2,
(3) virus 1 absolute-dominance equilibrium (p∗

1,i = zi >

0,p∗
2,i = 0) ∀ i ∈ {1, . . . ,N} where nodes are only infected

by virus 1,

where zi and yi are steady-state infection probabilities in the
case of single-virus propagation (see [21]), satisfying

zi

1 − zi

= τ1

∑
aij zj , (5)

yi

1 − yi

= τ2

∑
bij yj , (6)

for i ∈ {1, . . . ,N}.
The disease-free equilibrium (p∗

1,i = 0,p∗
2,i = 0) is always

unstable for τ1 > 1/λ1(A) and τ2 > 1/λ1(B). Each of the
above three solutions to the equilibrium equation [Eqs. (3)
and (4)] corresponds to the case that at least one of the
viruses does not exist. Next, to have coexistence of the two
viruses, equilibriums (2) and (3) should also be unstable, and
a fourth stable equilibrium should exist where (p∗

1,i > 0,p∗
2,i >

0) ∀ i ∈ {1, . . . ,N}. We refer to this equilibrium as coexistence
equilibrium and show that it only exists for multilayer contact
networks.

As explained in Sec. II C, we study this two-virus problem
by analyzing virus 1 behavior, considering virus 2 as an
external factor. Definitions of survival and absolute-dominance
thresholds facilitate our analysis.

Definition. Given virus 2 effective infection rate τ2 >

1/λ1(B), the survival threshold τ1c is the critical point such
that virus 1 steady-state infection probability of each node is
zero for τ1 < τ1c and is positive for τ1 > τ1c; i.e.,

pss
1,i = 0, for τ1 < τ1c,

pss
1,i > 0, for τ1 > τ1c.

Definition. Given virus 2 effective infection rate τ2 >

1/λ1(B), the absolute-dominance threshold τ
†
1 is the critical

point such that not only virus 1 survives but also it removes
the other virus. In other words, virus 2 steady-state infection
probability of each node becomes zero for τ1 > τ

†
1 ; i.e.,

pss
2,i > 0 for τ1 < τ

†
1 ,

pss
2,i = 0, for τ1 > τ

†
1 ,

for ∀ i ∈ {1, . . . ,N}.
For τ2 � 1/λ1(B), the survival and absolute-dominance

conditions coincide and τ1c = τ
†
1 = τ 0

1 = 1/λ1(A). It is im-
portant to clearly distinguish the difference between the
no-spreading threshold and the survival threshold. The no-
spreading threshold is the critical value of effective infection
rate at which a virus cannot spread in the population,
regardless of any competition with another virus. The no-
spreading threshold corresponds with the transient dynamics
of the spreading. The survival threshold, on the other hand,
corresponds with the long-term behavior of a virus, whether it
is going to eventually die out or persist in the population.
The survival threshold τc1 is larger than the no-spreading
threshold because competition with another virus reduces the
susceptibility of the population, hence making it more difficult
for the virus to survive. Thus, a virus that may initially spread
in the population can die out eventually as the other virus
grows. For virus 1, this scenario occurs if τ1 > τ 0

1 = 1/λ1(A)
and τ1 < τ1c.
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1. Case of single-layer network

If the two layers are identical, i.e., B = A, the survival
threshold and the absolute-dominance threshold coincide,
indicating that a surviving virus is also the absolute winner.
Stability analysis of the equilibriums in case of identical
network layers (see Sec. 1 of the Appendix) proves that
virus 2 absolute-dominance equilibrium (p∗

1,i = 0,p∗
2,i = yi >

0) is stable if and only if τ1 < τ2. Furthermore, virus 1
absolute-dominance equilibrium (p∗

1,i = zi > 0,p∗
2,i = 0) is

stable if and only if τ2 < τ1. Therefore, for τ1 �= τ2 exactly
one of the absolute-dominance equilibrium points is stable
and the virus with larger effective infection rate is the sole
survivor. In support, according to the definitions of survival
and absolute-dominance thresholds, τ1c = τ

†
1 = τ2, denoting

an abrupt transition for competitive spreading over a single-
layer network. This is consistent with the previous result
of [15]. Figure 3 shows the sharp transition for the steady-state
infection fractions in the SI1SI2S model as a function of τ1,
holding τ2 fixed at a given value.

2. Case of multilayer network

In contrast with the case of single-layer networks, survival
threshold and absolute-dominance threshold do not necessarily
overlap for multilayer contact network. As a result, there is a
nontrivial region for (τ1,τ2) values where both viruses exist,
which we refer to as the coexistence region. Figure 4 shows that
the absolute-dominance and survival thresholds are distinct
for a two-layer network (see Sec. III E for details of network
generation).

Given τ2, plotting virus 1 steady-state infection fraction
p̄ss

1 = 1
N

∑N
j=1 pss

1,i as a function of τ1 identifies the survival
threshold τ1c at which p̄ss

1 becomes positive. Interestingly,
another alternative to identifying the absolute-dominance

threshold is to also plot the infection fraction of virus 1 in
the absence of any competition with virus 2 (τ2 = 0). The two
curves must coincide for τ1 larger than the absolute-dominance
threshold because for τ1 > τ

†
1 , virus 2 infection probabilities

are zero. Next, Figure 5 illustrates for extinction, coexistence,
and absolute-dominance regions for virus 1.

Bifurcation analysis of the SI1SI2S equilibriums can de-
termine the survival thresholds. The coexistence scenario
corresponds to a coexistence equilibrium for SI1SI2S model
[Eqs. (1) and (2)], where (p∗

1,i > 0,p∗
2,i > 0) ∀ i ∈ {1, . . . ,N}.

Given τ2, virus 1 survival threshold is the critical value
where such coexistence equilibrium emerges. Exactly at

the threshold value τ1c, p∗
1,i |τ1=τ1c

= 0 and
dp∗

1,i

dτ1
|τ1=τ1c

> 0
for all i ∈ {1, . . . ,N}. Taking the derivative of equilibrium
equation (3) with respect to τ1, and defining

wi �
dp∗

1,i

dτ1

∣∣∣∣
τ1=τ1c

, yi � p∗
2,i |τ1=τ1c

, (7)

we find that the survival threshold τ1c is the value for which a
nontrivial solution exists for wi > 0 in

wi = τ1c(1 − yi)
∑

aijwj , (8)

where yi is the solution of (6). Notably, Eq. (8) is an eigenvalue
problem (see Sec. 2 of the Appendix). Among all the possible
solutions, only

τ1c = 1
λ1(diag{1−yi }A)

(9)

is acceptable; according to the Perron-Frobenius theorem, only
the dominant eigenvector of the matrix diag{1 − yi}A has all

positive entries, allowing wi = dp∗
1,i

dτ1
|τ1=τ1c

> 0. Having wi > 0
at critical point τ1c denotes the emergence of the coexistence
equilibrium.
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FIG. 3. (Color online) Phase transition of competitive spreading model SI1SI2S for a single-layer network, i.e., B = A. Holding the effective
infection rate of virus 2 constant at τ2 = 6 1

λ1(B) = 6 1
λ1(A) and varying τ1, (a) the steady-state infection fraction of virus 1, p̄ss

1 = 1
N

∑
pss

1,i , and

(b) the steady-state infection fraction of virus 2, p̄ss
2 = 1

N

∑
pss

2,i , exhibit abrupt phase transition at τ1 = 6 1
λ1(A) = τ2. Specifically, (a) p̄ss

1 is
zero for τ1 < τ2 and is positive for τ1 > τ2, denoting survival threshold of virus 1, and (b) p̄ss

2 is positive for τ1 < τ2 and becomes zero for
τ1 > τ2, indicating absolute removal of virus 2 and thus the virus 1 absolute-dominance threshold.
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Virus 1
survival threshold

Virus 1
absolute-dominance
threshold

FIG. 4. (Color online) Illustration of survival and absolute-dominance thresholds for virus 1 on a multilayer contact network. Holding
the effective infection rate of virus 2 constant at τ2 = 6 1

λ1(B) , (a) the steady-state infection fraction of virus 1, p̄ss
1 = 1

N

∑
pss

1,i , and (b) the

steady-state infection fraction of virus 2, p̄ss
2 = 1

N

∑
pss

2,i , exhibit phase transition at survival threshold τc1 and absolute-dominance threshold

τ
†
1 , respectively. Specifically, (a) p̄ss

1 is zero for τ1 < τc1 and becomes positive for τ1 > τc1, denoting survival threshold of virus 1, and (b) p̄ss
2

is positive for τ1 < τ
†
1 and becomes zero for τ1 > τ

†
1 , indicating absolute removal of virus 2 and thus the virus 1 absolute-dominance threshold.

Additionally, it is interesting to observe that p̄ss
2 is constant when τ1 < τc1 while it reduces gradually as τ1 becomes larger than τc1.

As discussed earlier, the survival threshold for virus 1 must
be larger than the no-spreading threshold 1/λ1(A) as a result
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FIG. 5. (Color online) Steady-state infection fraction curve of
virus 1 in the SI1SI2S competing spreading model (red). While
increasing τ1, the steady-state infection fraction of virus 1 in the
SI1SI2S model becomes nonzero at the survival threshold τ1c, while
it coincides with that of the SIS model (black curve) at the absolute-
dominance threshold τ

†
1 . In this simulation, the steady-state infection

fraction of virus 1 (p̄ss
1 ) is zero for τ1 � τ1c � 3 1

λ1(A) , an extinction

region for virus 1. Interestingly, for τ1 > τ
†
1 � 6.6 1

λ1(A) , p̄ss
1 for the

competitive scenario (red curve) is identical to the case of single-virus
propagation (black curve), suggesting extinction of virus 2, hence
marking this region the absolute-dominance range for virus 1. For
τ1 ∈ (τ1c,τ

†
1 ), virus 1 and virus 2 both persist in the population,

marking this range a coexistence region.

of reduced susceptibility due to competition with virus 2.
Accordingly, the above formulas for virus 1 survival threshold
offer intuitive interpretations. For instance, the expression
in (9) demonstrates that susceptibility is reduced by factor
(1 − yi), where according to (6), yi is the steady-state infection
probability of virus 2 in the absence of virus 1 (τ1 = 0 ). Similar
to the SIS epidemic threshold [21], the survival threshold (9)
is the inverse of the spectral radius of the adjacency matrix
A but scaled by the reduced susceptibility factor (1 − yi) for
each node.

By the duality of expressions, the virus 2 survival threshold
is τ2c = 1/λ1(diag{1 − zi}B), where zi is the solution of (5)
denoting virus 1 infection fraction in the absence of any
competition with virus 2 (τ2 = 0). The bifurcation analysis
thus shows that if τ1 > τ1c and τ2 > τ2c, then the SI1SI2S
model [Eqs. (1) and (2)] has a coexistence equilibrium
(p∗

1,i > 0,p∗
2,i > 0) ∀ i ∈ {1, . . . ,N}. In this case, all the other

equilibriums of the system are unstable (see Sec. 2 of the
Appendix).

The bifurcation analysis for finding the survival threshold
for a two-layer network does not apply to the case of single-
layer network, where the transition is abrupt. However, we can
show that τ1c = τ2 and wi = cyi solve the Perron-Frobenius
problem (8). However, further analysis shows c = 0, implying
that coexistence equilibrium does not emerge in case of single-
layer networks.

Next, the survival and absolute-dominance thresholds of
virus 1 are functions of τ2, which we denote by τ1c = �1(τ2)
and τ

†
1 = �1(τ2). Similarly, for virus 2, we can define survival

and absolute-dominance thresholds τ2c = �2(τ1) and τ
†
2 =

�2(τ1). Here the absolute-dominance threshold of one virus
is closely related to the survival threshold of the other virus.
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FIG. 6. (Color online) Illustration of survival and absolute-
dominance threshold curves in the SI1SI2S model. (a) Virus 1 survives
if its effective infection rates is larger than the survival threshold,
i.e., τ1 > τc1 = �1(τ2). A similar argument holds for the survival
threshold curve of virus 2, as depicted in (b). The absolute-dominance
threshold curves can be obtained from the survival curves shown in
(a) and (b). Specifically, the region virus 1 is the absolute winner is
where virus 1 survives and virus 2 does not survive, as shown in (c).
Likewise, the region virus 2 is the absolute winner is where virus 1
does not survive while virus 2 survives (d).

Specifically, virus 1 absolute-dominance condition τ1 > τ
†
1 is

equivalent to virus 2 extinction condition τ2 < τ2c. Therefore,
for τ1 > 1/λ1(A) and τ2 > 1/λ1(B),

�1(τ2) = �−1
2 (τ2). (10)

Figure 6 illustrates the survival and absolute-dominance
threshold curves of the two viruses, clarifying the above
relationship graphically.

The threshold curves identify four regions in the (τ1,τ2)
plane where both viruses die out, virus 1 survives only, virus 2
survives only, or both survive and coexist. Figure 7 depicts
a typical phase diagram of SI1SI2S competitive spreading on
two-layer contact networks.

The eigenvalue problem (8) gives a mathematical way
to find the survival threshold τ1c, depending on the value
of τ2. Unfortunately, this implicit dependence hinders clear
understanding of the propagation interplay between virus 1
and virus 2. Particularly, the role of the multilayer contact
topology and layer interrelations on the competitive spreading
is not apparent. In the following section, we employ eigenvalue
perturbation techniques to unravel the multilayer network role.

B. Characterization of threshold curves

Since complete analytical solution of survival threshold
curves is not feasible, instead, we can characterize the thresh-
old curves through explicit analytical quantities. Our approach
to this problem finds explicit solutions to (9) for values of τ2

N.
Extinction

1

2

1
1 A

1
1 B

I. Only 
virus 1
survives

II. Only virus 2 survives

III. Both 
Viruses survive

2c

1c

FIG. 7. (Color online) The SI1SI2S model with two-layer contact
topology exhibits four possibilities: extinction region N, where both
viruses die out; virus 1 absolute-dominance region I, where virus 1
survives and virus 2 dies out; virus 2 absolute-dominance region II,
where virus 2 survives and virus 1 dies out; and, finally, coexistence
region III, where both viruses survive and persist in the population.

close to 1/λ1(B) and for very large values of τ2 to quantitate
the survival epidemic curves. Since we know the solution to (6)
and the survival threshold value τ1c at both extreme values, we
can employ eigenvalue perturbation techniques to find explicit
solutions for τ2 close to 1/λ1(B) and τ2 very large. Results
for τ2 close to 1/λ1(B) apply where competitive viruses are
nonaggressive, whereas results for very large τ2 corresponds
to aggressive [25] competition. Even though there is no
clear phase transition between aggressive and nonaggressive
competition, these extreme scenarios qualitatively describe
the competition behavior when effective infection rates of
the viruses are much larger than their respective no-spreading
threshold, as well as when they are just moderately above the
no-spreading thresholds. Behavior of competitive spreading
processes is an interpolation of the extreme scenarios of
nonaggressive and aggressive propagation.

First, we perform perturbation analysis to find τc1 for
values of τ2 close to 1/λ1(B). We know thatt at τ2 = 1/λ1(B),
yi = 0 solves (6); thus, τc1 = 1/λ1(A) is the survival threshold
according to (9). For values of τ2 close to 1/λ1(B), we use
eigenvalue perturbation technique and study the sensitivity
of threshold equation (8) respective to deviation in τ2 from
1/λ1(B). As detailed in Sec. 3 of the Appendix, we find

dτ1c

dτ2

∣∣∣∣
τ2= 1

λ1(B)

= λ1(B)

λ1(A)

∑
v2

A,ivB,i∑
v3

B,i

, (11)

expressing the dependency of virus 1 survival threshold (τ1c)
to effective infection rate of virus 2 (τ2) for values of τ2 close
to 1/λ1(B). In the above equation, vA,i and vB,i are the ith
element of normalized dominant eigenvectors vA and vB of
A and B, respectively. Among the terms in expression (11),
λ1(B), λ1(A), and

∑
v3

B,i are all graph properties of network
layers in isolation, while

∑
v2

A,ivB,i determines the influence
of interrelations of the two network layers. Significantly, if∑

v2
A,ivB,i is small, expression (11) suggests the virus 1

survival threshold is minimally influenced by virus 2 infection
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rate. This offers very interesting interpretations: When spectral
central nodes of GA (those nodes with a larger element in
dominant eigenvector of GA) are spectrally insignificant in
GB , the virus 1 survival threshold does not increase much by
τ2. In other words, virus 2 does not compete over accessible
resources of virus 1; therefore, virus 1 is not affected much
by the copropagation. On the other hand, if spectral central
nodes of GA also have high spectral centrality in GB , then∑

v2
A,ivB,i is maximal, indicating considerable dependency of

virus 1 survival threshold on the contagiousness of the other
virus. From (11), the die-out threshold curve �1(τ2) can be
approximated close to (τ2,τ1) = [ 1

λ1(B) ,
1

λ1(A) ] as

�1(τ2) � 1

λ1(A)

{
1 +

∑
v2

A,ivB,i∑
v3

B,i

[λ1(B)τ2 − 1]

}
. (12)

Studying threshold equations (8) for τ2 → ∞, we find that
τ1c

τ2
|τ2→∞ is the inverse of the spectral radius of D−1

B A (see
Sec. 3 of the Appendix for detailed derivation),

τ1c

τ2
|τ2→∞ = 1

λ1
(
D−1

B A
) = 1

λ1
(
D

−1/2
B AD

−1/2
B

) , (13)

expressing the dependency of the virus 1 survival threshold
(τ1c) on the effective infection rate of virus 2 (τ2) for large
values of τ2. Expression (13) directly highlights the influence
of interrelations of the two layers. Significantly, if λ1(D−1

B A) is
large, expression (13) suggests that virus 1 survival threshold
does not increase significantly by virus 2 infection rate. Similar
arguments about interpretation of nonaggressive competition
apply to aggressive competitive viruses where τ1 and τ2 are
relatively large. The main difference in case of aggressive
competitive spreading is that node degree is the determinant
of centrality. From (13), the die-out threshold curve �1(τ2)
asymptotically becomes

�1(τ2) � 1

λ1
(
D−1

B A
)τ2 (14)

for aggressive competitive propagation. Figure 8 depicts sur-
vival threshold curves for nonaggressive (left) and aggressive
(right) competitive spreading.

τ1c

τ2c

1
λ1(B)

1
λ1(A)

τ2

τ1

N

III

II

I

(0, 0) τ−1
2

τ−1
1

τ−1
1c

τ−1
2c

(0, 0)

I

II III

FIG. 8. (Color online) The survival regions diagram in SI1SI2S
model for values of (τ1,τ2) close to [ 1

λ1(A) ,
1

λ1(B) ] (left) and for very
large values of (τ1,τ2) (right). Regions N, I, II, and III are as defined
in Fig. 7. The red arrow shows the survival region of virus 1 (regions
I and III) and the green arrow shows the survival region of virus 2
(regions II and III). For the aggressive viruses scenario, axes have
inverse values of (τ1,τ2) so that the origin represents infinitely large
values. Equations (11) and (13) analytically find the separating lines
between the survival regions in explicit expressions.

We prove conditions for coexistence by showing that there
is overlapping between regions where viruses survive.

Theorem 1. In the SI1SI2S model [Eqs. (1) and (2)] for
competitive epidemics over multilayer networks, if the two
network layers GA and GB are identical, coexistence is
impossible; i.e., a virus with even a slightly larger effective
infection rate dominates and completely removes the other
virus. Otherwise, if node-degree vectors of GA and GB are not
parallel, i.e., dA ∦ dB , or if normalized dominant eigenvectors
of GA and GB do not completely overlap, i.e., vA �= vB ,
the multilayer structure of the underlying topology allows a
nontrivial coexistence region.

Proof. If network layers are identical (i.e., GA = GB), we
show in Sec. III A 1 that survival and absolute-dominance
thresholds coincide. Therefore, the virus with even a slightly
larger effective infection rate dominates and completely
removes the other virus if the two network layers are identical.

To show the possibility of coexistence for nonaggressive
competitive viruses, we show that the survival regions overlap
by proving

dτ1,c

dτ2

dτ2,c

dτ1

∣∣∣∣
(τ1,τ2)=[ 1

λ1(A) ,
1

λ1(B) ]

< 1. (15)

Using expression (11) and its counterpart for dτ2,c

dτ1
, we need to

show ( ∑
vB,iv

2
A,i

)( ∑
vA,iv

2
B,i

)
( ∑

v3
B,i

)( ∑
v3

A,i

) < 1. (16)

As proved in Sec. 4 of the Appendix, we find that condition (15)
is always true except for the special case where dominant
eigenvectors of GA and GB completely overlap, i.e., vA = vB .

To show the possibility of coexistence for aggressive
competitive viruses, we show the survival regions overlap by
proving (

τ1c

τ2

∣∣∣∣
τ2→∞

)(
τ2c

τ1

∣∣∣∣
τ2→∞

)
< 1. (17)

Using expression (13) and its counterpart for τ2c

τ1
|τ2→∞, we

need to show [
1

λ1
(
D−1

B A
)
] [

1

λ1
(
D−1

A B
)
]

< 1. (18)

As proved in Sec. 4 of the Appendix, we find that condition (17)
is always true except for the special case where node-degree
vectors of GA and GB are parallel, i.e., dA = cdB . �

When dominant eigenvectors of GA and GB are not
identical, condition (15) indicates that nonaggressive viruses
can coexist. Additionally, when propagation of competitive
viruses is aggressive, condition (17) indicates viruses can
coexist if node-degree vectors of GA and GB are not parallel.
However, the rare scenario where GA and GB are not identical
and dA = cdB and vA = vB hold simultaneously demands
further exploration.

The above theorem and Eqs. (11) and (13) prove the
importance of the interrelation of network layers. As we
discuss in the simulation section, one approach to capture only
the effect of interrelation is generating multilayer networks
from two graphs GA and GB through simple relabeling vertices
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of GB . We thus have a set of multilayer networks whose layers
have identical graph properties, but correspondence of nodes
in one layer to the nodes of the other varies.

In the context of competitive spreading—whether memes,
opinions, or products—the population under study serves as
the “resource” for the competitive entities, correlating with the
concept of “competing species” in ecology. Long-term study
of competing species in ecology centers on the “competitive
exclusion principle” [26]: Two species competing for the
same resources cannot coexist indefinitely under identical
ecological factors. The species with the slightest advantage
or edge over another will dominate eventually. Our SI1SI2S
model also predicts that when the network layers are identical,
coexistence is not possible. Significantly, different propagation
routes break this “ecological symmetry,” allowing coexistence.
Not only have we rigorously proved a coexistence region,
but we quantitated this ecological asymmetry via interrelation
of central nodes across the network layers. None or little
overlapping of central nodes of each layer is the key deter-
minant of coexistence. Satisfyingly, this conclusion supports
“niche differentiation” in ecology and yet is built upon network
science rigor.

C. Standardized threshold diagram and
a global approximate formula

Exploring efficient characterization of threshold curves
using extreme scenarios, we propose a standardized threshold
diagram where threshold curves are plotted in a [0,1] × [0,1]
plane for (x,y) = [ 1

λ1(B)τ2
, 1
λ1(A)τ1

], and axes are scaled by each
layer spectral radius and inverted. Curves in the standardized
threshold diagram start from origin and terminate at point
(1,1). From (11) and (13), we see the slopes of the survival
curve of virus 1 at (0,0) and (1,1) are

m0 = λ1(B)

λ1(A)
λ1

(
D−1

B A
)
, (19)

m1 =
∑

v2
A,ivB,i∑
v3

B,i

, (20)

respectively. Importantly, these slopes help create a parametric
approximation of the survival threshold curve τ1c = �1(τ2)
for the full range of τ2. To do so, we use a quadratic Bézier
curve [27] as

[
x

y

]
= 2σ (1 − σ )

[
a

b

]
+ σ 2

[
1
1

]
, (21)

connecting (x,y) = (0,0) to (x,y) = (1,1) for σ ∈ [0,1] and
satisfying the slope constraints (19) and (20), provided a and
b are chosen as

a = 1 − m1

m0 − m1
, b = m0(1 − m1)

m0 − m1
. (22)

Therefore, the Bézier curve (21) approximates the stan-
dardized threshold curve diagram for the whole range of τ1 >

1/λ1(A) and τ2 > 1/λ1(B) using only spectral information of
a set of matrices.

D. Multilayer network index for competitive spreading

Proving that coexistence is one of the key contributions
of this paper. According to (16), we go further to define
a topological index 	s(G) quantifying the possibility of
coexistence in a multilayer network G = (V,{EA,EB}) for the
case of nonaggressive spreading as

	s(G) = 1 −
( ∑

vB,iv
2
A,i

)( ∑
vA,iv

2
B,i

)
( ∑

v3
B,i

)( ∑
v3

A,i

) . (23)

Values of 	s(G) vary from 0 (corresponding to the case
where vA = vB) to 1. In particular, values of 	s(G) close to
zero imply that coexistence is rare, and any surviving virus
is indeed the absolute winner. Meanwhile, 	s(G) closer to 1
indicates that coexistence is very possible on G. Therefore,
	s(G) can be used to discuss the coexistence of nonaggressive
competitive viruses.

Similar to nonaggressive competitive spreading, we can
define a topological index 	l(G) to quantify coexistence
possibility in a multilayer network G = (V,{EA,EB}) as

	l(G) = 1 −
[

1

λ1
(
D−1

B A
)
] [

1

λ1
(
D−1

A B
)
]

, (24)

according to (18).
Values of 	l(G) vary from 0 (when dA = cdB) to 1. Clearly,

values of 	l(G) close to zero imply that coexistence is rare
and any surviving virus is indeed the absolute winner, while
	l(G) closer to 1 indicates coexistence is very possible on G.
Therefore, 	l(G) can be used to discuss the coexistence of
aggressive competitive viruses.

E. Numerical simulations

Multilayer network generation. The objective of numerical
simulations in this section is not only to test our analytical
formulas, but also to investigate our prediction of the cross-
layer interrelation effect on competitive epidemics. This task
demands a set of two-layer networks for which isolated
layers have identical graph properties, but how these layers
are interrelated is different, hence capturing the pure effect
of interrelation. Specifically, in the following numerical
simulations, the contact network GA through which virus 1
propagates is a random geometric graph with N = 1000 nodes,
where pairs at distance less than rc =

√
3 log(N)

πN
connect to

ensure connectivity. For the contact graph of virus 2 (GB),
we first generated a scale-free network according to the
Barabási-Albert model. We then used a randomized greedy
algorithm to associate the nodes of this graph with the nodes
of GA, approaching a certain degree correlation coefficient ρ

with GA; i.e., each iteration step permutates nodes when the
degree correlation coefficient,

ρ(G) =
∑

(dA,i − d̄A)(dB,i − d̄B)√∑
(dA,i − d̄A)2

√∑
(dB,i − d̄B)2

,

is closer to the desired value. Specifically, we obtained
three different permutations where the generated graphs are
negatively (ρ = −0.47), neutrally (ρ = 0), and positively
(ρ = 0.48) correlated with GA. These three graphs have
identical graph properties, yet they are distinct respective to
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FIG. 9. (Color online) Two-layer network generation for numerical simulations. The contact network GA through which virus 1 propagates
is a random geometric graph where pairs of nodes with a distance less than rc are connected to each other. For visualization convenience, the
number of nodes is N = 100, which is different from the actual N = 1000 used for numerical simulation results. For the contact graph of
virus 2 (GB ), we first generated a scale-free network according to the B-A model, then associated the nodes of this graph with the nodes of GA

to achieve a certain degree correlation coefficient with GA. Specifically, we obtained three different permutations such that the resultant graphs
are negatively, neutrally, or positively correlated with GA. These three graphs are equivalent if isolated and yet distinct in their interrelation
with GA. The high degree nodes in the positively correlated GB (bottom right) also have high degree in GA (top left), while the high degree
nodes in the negatively correlated GB (top right) have low degree size in GA. The uncorrelated GB (bottom left) shows no clear association.

GA. Figure 9 depicts a graph GA and three graphs of GB with
N = 100 nodes for better conceptualization.

Steady-state infection fraction. When two viruses compete
to spread, steady-state infection fraction p̄ss

1 = 1
N

∑
p1,i of

virus 1 in the SI1SI2S model exhibits a threshold behavior at
τ1 = τ1c, for a given τ2. Interestingly, aside from the survival
threshold τ1c, the absolute-dominance threshold τ

†
1 appears in

the figure when plotted against a single-virus case: p̄ss
1 takes

the same values as the single-virus case for effective infection

rates larger than the absolute-dominance threshold τ
†
1 , as Fig. 5

shows.
Next, Fig. 10 illustrates the dependency of the steady-state

infection fraction curve on network layer interrelation. When
the contact network of virus 2 (GB) is positively correlated
with that of virus 1 (GA), it is more difficult for virus 1 to
survive, making the survival threshold τ1c relatively larger for
positively correlated GB . Conversely, negatively correlated
contact network layers impede virus 1 from completely
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FIG. 10. (Color online) Comparison of steady-state infection
fraction curves of virus 1 in theSI1SI2S competitive spreading model.
Survival threshold τ1c is larger for positively correlated GB , indicating
that it is more difficult to survive positively correlated GB , while τ

†
1 is

larger for negatively correlated GB , indicating that it is more difficult
to completely suppress the other virus in negatively correlated GB .

suppressing virus 2, making the absolute-dominance threshold
τ
†
1 larger for negatively correlated GB .

Survival diagram. Allowing for variation of τ2, the steady-
state infection curve extends to the steady-state infection
surface. Figure 11 plots the steady-state infection fraction
for virus 1 and virus 2 as a function of τ1 and τ2. White
curves represent theoretical threshold curves derived from
the solution to (8), accurately separating the survival regions
depicted in Fig. 7.

Finally, Fig. 12 plots the standardized threshold diagrams
where GB is negatively correlated with GA (left) and GB is
positively correlated with GA (right). Predictions from the

analytical approximation formula (21) estimated the threshold
curves fairly accurately.

IV. DISCUSSION AND CONCLUSION

Competitive multivirus propagation shows very rich be-
haviors, beyond those of single-virus propagation. This type
of modeling is suitable for copropagation of opposing opinions
about a subject, where people are for, against, or neutral;
spreading of a disease through physical contact and viral
propagation of antidote providing immunity to the disease; or
marketing penetration of competitive products like Android vs
Apple smart phones. Aside from its potential applications, the
problem of competitive spreading over multilayer networks is
technically challenging. In particular, compared to single-layer
networks, the science of multilayer networks is still in its
infancy, thus warranting research.

A. Physics of competitive spreading on multilayer networks

The definitions of survival and absolute-dominance thresh-
olds enable us to articulate all possible outcomes for the fate
of competing viruses. Specifically, the survival threshold of
a virus determines the phase transition for that virus from
extinction to existence in the competitive environment, while
the absolute-dominance threshold denotes the critical point
where the virus becomes the sole survivor or absolute winner.
Results of this analysis highlighted major differences between
a single-layer contact network, where both viruses spread
through the same routes, and a multilayer contact network,
where each virus has its own transmission route. Significantly,
we showed in the case of a single network contact that the phase
transition is abrupt, while in the case of the multilayer contact,
the phase transitions occur continuously. The abrupt transition
occurs because coexistence is not possible for single-layer
contact network and a virus either completely dies out or its
infection fraction jumps to the positive value of no competition
(refer back to Fig. 3). Our results show that the coexistence of
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FIG. 11. (Color online) Steady-state fraction of infection for virus 1 (left) and virus 2 (right) as a function of τ1andτ2. The white lines are
theoretical threshold curves accurately separating the survival regions.
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FIG. 12. (Color online) Standardized threshold diagram for the case where GB is negatively correlated with GA (left) and the case where
GB is positively correlated with GA (right). Dashed lines are the predictions from analytical approximation formulas explicitly expressed
in (21). The standardized threshold diagram shows three survival regions: virus 1 absolute-dominance region I, where only virus 1 survives
and virus 2 dies out; virus 2 absolute-dominance region II, where only virus 2 survives and virus 1 dies out; and finally, coexistence region III,
where both viruses survive and persist in the population.

exclusive, competitive viruses is an emergent phenomenon
due to the multilayer structure of the underlying contact
network. When network layers are identical, the SI1SI2S model
does not have a coexistence equilibrium point. This result
supports the importance of studying the phenomenology of
dynamic processes on networks with more complex topologies
than static, single-layer graphs. Multilayer and interconnected
network modeling has generated interesting results for the case
of single-virus spreading (see [28–30], to name a few). As an
another example of coexistence, Antunović et al. [31] demon-
strated the coexistence of competing products when product
adoption and network formation would occur concurrently,
demonstrating an emergent phenomenon for the preferential
attachment-adoption network model.

How interrelation of graph layers of a multilayer network
influence dynamical characteristics of processes is very intri-
cate and still open to research and discussion. In the case of
the competitive spreading process, the threshold equations (6)
and (9) shows an implicit and complex dependency between
network layers. However, the eigenvalue perturbation tech-
niques employed in (12) and (14) help unravel the implicit
interdependencies of the graph layers. These formulas reveal
that no or little overlapping of “central nodes” is a key
determinant of the coexistence phase. Interestingly, which
nodes are central depends on the dynamical characteristics
of the viruses: When the effective infection rates are very
high, the central nodes are mainly those with the highest
node degrees, and when effective infection rates are close to
no-spreading thresholds, the central nodes are those with the
highest eigenvector centrality. Clearly, the implication of how
node centrality changes depending on the effective infection
rates is a promising future research direction.

Moreover, research of aggressive competitive spreading is
very important from a practical point of view, as it describes
the situation where both viruses are highly contagious in the
absence of competition. Interestingly, the survival threshold
for aggressive competitive spreading [Eq. (14)] has a very

simple and elegant expression. In particular, λ1(D−1
B A) is a new

measure for multilayer network structures. The normalized
adjacency matrix D−1

A A, where each row is divided by the
degree of its corresponding node, is well known, particularly
in random walks over graphs. Matrix D−1

B A is likewise a
normalized adjacency matrix, with the difference that each
row of A is divided by the degree of its corresponding node
in layer B. However, unlike D−1

A A, the matrix D−1
B A is not

necessarily a row-stochastic matrix and therefore does not
possess well-known properties of stochastic matrices. So far,
we have shown that λ1(D−1

B A)λ1(D−1
A B) > 1. Studying the

properties D−1
B A will further our understanding of competitive

viruses, in particular in the more appealing region of aggressive
viruses.

B. Scalability to multivirus competitive spreading

A critical challenge regarding modeling and analysis of
multivirus spreading is its scalability to a higher number of
viruses. Fortunately, our competitive spreading model [Eqs. (1)
and (2)] for two viruses can be extended to model multiple
virus competitive spreading. In this case, the node state space
size is M + 1; i.e., each node is either susceptible or infected
by one of the M viruses [32]. Considering that each virus
has its own transmission route, the contact network will be
an M-layer network. Thus, M-virus competitive spreading
dynamics can be expressed as

ṗm,i = βm

(
1 −

∑M

n=1
pn,i

) ∑N

j=1
am,ijpm,j − δmpm,i,

m ∈ {1, . . . ,M}, (25)

where pm,i is the node i probability of infection by virus m,
with infection rate βm and recovery rate δm. Additionally, am,ij

is the adjacency matrix elements of layer m.
Analysis of a competitive spreading scenario with multiple

viruses and multiple network layers is technically challenging;
however, the scalability issue does correlate directly with the
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multilayer network structure. If the contact network has a
single layer, then coexistence is not possible, and the winner
virus will be the one with the largest effective infection
rate. However, as coexistence is possible for the multilayer
network scenario, for a system of M competitive viruses, the
phase-space size is 2M ; each virus can either survive or die
out, and coexistence is possible in a multilayer network. Even
so, this exponential explosion of phase space raises technical
difficulties for problem analysis. While this paper develops
analytical results for competitive spreading of two SIS viruses
on a two-layer network, it does not solve the scalability
issue upon extensions to multivirus-multilayer competitive
spreading. Future research to address the scalability issue,
along with relaxing assumptions of complete cross immunity
and SIS-like dynamics of this paper, should greatly contribute
to a better understanding of spreading processes and the
machinery of dynamical processes over multilayer networks.

C. Concluding remarks

In this paper, we study the SI1SI2S model, the simplest
extension of SIS model to competitive spreading over a two-
layer network, focusing on long-term behaviors in relation to
multilayer network topology. In brief, the major contributions
of this paper are (a) identifying and quantifying extinction,
coexistence, and absolute dominance via defining survival
thresholds and absolute-dominance thresholds, (b) proving a
region of coexistence and quantitating it through overlapping
of layers central nodes, (c) developing an explicit approximate
formula to globally find threshold values, and (d) proposing a
multilayer network generation scheme to capture influence of
layers interrelation.
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APPENDIX: SELECTED PROOFS

1. Stability analysis of single-layer network

When τ1 > 1/λ1(A) and τ2 > 1/λ1(B), the disease free
equilibrium (p∗

1,i = 0,p∗
2,i = 0) ∀ i ∈ {1, . . . ,N} is unstable.

The stability of virus 2 absolute-dominance threshold (p∗
1,i =

0,p∗
2,i = yi > 0) ∀ i ∈ {1, . . . ,N} can be explored by lineariz-

ing (1) at this equilibrium. The linearized system is

˙̂p1,i = β1(1 − yi)
∑

aij p̂1,j − δ1p̂1,i , (A1)

which is stable if all the eigenvalues of τ1diag{1 − yi}A − I

are negative. Rewriting (6) for B = A as

yi = τ2(1 − yi)
∑

aij yj (A2)

suggests that zero is the largest eigenvalue of τ2diag{1 −
yi}A − I . Therefore, for τ1 < τ2, all the eigenvalues of
τ1diag{1 − yi}A − I are negative; thus, the virus 2 absolute-
dominance equilibrium is stable. Similarly, the virus 1
absolute-dominance equilibrium is stable if τ1 > τ2. There-
fore, for τ1 �= τ2, exactly only one of the absolute-dominance
equilibriums is stable.

2. Derivation of threshold equation

Differentiating equilibrium equation (3) with respect to τ1

yields
dp∗

1,i

dτ1
(1 − p∗

2,i) + p∗
1,i

dp∗
2,i

dτ1

(1 − p∗
1,i − p∗

2,i)
2

= τ1

∑
aij

dp∗
1,j

dτ1
+

∑
aijp

∗
1,j .

(A3)

At the survival threshold, τ1 = τ1c, p∗
1,i = 0, and p∗

2,i = yi

from (6). Substituting these values in (A3),

1

(1 − yi)

dp∗
1,i

dτ1

∣∣∣∣
τ1=τ1c

= τ1c

∑
aij

dp∗
1,j

dτ1

∣∣∣∣
τ1=τ1c

. (A4)

Reexpressing the above equation, we get

dp∗
1,i

dτ1

∣∣∣∣
τ1=τ1c

= τ1c(1 − yi)
∑

aij

dp∗
1,j

dτ1

∣∣∣∣
τ1=τ1c

, (A5)

which is equivalent to (8) according to definition (7). A similar
stability analysis technique in Sec. 1 of this appendix proves
that the virus 2 absolute-dominance equilibrium is unstable if
τ1 > τ1c. Therefore, if τ1 > τ1c and τ2 > τ2c, disease-free and
absolute-dominance equilibriums will all be unstable and the
system will go to the coexistence equilibrium.

3. Derivation of eigenvalue perturbation formulas

Here we detail the derivations of (11) and (13). At τ2 =
1/λ1(B), (6) finds yi = 0 for all nodes. Equation (6) is indeed
the steady-state equation for infection probabilities in the
NIMFA model. Van Mieghem [21] found for the SIS model the
derivative with respect to effective infection rate, suggesting

dyi

dτ2

∣∣∣∣
τ2= 1

λ1(B)

= cBvB,i , (A6)

wi |τ2= 1
λ1(B)

= cAvA,i, (A7)

where

cA = λ1(A)∑
v3

A,i

,cB = λ1(B)∑
v3

B,i

, (A8)

where vA and vB are the normalized dominant eigenvectors of
A and B, respectively.

Differentiating (8) with respect to τ2 yields

dwi

dτ2
= dτ1c

dτ2
(1 − yi)

∑
aijwj

+ τ1c

(
− dyi

dτ2

) ∑
aijwj

+ τ1c(1 − yi)
∑

aij

dwj

dτ2
. (A9)
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Inserting τ1c = 1/λ1(A), wi = cAvA,i , yi = 0, and dyi/dτ2 =
cBvB,i , the above equation changes to[

I − 1

λ1(A)
A

]
dw

dτ2
=

(
dτ1c

dτ2

)
λ1(A)cAvA−cBcA(vB ◦ vA)

(A10)

in the collective form, where the Hadamard product ◦ acts
entrywise. Multiplying both sides by vT

A from the left yields

dτ1c

dτ2

∣∣∣∣
τ2= 1

λ1(B)

= 1

λ1(A)
cBvT

A(vB ◦ vA)

= λ1(B)

λ1(A)

∑
v2

A,ivB,i∑
v3

B,i

, (A11)

obtaining (11). Finding dτ1c

dτ2
at τ2 = 1/λ1(B) obtains the

dependence of τ1c on τ2 close to 1/λ1(B).

Replacing for 1 − yi = τ−1
2

τ−1
2 +∑

bij yj

from (6) into (8) yields

wi =
(

τ1c

τ2

)(
1

τ−1
2 + ∑

bij yj

) ∑
aijwj . (A12)

When the effective infection rate τ2 is enormous τ−1
2 → 0 and

yi → 1, suggesting

wi =
(

τ1c

τ2
|τ2→∞

)
1

dB,i

∑
aijwj , (A13)

where dB,i is the B degree of node i. Therefore, τ1c

τ2
|τ2→∞ is

the inverse of the spectral radius of D−1
B A, proving (13) for

large values of τ2.

4. Coexistence proofs

a. Coexistent region nonaggressive competitive viruses

To investigate the coexistence region for nonaggressive
viruses, we show that (15) is true. From (11), we find

dτ1c

dτ2

dτ2c

dτ1

∣∣∣∣
(τ1,τ2)=[ 1

λ1(A) ,
1

λ1(B) ]

=
(∑

vB,iv
2
A,i

)( ∑
vA,iv

2
B,i

)
(∑

v3
B,i

)(∑
v3

A,i

) . (A14)

Proposition 1 (Hölder’s inequality [33]). For p,q > 0
satisfying 1

p
+ 1

q
= 1,

n∑
i=1

|xiyi | �
(

n∑
i=1

|xi |p
)1/p (

n∑
i=1

|yi |q
)1/q

is always true for x,y ∈ Rn. The equality happens if and only
if x = y.

Selecting p = 3,q = 3/2, we apply the Hölder’s inequality
to get

∑
vB,iv

2
A,i �

(∑
v3

B,i

)1/3 [∑
(v2

A,i)
3/2

]1/ 3
2

=
(∑

v3
B,i

)1/3 (∑
v3

A,i

)2/3
, (A15)

and similarly for p = 3/2,q = 3, we obtain

∑
vA,iv

2
B,i �

(∑
v3

B,i

)2/3 (∑
v3

A,i

)1/3
, (A16)

and the equality happens if and only if vA = vB . Multiplying
sides of (A15) and (A16) yields(∑

vB,iv
2
A,i

) (∑
vA,iv

2
B,i

)
�

(∑
v3

B,i

) (∑
v3

A,i

)
,

(A17)

proving that (15) is true if vA �= vB .

b. Coexistent region for aggressive competitive viruses

To investigate the coexistence region for nonaggressive
viruses we shown that (15) is true. Substituting from (13)
yields

(
τ1c

τ2
|τ2→∞

)(
τ2c

τ1
|τ1→∞

)
=

[
1

λ1(D−1
B A)

] [
1

λ1(D−1
A B)

]

= 1

λ1
(
D−1

B A ⊗ D−1
A B

)
= 1

λ1
[(

D−1
B ⊗ D−1

A

)
(A ⊗ B)

]
= 1

λ1[(DB ⊗ DA)−1(A ⊗ B)]
,

(A18)

according to properties of the Kronecker product (see [34]).
The degree diagonal matrix of (A ⊗ B) is (DA ⊗ DB).

Therefore, (DB ⊗ DA) is a diagonal permutation of the degree
diagonal matrix of (A ⊗ B). According to Lemma 1, presented
in the following, λ1[(DB ⊗ DA)−1(A ⊗ B)] � 1; thus,(

τ1c

τ2
|τ2→∞

) (
τ2c

τ1
|τ1→∞

)
� 1, (A19)

and equality holds only if DB ⊗ DA = DA ⊗ DB , which holds
only if ratio of B degree and A degree of each node is the same
for all nodes.

Lemma 1. If H = π (DC)−1C, where π (DC) is a diagonal
permutation of degree diagonal matrix of symmetric matrix
C, then λ1(H ) � 1. Furthermore, equality holds only if
π (DC) = Dc.

Proof. The largest eigenvalue maximizes the Rayleigh
quotient; therefore,

λ1(H ) = λ1[π (DC)−1C] = λ1[π (DC)−1/2Cπ (DC)−1/2]

= max
x

xT π (DC)−1/2Cπ (DC)−1/2x

xT x

� 1T C1

1T π (DC)1
=

∑
dC,i∑
dC,πi

= 1,

where dC,πi
is the degree of node i map. Therefore, λ1(H ) �

1. Equality holds only if x = π (DC)1/21 is the dominant
eigenvector of π (DC)−1/2Cπ (DC)−1/2, i.e., π (DC)−1/2C1 =
π (DC)1/21, which only holds if dC,πi

= dC,i . �
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5. Steady-state numerical solution

Given τ2 > 1/λ1(B), (8) and (6) numerically find τ1,c.
We now define xi � yi

1−yi
, given the recursive iteration

law,

xi(k + 1) = τ2

∑
bij

xj (k)

1 + xj (k)
, (A20)

to prove they converge exponentially, numerically solving (6)
as xi (k)

1+xi (k) → yi . The main advantage of finding equilibrium
values using recursive law (A20) instead of solving ordinary
differential equations of the model is that recursive law (A20)

does not require any incremental time increase, making
computations significantly faster.

Furthermore, the steady-state infection probabilities in (3)
and (4) can be found via the recursive iteration law,

x1,i(k + 1) = τ1

∑
aij

x1,j (k)

1 + x1,j (k) + x2,j (k)
, (A21)

x2,i(k + 1) = τ2

∑
bij

x2,j (k)

1 + x1,j (k) + x2,j (k)
, (A22)

for which x1,j (k)
1+x1,j (k)+x2,j (k) → p∗

1,i and x2,j (k)
1+x1,j (k)+x2,j (k) → p∗

2,i as
k → ∞.
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[32] In general case of interacting multivirus problem, the prob-

lem setup is cumbersome because each node state has 2M

possibilities, as a node might be infected by multiple viruses
simultanously. However, in the special case of competitive
spreading, the problem setup is no longer problematic as
a node can only be infected by just one virus at any
instance.

[33] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected
Problems (Springer, Berlin, 2012).

[34] A. Graham, Kronecker Products and Matrix Calcu-
lus: With Applications (Ellis Horwood Ltd., Chichester,
UK, 1981).

062817-15

http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.84.036106
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.81.036118
http://dx.doi.org/10.1103/PhysRevE.74.066113
http://dx.doi.org/10.1103/PhysRevE.74.066113
http://dx.doi.org/10.1103/PhysRevE.74.066113
http://dx.doi.org/10.1103/PhysRevE.74.066113
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1109/JSAC.2013.130607
http://dx.doi.org/10.1287/mnsc.1110.1421
http://dx.doi.org/10.1287/mnsc.1110.1421
http://dx.doi.org/10.1287/mnsc.1110.1421
http://dx.doi.org/10.1287/mnsc.1110.1421
http://dx.doi.org/10.1038/srep00335
http://dx.doi.org/10.1038/srep00335
http://dx.doi.org/10.1038/srep00335
http://dx.doi.org/10.1038/srep00335
http://dx.doi.org/10.1371/journal.pcbi.1002135
http://dx.doi.org/10.1371/journal.pcbi.1002135
http://dx.doi.org/10.1371/journal.pcbi.1002135
http://dx.doi.org/10.1371/journal.pcbi.1002135
http://dx.doi.org/10.1371/journal.pcbi.1003169
http://dx.doi.org/10.1371/journal.pcbi.1003169
http://dx.doi.org/10.1371/journal.pcbi.1003169
http://dx.doi.org/10.1371/journal.pcbi.1003169
http://dx.doi.org/10.1371/journal.pone.0071321
http://dx.doi.org/10.1371/journal.pone.0071321
http://dx.doi.org/10.1371/journal.pone.0071321
http://dx.doi.org/10.1371/journal.pone.0071321
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.111.128701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1103/PhysRevLett.95.108701
http://dx.doi.org/10.1007/s00332-012-9146-1
http://dx.doi.org/10.1007/s00332-012-9146-1
http://dx.doi.org/10.1007/s00332-012-9146-1
http://dx.doi.org/10.1007/s00332-012-9146-1
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1088/1367-2630/14/1/013015
http://dx.doi.org/10.1145/2378956.2378958
http://dx.doi.org/10.1145/2378956.2378958
http://dx.doi.org/10.1145/2378956.2378958
http://dx.doi.org/10.1145/2378956.2378958
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1109/TNET.2013.2239658
http://dx.doi.org/10.1109/TNET.2013.2239658
http://dx.doi.org/10.1109/TNET.2013.2239658
http://dx.doi.org/10.1109/TNET.2013.2239658
http://dx.doi.org/10.1126/science.131.3409.1292
http://dx.doi.org/10.1126/science.131.3409.1292
http://dx.doi.org/10.1126/science.131.3409.1292
http://dx.doi.org/10.1126/science.131.3409.1292
http://dx.doi.org/10.1103/PhysRevE.88.050801
http://dx.doi.org/10.1103/PhysRevE.88.050801
http://dx.doi.org/10.1103/PhysRevE.88.050801
http://dx.doi.org/10.1103/PhysRevE.88.050801
http://dx.doi.org/10.1103/PhysRevE.88.022801
http://dx.doi.org/10.1103/PhysRevE.88.022801
http://dx.doi.org/10.1103/PhysRevE.88.022801
http://dx.doi.org/10.1103/PhysRevE.88.022801
http://arxiv.org/abs/arXiv:1307.2893



