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Effects of temporal correlations on cascades: Threshold models on temporal networks
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A person’s decision to adopt an idea or product is often driven by the decisions of peers, mediated through a
network of social ties. A common way of modeling adoption dynamics is to use threshold models, where a node
may become an adopter given a high enough rate of contacts with adopted neighbors. We study the dynamics of
threshold models that take both the network topology and the timings of contacts into account, using empirical
contact sequences as substrates. The models are designed such that adoption is driven by the number of contacts
with different adopted neighbors within a chosen time. We find that while some networks support cascades
leading to network-level adoption, some do not: the propagation of adoption depends on several factors from the
frequency of contacts to burstiness and timing correlations of contact sequences. More specifically, burstiness is
seen to suppress cascade sizes when compared to randomized contact timings, while timing correlations between
contacts on adjacent links facilitate cascades.
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I. INTRODUCTION

We live in a highly complex and interdependent world
where every day we make a number of decisions. Although
individuals are free to make their decisions independently,
it is a common human tendency to match one’s attitude,
beliefs, and behavior to those of his or her acquaintances [1–4].
Because of this, the ways how our social ties are structured and
interlinked become important for understanding processes of
social influence, especially system-level phenomena like the
emergence of fads or adoption of ideas or behaviors. Such
processes can then be approached quantitatively with models
that define how individuals react to their neighbors’ behavior,
mediated through the links of some chosen type of social
network where the individuals are embedded.

The most elementary models of social influence allow only
two states for each individual (that is, network node): e.g.,
the node has either adopted an idea or it has not. Then, the
rules obeyed by each node dictate how they respond to their
neighbors’ choices. At the very simplest, social influence can
then be modeled so that, for a nonadopter, a single adopted
neighbor can infect the node with adoption, leading to the
standard epidemiological models such as SI (susceptible-
infectious) or SIR (susceptible-infectious-recovered) [5] that
adds a third possible state (recovered). Even though these
models are useful for studying the basic adoption process,
they lack certain crucial features needed in the context of social
contagion. As an example, adopting a product or behavior is
more likely if information is received from multiple adopted
neighbors [6,7]. Thus a more realistic choice of the node model
is to use a threshold model [8,9], where a node becomes
an adopter only if a chosen fraction of its neighbors have
already adopted, that is, where the level of peer pressure
matters. The introduction of adopted individuals to a network
of nonadopters may then eventually lead to a cascade where
the majority of nodes become adopters; whether this happens
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or not depends on the model parameters and the underlying
network structure.

However, it has recently been realized that the above picture
becomes more complete when an additional dimension is
included: time. Social influence is transmitted through social
ties, and, in reality, they are not always active—rather, there
is a time series of contacts, from face-to-face conversations to
emails. Incorporating the times of contacts into the network
picture leads to the temporal networks framework [10], where
the nodes are connected only by temporary events of short
duration at specific times. Studies of time series of contacts,
based on electronic communication records, have shown that
contact timings display strong heterogeneity and burstiness,
and that this burstiness has strong effects on dynamics taking
place on temporal networks. In particular, burstiness often
slows down spreading processes such as SI or SIR [11–13].

It is then natural to ask how cascades occur in threshold
models if node behavior depends on the exact timings of
its interactions. As there is now an additional degree of
freedom—time—to be incorporated into the models, there are
several possible approaches. The original threshold model by
Watts [9] is purely topological, in the sense that the dynamic
process of adoption takes place on a static network topology.
In the other limit, the threshold models proposed by Karimi
and Holme [14] and Takaguchi et al. [15] can be seen as purely
temporal: what drives the adoption of a node is the number of
recent contacts from adopted individuals, such that multiple
contacts from the same adopted individual have the same
effect as the same number of contacts from multiple adopted
sources. Thus the role of the underlying network topology
is diminished. However, one could argue that in a temporal
threshold model that is explicitly designed to mimic cascades
in social networks, the underlying network topology should
be accounted for, as the effects of social reinforcement should
be stronger when the signal arrives from multiple distinct
acquaintances (for empirical results, see [6]). In other words,
adoption should be more likely if several friends have already
adopted.

To this end, in this paper we propose two threshold
models—stochastic and deterministic—that could be cate-
gorized as temporal topological. In these models, adoption
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is driven by the number of contacts with a node’s different
network neighbors within a chosen time window representing
node memory: a high number of contacts from different
adopters makes adoption more likely. In this respect, the
models are similar to the general model of contagion of
Ref. [16]. However, our models take the actual timings of
interactions into account and are therefore affected by any
heterogeneities of the activity patterns of nodes, such as
burstiness. Note that the thresholds are defined in terms of
numbers of neighbors of nodes during the whole available
time line, i.e., their static degrees. The rationale behind this
assumption is the separation of time scales: we assume that the
time scale of changes of the network (creation and deletion
of nodes and links) is much slower than the time scale of the
adoption process taking place on the network. This choice also
allows for studying the effects of heterogeneities in contact
timings in isolation.

Using empirical temporal network data sets, we then study
with simulations the conditions leading to global cascades of
adoption in these models. We found that for the stochastic
model, long enough memory windows facilitated global
cascades in only two out of four empirical networks. When a
hard threshold is imposed on the fraction of adopted neighbors,
global cascades appear only if this threshold is tuned so low
that for most nodes a single contact with a single adopted
neighbor triggers adoption. This is because high-degree nodes
block adoption, unlike for typical spreading processes (SI,
SIR). To pinpoint the effects of different types of temporal
correlations, we compare the results with those obtained
with reference models that remove such correlations from
the empirical data. We find that, for our models, burstiness
decreases adoption prevalence, whereas timing correlations
between contacts on adjacent links clearly facilitate adoption.

II. METHODS

A. Basic framework and model definition

The set of E events representing the interactions occurring
between N nodes within the time interval [0,T ] constitutes a
temporal network. In this network, each event is denoted by a
quadruplet e ≡ (u,v,t,δt), where the event connecting nodes
u and v begins at t and ends at t + δt . For instance, for call
data, each event in the temporal network would correspond to
a list of the caller, callee, starting time, and duration of the
call. The corresponding static, aggregated network is obtained
by ignoring temporal information and linking a pair of nodes
if any event occurs between them in the observed period (t ∈
[0,T ]). One can then view the events of the temporal networks
as temporary activations of the links of the underlying static
network: events define which links of the static network are
active at any given point in time.

Our topological-temporal threshold models for node be-
havior, defined below, take into account both the timings
of events and the aggregated network structure in terms of
network neighborhoods. In the first model, there is an element
of randomness in the adoption choices of nodes, whereas the
second model is entirely deterministic. In both models, nodes
have two possible states, susceptible and adopter, and initially
all the nodes in the temporal network are set as susceptible

except for one randomly chosen seed adopter node. When
susceptible nodes become adopters, they remain so for the rest
of the time.

Stochastic threshold model. In the stochastic topological-
temporal threshold model, the probability of a susceptible node
becoming an adopter depends on the number of contacts from
different adopted nodes in a given time window: more adopted
neighbors in contact means higher probability. Formally, when
a node is in contact with an adopter at time t , the number
of adopted neighbors that it has been in contact with during
the interval [t − τ, t] is counted. For directed networks, only
incoming contacts, that is, contacts initiated by the neighbors
of the node are counted. The ratio of the number of contacted
neighbors to the number of neighbors in the aggregated
network, i.e., the degree ki , determines the probability of
adoption:

φ(i,t |τ ) := 1

ki

∑

j∈νi

χ (j,t ′), t ′ ∈ [t − τ, t]. (1)

Here, νi is the set of neighbors of node i in the aggregated
static network. The indicator function χ is 1 if node j is an
adopter and it has had at least one contact with node i within
the interval [t − τ, t], and zero otherwise. The model comes
with only one parameter—the time window size, or memory
length, τ .

For a given node, the likelihood of adoption increases
monotonically with the fraction of adopted neighbors, which is
a reasonable assumption [6]. Because the threshold is defined
as fractional, the effect of the number of adopted neighbors
depends on node degree. Note that although the threshold rule
does not directly count the number of contacts from the same
adopted neighbor, these still contribute indirectly because
the stochastic rule is activated whenever a contact occurs.
Thus bursts of events affect the dynamics. For a schematic
illustration of the model, please see Fig. 1.

Deterministic threshold model. We also consider a deter-
ministic version of the above model. In this model, a node
becomes an adopter if the ratio φ(i,t |τ ) � f , where f is a
predefined constant and common for all nodes. By varying
the value of f one can control the ease with which adoption
progresses. Because the threshold f is constant, the degree
ki of a node plays a major role: if ki � 1/f , a single contact
with an adopted node is sufficient for adoption. For nodes with
ki > 1/f , a larger number of contacts from separate adopters
is required. In the deterministic model, burstiness of events on
individual links has no effect unless the event trains of adjacent
links are correlated: if a node does not adopt when in contact
with an adopter, subsequent contacts with the same adopter
are redundant and cannot cause adoption unless there are also
contacts with other adopters.

Note the general difference between the models: given
long enough times (and applying periodic temporal boundary
conditions), the stochastic model would lead to a complete
systemwide adoption (similar to the SI model, albeit much
more slowly). However, in the deterministic case, even though
we can tune the effective number of nodes that only require
a single contact with an adopter for adoption, the diffusion
dynamics may be blocked entirely by a small number of nodes
where the condition for adoption is not fulfilled.
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FIG. 1. (Color online) Schematic representation of the stochastic
model of adoption dynamics. In the beginning of this example run,
nodes A and C are adopters. Time runs from left to right, and each
contact between a pair of nodes is denoted by a vertical line. The
intervals τ illustrate the memory associated with each node. The lower
panels show the adoption probabilities φ when a node is in contact
with an adopter; U1, U2, and U3 are random numbers associated with
the event. For the event occurring between nodes A and D, only 1
out of 3 neighbors is an adopter and the ratio 1/3 is smaller than the
random number U1, and hence D does not adopt. Next, for the event
between C and D, two of the neighbors of D who had contacts within
the memory interval τ are adopters (A and C). Since the drawn random
number U2 < 2/3, D adopts. Finally, since B has only one neighbor
(D), it also becomes an adopter when in contact in D, regardless of
the value of the random number U3.

B. Data sets

In this study, we simulate the above threshold models on
four different empirical temporal networks that are related to
different types of human communication patterns. These data
sets are as follows.

Call. The call data contain mobile phone call records of a
European carrier, with ∼759 million time-stamped voice call
records over a period of 180 d. The durations of the calls are
ignored in this study.

SMS. The text message data contains SMS records from
the same European carrier and the same time period. There
are ∼243 million time-stamped records. We exclude data for
Christmas and New Year’s Eve since the behavior (in terms
of the number of messages) on these two days is radically
different from other days.

Email. The email data set [17] consists of logs of a
university’s mail server for a period of 83 d. Only interinstitute
emails are considered and certain mass mailers are discarded.

Conference. The conference data set is a collection of
ongoing face-to-face conversations of 113 participants of
the ACM Hypertext 2009 conference for 2.5 d [18,19]. The
participants were tracked with the help of radio badges that
monitored their proximity to other attendees. The data contains
time stamps and IDs of pairs of participants who are having a
conversation within time windows of 20 s.

There are certain similarities and differences between these
data sets. The first three represent electronic communication
at distance, while in the conference data contacts require
physical proximity. Another difference is that the call and
conference conversation contacts require activity from both
participants, e.g., a call needs to be picked up before it can

TABLE I. Statistical properties of the networks. From left to
right: number of nodes N , number of events E, number of links
m, average degree 〈k〉, average clustering coefficient 〈c〉, length of
the observation period T , time resolution of the data �t , and the
directionality → or ↔ of the links. 〈k〉 and 〈c〉 have been calculated
for the aggregated networks by considering links as undirected.

N E m 〈k〉 〈c〉 T �t link

Call 5.8 × 106 620 × 106 15 × 106 5.0 0.23 180 d 1 s ↔
SMS 3.1 × 106 180 × 106 5.7 × 106 3.7 0.10 176 d 1 s →
Email 2993 2.0 × 105 21 736 14.5 0.21 82 d 1 s →
Conf. 113 20 818 2196 38.9 0.54 2.5 d 20 s ↔

be recorded, whereas in the SMS and email networks only
the sender’s activity matters. For similar reasons, we consider
call and conference networks as undirected, whereas the SMS
and email networks are directed. Further, in the call data one
node can only participate in one call at any given point in
time, whereas simultaneous contacts with multiple nodes are
possible in the SMS, email, and conference networks.

In the call and SMS networks we only consider those
links that have bidirectional events to ensure that nonsocial
interactions, such as telemarketing, are ignored. Further,
we only use the nodes in the largest connected component
(LCC) of the aggregated network. For the email network the
directionality of links was ignored while calculating the LCC.
The properties of all data sets and corresponding aggregated
networks are presented in Table I. The average degree and
the average number of events per node are the highest for the
conference network and lowest for the SMS network.

C. Reference models

In order to highlight the effects of different types of
temporal correlations on the model dynamics, we employ the
reference model approach [11,12,20]. In this approach, the
original event sequences are randomized such that chosen
temporal and topological characteristics are retained, while
some temporal correlations are lost. Then, the outcomes of
model runs using original and randomized reference networks
are compared. We consider the following two null models.

Random time shuffle (RTS). The time stamps of all the
events are randomly shuffled. This destroys all temporal
correlations of events within links and of the nodes’ activity
patterns, e.g., burstiness, as well as correlations between the
timings of events on adjacent links. The time variation of
the global activity rate is preserved, such as the typical daily
pattern.

Random offset (RO). All the events occurring on a given
link are shifted by a time offset �t ∈ [0,T ], chosen at random
for each link. Periodic temporal boundary conditions are used,
i.e., the time of each of the events is mapped back to the period
[0,T ] by using a mod T operation on the shifted time. As
event sequences of different links are shifted by different offset
the correlations between events on adjacent links, i.e., link-link
correlations, are destroyed while temporal inhomogeneities
within individual links, such as burstiness, are retained. By
extension, all larger sequences of subsequent events, such as
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(a) (b)

FIG. 2. (Color online) Event sequence shuffling procedures for
the two reference models. (a) In random time shuffling (RTS), the
time stamps of events are randomly swapped. (b) In random offset
(RO), all events on a given link are shifted by a random time �t .
Periodic boundaries are used, i.e., if the resulting times fall outside
the observed window [0,T ] a mod T operation maps them back to
the period [0,T ].

temporal motifs [21,22], are also destroyed, as are the overall
activation time lines of nodes.

For a schematic diagram of the shuffling procedures, see
Fig. 2. Table II summarizes the key effects of the null models
on temporal correlations.

D. Simulations

We study adoption dynamics in the two threshold models
by simulating them using the original event sequences and
the ensemble of sequences from reference models. The initial
adoption is started from a random node and random event
within a time period that spans the first 15% of the time period
of the data set. The model rules are then iterated until the
end of the event sequence. The initial time span is chosen
because a large enough fraction of nodes are active during this
period (83%, 71%, 75%, and 71% respectively for call, SMS,
conference, and email data) and there are enough events for
the dynamics to advance. We calculate the global prevalence
of adoption at the end of the event list t = T as the ratio of
the number of adopted nodes I to the total number of active
nodes Nact that participated in at least one event during the run.
Nact practically equals network size, although some rare nodes
may only be active before the random initial event. We obtain
the mean prevalence by starting the adoption process from 103

initial conditions for the larger call and SMS data sets, while
for the smaller email and conference data sets we used 104

initial conditions.

TABLE II. Network correlations that are preserved (�) or
destroyed (x) by the two reference models.

Correlations Orig. RTS RO

Network structure � � �
Daily patterns � � x
Single link event correlations � x �
Link-link event correlations � x x

III. RESULTS

A. Stochastic model

Prevalence and memory length. Figure 3 displays the
outcomes of the stochastic model for all four data sets, in terms
of the average final fraction of adopters as a function of the
memory parameter τ , i.e., the length of the time window within
which contacts from adopted individuals are counted. Overall,
it is seen that, with the shortest time windows, prevalence is
low. When τ is increased, there is a transition regime where
prevalence grows, followed by a plateau where increasing τ

has only small effects. The low-τ behavior is as one might
reasonably expect: increasing memory length means that there
are more chances for contacts with adopters. Note that the
contrary is observed in the model of Ref. [14], where the
number of contacts with adopters is normalized by the total
number of contacts within the time window, and because of
this, longer memory results in lower adoption rates. It is also
of interest to look at the position of the transition region, as
it defines the time scale for adoption. In the call network,
having a memory τ less than one hour does not facilitate
adoption, whereas increasing the memory to more than one
week becomes redundant. In the conference network, τ longer
than one day becomes redundant.

It is also clear that there are major differences between
the data sets: for high enough values of τ , the conference
network has the highest prevalence, followed by the call
network, whereas the fraction of adopters in the SMS and
email networks always remains very low. We have tested that
the fraction of adopters in the SMS network is low even when

FIG. 3. (Color online) Average final fraction of adopters in the
stochastic model as a function of memory length τ for (a) call, (b)
SMS, (c) conference, and (d) email data sets. Curves are shown for
the original event sequence (◦) and the two null models: random time
shuffling (RTS) (�) and random offset (RO) (�). For all networks
except SMS, there is a transition region where prevalence increases
with memory length and then saturates. The prevalence is much
lower for the SMS and email networks as compared to the call and
conference networks. The RTS model facilitates adoption dynamics,
whereas the RO model hinders adoption. Shades of gray represent
memory lengths of one hour, one day, and one week. Standard errors
are smaller than symbol size.
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the directionality of the events is ignored. This indicates that
the reason for the low fraction of adopters lies in the temporal
and topological features of the networks rather than in the
directionality of the links: the main reasons are the low link
density of the network, the existence of a large number of
links with relatively low contact frequency, and the fact that
conversations by text messages give rise to trains of repeated
events only between the same pairs of nodes. These factors
lower the likelihood of having temporal paths via which
the diffusion can spread [23]. In addition, it is unlikely that
nodes whose links have only few events receive contacts from
multiple sources, and because of this the probability of crossing
the adoption threshold remains low.

Effects of temporal correlations. In order to understand
the effects of various kinds of temporal correlations on the
adoption dynamics, we next focus on the effects of the
reference models on the outcome. The average prevalence as
a function of τ for the two reference models, random time
shuffle (RTS) and random offset (RO), are also displayed in
Fig. 3.

Let us focus on the RTS reference model, and the two
networks (conference, calls) where global cascades take place
and the effects of reference models are best visible. Contrary
to the absolute threshold model in Ref. [14] and the model
in Ref. [15], the RTS procedure that removes burstiness from
the event sequences yields networks where the adoption rate
is increased. This major difference to the purely temporal
threshold models has to do with the effects of adoption from
multiple neighbors. In the aforementioned models, bursts
of contacts from a single neighbor can drive a node above
the adoption threshold—these bursts that facilitate spreading
are destroyed by the RTS model. However, in our case,
contacts from multiple adopted neighbors drive the adoption.
As the RTS model spreads out bursty sequences of contacts
more evenly in time, the likelihood of contacts with multiple
neighbors in a given time window is increased. In addition,
the RTS model also increases the probability of having a
time-respecting path between any two nodes at any given point
of time, hence facilitating adoption dynamics especially in the
short memory region where multiple contacts are unlikely even
with the reference model.

This picture becomes more complete with the results of
the RO model. Compared to the Poissonian event sequences
of the RTS model, burstiness of contacts in the original event
sequences clusters them in time and decreases the likelihood of
contacts with multiple neighbors within short time windows.
However, if there are positive timing correlations between
the bursty contact patterns of the links of a node, they
should facilitate adoption. This is exactly what is seen in the
prevalence curves from the RO model (Fig. 3) that randomly
shifts the bursty event sequences on links, destroying timing
correlations between adjacent links while retaining burstiness
on individual links. For both the call and conference networks,
applying the random offset results in a decrease of adoption
prevalence. Hence one can conclude that, in the original event
sequences for the call and conference networks, there are
correlations between contact timings of adjacent links that
facilitate adoption. At the same time, for the SMS and email
networks, global cascades do not take place even for any of
the reference models.

B. Deterministic model

Effects of f . Next, we consider the deterministic version of
the threshold model, where adoption happens if and only if a
fraction f of the node’s network neighbors are adopters and
in contact with the node within the time period τ . Hence we
can control the ease of adoption propagation by changing the
threshold fraction f . When f is very low, f ∼ 1/kmax, where
kmax denotes the maximum degree of the network, all events
between adopted and susceptible nodes lead to an adoption. In
this case, the model’s dynamics are similar to the SI model. For
any value of f , contact with a single adopter is sufficient for
triggering adoption of a node if the node’s degree k � 1/f . On
the other hand, for large values of the threshold f , propagation
of adoption would require that almost the whole neighborhood
of a node are adopters and in contact with the node within
the memory period τ . This means adoption typically cannot
propagate for large values of f .

Figure 4 displays the fraction of adopters in the determin-
istic model as a function of f , together with the fraction
of nodes with k � 1/f that obeys SI dynamics, NSI/N .
In these simulations, the memory is fixed to τ = ∞, so
that the effect of f can be determined in isolation. In all
cases, the values of f need to be small in order for the adoption
to take off. For instance, in the call network adoption does
not propagate at all if f � 0.12. This is noteworthy, since at
this threshold fraction more than 80% of the nodes follow
SI dynamics and contact with a single adopter is sufficient
for adoption. Only nodes with k > 8 obey the true threshold
mechanism. Because the majority of nodes follow SI dynamics
and because pure SI dynamics would always infect the whole

FIG. 4. (Color online) Average final fraction of adopters in the
deterministic model as a function of fraction f with τ = ∞ for the
(a) call, (b) SMS, (c) conference, and (d) email data sets. The adoption
process is shown for the original event sequence (◦) and the two null
models: (i) random time shuffle (RTS) (�) and (ii) random offset
(RO) (�). The black solid line represents the fraction of nodes in a
network that obey pure SI dynamics at given f value. Except for the
conference data, the majority of the nodes must obey SI dynamics
in order for a global diffusion to happen. Standard errors are smaller
than symbol size.
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FIG. 5. (Color online) Average final fraction of adopters in the
deterministic model as a function of memory τ for the (a) call, (b)
SMS, (c) conference, and (d) email data sets. Again, the adoption
process is shown for the original event sequence (◦) and the two null
models: (i) random time shuffle (RTS) (�) and (ii) random offset (RO)
(�). The fraction f is now chosen so that the curves have a transition
as τ changes. The difference in the fraction of adopters in the RTS
and RO null model is more evident in this case. As the temporal path
does not exist between all the nodes, the maximum prevalence is also
shown for all the data sets for RTS null model. Standard errors are
smaller than symbol size.

network, this indicates that high-degree nodes typically block
the propagation of adoption, as they are unlikely to interact
with enough adopters. For the SMS network, the adoption
propagates only when f � 0.08, with more than 95% of
the nodes following SI dynamics. In contrast, in the email
network global adoption occurs at f � 0.04, with about 80%
of nodes following SI dynamics. The differences imply that
interactions with multiple neighbors are more common in the
email network as compared to the SMS network. Finally, for
the conference network, global adoption arises even when most
of the nodes follow pure threshold dynamics. This is because
of the high frequency of interaction between nodes.

Effects of memory length τ . Next, we study the behavior
of the system as a function of the memory τ . The results are
shown in Fig. 5, where the fraction f for each data set is chosen
so that the adoption can propagate, given high enough τ .
Unlike with the stochastic model, even for the SMS and email
networks, a substantial fraction of nodes become adopters in
the end. As discussed above, this occurs at low thresholds,
and most nodes obey SI dynamics, i.e., a single contact with
an adopted neighbor triggers adoption. This is also reflected
in the observation that adoption prevalence in the SMS and
email networks is barely affected by the memory τ . For the
call and conference networks the outcomes are rather similar to
the stochastic model. The only difference is that the transition
region where prevalence increases is associated with lower
values of τ . In the call network, this happens with τ ∼ 1 d,
and for the conference network, τ ∼ 1 h. For the stochastic
model, the corresponding τ values are τ ∼ 1 week for calls
and τ ∼ 1 d for the conference.

Effects of temporal correlations. The effects of the reference
models for the deterministic model are consistent with the
outcomes in the stochastic case. As before, for all f the
fraction of adopters increases for the RTS model and decreases
for the RO model in all data sets. However, the deterministic
case reveals larger differences between the reference models,
especially in the low τ region. This is because of the altered
temporal path structure and its effects on the SI dynamics that
most nodes obey.

C. Measuring temporal correlations

Density of preceding events. The above results point out
that there are correlations between the timings of events
on adjacent links, and their effects are especially strong
for the call network. The existence of such correlations is
also known from earlier studies on, e.g., temporal motifs
[21,22] and interevent time distributions [11]. In order to
directly measure these correlations and to look for possible
characteristic time scales, we compute the density of preceding
events (or event-triggered correlation function [24,25]). The
target is to study what happens just before nodes participate in
events. For directed events, we define the density of preceding
events as follows: for every outgoing event of a node, the time
differences �t to all its earlier incoming events are calculated
(see Fig. 6). The probability density functions for the �t values
for all nodes and events then represent the average rate of
incoming events preceding an outgoing event, and any timing
correlations should be visible in this PDF. Especially, if there is
a characteristic time for the correlations of events on adjacent
links, this should be visible as a peak in the PDF. For undirected
events, this PDF reduces to the usual distribution of interevent
times. For both undirected and directed events, we repeat the
procedure separately for two cases: (i) where preceding events
with all neighboring nodes are taken into account (case all),
and (ii) for three-node chains of events only, where �t’s
are computed only for those preceding events that do not
involve the other party of the trigger event (case forward).
Thus the difference between the all and forward cases is that,
in the latter, the effect of event cycles of length two, i.e.,
returned events, is removed.

FIG. 6. (Color online) Calculation of the density of preceding
events, for directed events. The red arrows represent the events; event
times are indicated next to the arrows. All outgoing events from a node
act as triggers for calculating time differences to preceding incoming
events. The set of time differences for all nodes and all trigger events
is then used to construct a probability density function.

062815-6



EFFECTS OF TEMPORAL CORRELATIONS ON CASCADES: . . . PHYSICAL REVIEW E 89, 062815 (2014)

FIG. 7. (Color online) Density of preceding events (top row) and
fraction of accessible neighborhood in a given time window (bottom
row) for the call and SMS data. Triangles and crosses indicate
preceding event densities for all events and forward chains (events
excluding the neighbor participating in the trigger event), respectively.
(a) For both cases, for the call network there is a peak in the
distribution at around 25 s. (b) For the SMS data, the peak is only
evident when all earlier events are considered—as the SMS events
are directed, this means that the peak in the preceding event density
is mainly due to returned text messages. (c), (d) The complementary
cumulative distribution of 〈kτ

i 〉/ki for the call and SMS networks,
respectively. 〈kτ

i 〉/ki = 0 is not shown because the axis is logarithmic;
the fraction of nodes with zero contacts is reflected in the starting point
of the curves. For any given time window the accessible neighborhood
for the SMS network is much smaller than for the call network. The
dashed lines indicate 50% for both axes. The hourly CDF’s are first
calculated independently for each hour of the day and then averaged;
the shaded areas represent the 75% confidence interval for the mean
of the 24 different CDF’s. For longer memory intervals, the 75%
confidence interval for the mean is smaller than the linewidth.

The preceding event densities for the call and SMS data
sets are shown in Fig. 7. There is a characteristic peak
for event correlations on adjacent links: the PDF peaks at
around ∼25 s for the call data, and at around ∼45 s for the
SMS data when all events are considered. For forward event
chains (events excluding the neighbor of the trigger event),
the call network peak shifts to ∼80 s. In both cases, the
time scales are fairly short, of the order of one minute, and
thus event-event correlations have effects on the threshold
model for a wide range of memory parameter values. For
the directed text message network, there is no clear peak
if only forward chains are counted. This is likely because
text messages are typically part of a conversation, where two
individuals repeatedly exchange multiple messages. These are
redundant for adoption dynamics.

Fraction of contacted neighbors and memory length. In
order to better understand the effects of the memory length on
the two threshold models (stochastic, deterministic), it makes
sense to directly measure how the amount of interactions

with the neighborhood of a node depends on the memory
window size. We count the number of nodes the focal node
interacts with in a given window of size τ as ki[t,t + τ ] ≡
kτ
i and divide this number by the degree of the node in

the aggregated static network, ki[0,T ] ≡ ki . Averaging over
nodes and windows yields the typical fraction of neighbors
a node connects with within a given memory length τ . Note
that, for the stochastic threshold model, the fraction 〈kτ

i 〉/ki

corresponds to the probability of adoption φ(i,τ ) when the
whole neighborhood of a node has already adopted. In Fig. 7
we show the complementary cumulative distribution of 〈kτ

i 〉/ki

for the call and SMS networks for different memory lengths
τ = (hour, day, week, the whole data period T ). For the call
network, it is clear why the memory window size has to be of
the order of days for the adoption to propagate (Figs. 3 and 5):
for memory of one hour, the fraction of contacted neighbors
is very low. For the SMS network, even for a window of
one week, ∼60% of the nodes have 〈kτ

i 〉/ki less than 0.05,
indicating rather infrequent communication.

IV. DISCUSSION

In this paper, we have introduced stochastic and determin-
istic versions of the topological-temporal threshold model of
adoption, and studied their behavior using empirical temporal
network data sets as substrates for the threshold dynamics.
These models can be argued to reflect social diffusion
processes better than some models proposed earlier [14,15],
since adoption probability directly depends on the number
of contacted nodes, a mechanism observed in real-world
experiments [6]. However, in addition to this, an equally
important factor of motivation is that these models can be
used as probes of temporal network structure: because of their
design, our models are sensitive to timing correlations of the
event trains on links.

For the stochastic threshold model, the call and conference
networks allow global cascades for large enough memory
windows (days for calls, hours for the conference network),
whereas the SMS and email networks did not support such
cascades because of the sparsity of interactions and lack
of timing correlations between contacts on adjacent links.
The characteristic window sizes are meaningful for the
networks in question: in the face-to-face network recorded
in a conference setting, people participate and switch between
conversations over short time scales, whereas interactions via
calls are less frequent. For the deterministic model, where
adoption only takes place when the fraction of adopters in a
node’s neighborhood exceeds a fixed threshold fraction, global
adoption only took place when the threshold fractions were
set to low enough values and most nodes effectively followed
SI dynamics. This is consistent with the results of threshold
dynamics on static networks, where low-degree vulnerable
nodes drive the adoption dynamics [9]. One reason for this
comes directly from model design: the higher the degree of
a node, the larger the number of neighbors that first need to
adopt and subsequently be in contact with the node within the
memory window. Thus the effects of hubs are very different
from ordinary (SI, SIR) spreading processes: while they may
act as superspreaders once they have adopted, making them
adopt is very difficult.
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Randomly shuffling the times of all events in the empirical
networks was seen to facilitate the adoption process and results
in larger prevalence, similarly to earlier observations with
the SI model [11]. Thus, generally speaking, the burstiness
of contacts that is ubiquitous in temporal networks hinders
adoption because of increased waiting times on links and
redundant repeated events. The time shuffling procedure
destroys this burstiness, spreading events more evenly across
time and giving rise to an increased number of temporal paths
ending at nodes within short time windows. Note that this
result differs from threshold models that do not explicitly
require contacts from multiple adopted neighbors. However,
there is a clear competing effect arising from correlations
between contact trains. Randomly time shifting the contact
events on links was seen to decrease prevalence of adoption.
This procedure destroys all correlations between timings of
contacts on adjacent links. Because such correlations by
design facilitate adoption in our models, the clear decrease
in prevalence after randomly offsetting contact trains indicates
that such correlations are abundant in the studied networks, as
also revealed by direct measurements.

Some features of the dynamics of our threshold models
are similar to the behavior of SI and SIR models on temporal
networks [11,13]. For example, burstiness hinders the speed

and fraction of adopters in both cases, because it increases
waiting times along temporal paths. However, there are also
noticeable differences. The effect of timing correlations is
much more evident for the threshold models, as the threshold
dynamics is driven by multiple contacts within a short time
window. Further, the sparsity of events and lack of timing
correlations may block the adoption process, as seen for the
stochastic model applied to the SMS and email networks.
For the deterministic model, the adoption in these networks
occurs only for very low threshold values, and even then the
fraction of adopters is independent of the memory length.
Both features are very different from the SI and SIR models,
where either adoption always occurs or the final fraction of
adopters changes with the model parameters (for SIR, the
basic reproduction number). Overall, threshold models can be
seen as an addition to the family of models of contagion in
temporal networks.
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[11] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-L.
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