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Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled
network models have recently been developed to facilitate further understanding of real complex systems. Analysis
of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to
explore the effect of interconnections on traffic congestion in interconnected Barabási–Albert scale-free networks.
We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random
coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the
optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences
achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected
Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical
suggestions are presented to optimize such real-world interconnected networks accordingly.
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I. INTRODUCTION

Modern society depends greatly on the efficient operation of
many critical networked infrastructures such as power grids,
the Internet, transportation networks, and so on [1]. Traffic
on such networked systems is a significant issue. A wealth
of studies on traffic congestion from the perspective of an
isolated complex network framework has been conducted
over the past decade [2–5]. It has been widely revealed
that traffic congestion is closely related to the network
structure [2,6–8]. Typically, Zhao et al. [2] examined several
representative topologies of complex networks and presented
the corresponding theoretical estimates of the traffic capacity.
Motivated by Zhao’s work, two general types of scenarios
have been proposed to alleviate traffic congestion and improve
traffic performance; namely, modification of the network
topology and design of more effective routing algorithms
(see the review article [9] and references therein). Compared
with the potential cost of changing the structure of well-
established networked systems, proposals of clever routing
criteria seem to be more practical and thus have attracted
much interest [10–13]. Among numerous different kinds of
proposed routing protocols, the efficient routing criterion is
widely acknowledged for its simplicity and efficiency [10].
This is actually contrary to the widely used shortest path
algorithm in terms of the usage of hub nodes. Additionally,
given a network framework and a specific routing protocol,
optimization of traffic resource allocation has been shown to
be a reasonable approach to mitigating traffic congestion as
well [14–16]. Notice that, in Ref. [15], the authors proposed an
optimal resource allocation strategy and showed analytically
how the shortest path strategy can alleviate traffic congestion
to the largest extent.

However, the underlying network structures in most pre-
vious investigations about traffic congestion were principally
modeled and analyzed as isolated networks. On the contrary,
modern infrastructures are actually coupled together and thus
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significantly interact with and/or depend on each other (see
Refs. [17–19] and references therein). Therefore, analysis of
traffic congestion in coupled complex networks is expected to
enable us better to model the traffic dynamics of real-world
networks and then optimize traffic performance.

Recently, coupled network models have been developed
[17,19–24]. Some features of these dynamical processes
are remarkably different from those of isolated networks.
Cascading failures, for example, have been of great interest
to researchers over the last few years. For cascade scenarios
of interdependent networks, failures of nodes in one network
result in collapses of counterpart nodes in the other network.
Such dependency between networks, which is absent from
isolated networks, makes interdependent networks vulnerable
even to random failures [17]. With respect to cascades of load
in interconnected networks where two competing forces of
redundant capacity and propagation of failures affect network
robustness, the optimal coupling preference and/or coupling
probability could be found [19,20]. Actually, multilayered
networks have also been introduced to facilitate the estimation
of traffic load in real-life systems [21]. In addition, cooperation
between layered networks and more general diffusion-like
processes have been studied [22,23]. Morris et al. also
have revealed key features of transport processes on coupled
spatial networks [24]. Nonetheless, analysis of data-packet
traffic in interconnected communication networks yet remains
missing. In essence, the transport efficiency of data packets in
communication networks can never be overemphasized in the
cyber age.

Inspired by an abundance of research on traffic congestion
in isolated complex networks and the newly developed concept
of interconnected networks, this paper focuses on the effect
of interconnections on traffic congestion in interconnected
networks based on the data-packet transport model. Given
transport scenarios, we try to explore how the interplay of
coupling preference and coupling probability controls traffic
in interconnected Barabási–Albert (BA) scale-free networks.
Furthermore, we collect and analyze real interconnected
networks composed of the Internet autonomous-system-level
(AS-level) topologies of South Korea and Japan and then give
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some workable suggestions about optimization of intercon-
nected links between two countries.

II. MODEL

Without loss of generality, we consider the case of only two
BA scale-free networks labeled A and B which can capture
the heterogeneity of many real-world networked systems [25].
For simplicity and clarity of the results, our model is based on
the assumption that these two networks are of the same size
(i.e., the number of nodes N = NA = NB) and same average
degree 〈k〉 = 〈kA〉 = 〈kB〉. These two isolated networks are
connected by adding some links, which can provide paths for
traffic between them. The coupling probability P is defined as
the ratio between the number Nil of interconnected links and
the network size N ; namely,

P = Nil

N
. (1)

It is also assumed that each node has one interconnected link
at most. P is thus in the range from 0 to 1. Apart from the
density of interconnected links, the way in which these links
are connected also have significant effects on the dynamical
processes of the two coupled networks [20,26,27]. Since our
interest is to observe traffic congestion caused by uneven
distribution of traffic load, three different kinds of coupling
preferences based on the heterogeneity of load in individual
scale-free networks are described as follows [20]:

(i) Assortative coupling. Nodes are first sorted in networks
A and B, both in descending order of load. If different nodes
share the same load, we sort them at random. Connect the first
node in network A with the first node in network B, and then
connect the second node in network A with the second node
in network B, and so on. Repeat this process until N × P

interconnected links are added.
(ii) Disassortative coupling. Nodes are first sorted in

network A (B) in descending (ascending) order of load. If
different nodes share the same load, we sort them at random.
Connect the first node in network A (with the heaviest load)
with the first node in network B (with the lightest load), and
then connect the second node in network A with the second
node in network B, and so on. Repeat this process until N × P

interconnected links are added.
(iii) Random coupling. Randomly choose a node in network

A and a node in network B. If neither of them has an
interconnected link, then connect them. Repeat this process
until N × P interconnected links are added.

In many previous studies of coupled networks, random
coupling is considered as the underlying coupling pattern
[17,28]. Real-world coupled networks, however, are usu-
ally not randomly interacting [26]. We thus consider two
other mechanisms for network coupling that are of practical
relevance; namely, assortative and disassortative sorting. A
real-life example of assortative coupling is the AS-level
Internet which we will study in this paper. We find that hub
nodes (peripheral nodes) of one country tend to attach to the
counterpart nodes of another country. We thereby introduce
assortative coupling to capture such a coupling property
existing in real networks.

In addition, we also adopt disassortative coupling for com-
parison with the assortative pattern. Disassortative coupling
implies that hub nodes (peripheral nodes) of one network
prefer to couple with peripheral nodes (hub nodes) of another
network. As revealed in the previous study, the disassortative
coupling pattern seems less common in real-world networks
compared with assortative coupling [26]. Therefore, it is of
interest to explore the impact of the coupling mechanism on
the intended traffic performance of interconnected networked
systems.

Data packets are usually transported based on a specific
routing criterion, the corresponding algorithmic betweenness
can thus approximate the traffic load. To be concrete, the
algorithmic betweenness of node k is defined as [29]

Bk =
∑

s �=t

nk
st

gst

, (2)

where gst is the total number of possible paths from node s to
node t according to a specific routing algorithm (including but
not limited to the shortest path protocol) and nk

st is the number
of such paths running through node k.

As supposed in previous literature [10,13], all nodes are
treated as both routers and hosts in this paper. That is to
say, every node can generate and process data packets. Given
a network, packets are generated in source nodes and then
delivered to their destinations. In this process, the traffic
resource allocation, such as the node processing capacity and
link bandwidth, has a great impact on traffic congestion. As in
many previous studies [12,16], each link is assumed to have
sufficient bandwidth. Therefore, the allocation of node pro-
cessing capacity is our interest here. It is widely acknowledged
that most physical and technical parameters of well-established
critical communication devices are not allowed to change
easily. Thus, we presume that the processing capacity of nodes
has been determined before they are connected with each
other and remains unchanged after forming the corresponding
interconnected networks.

Our model adopts two typical allocation scenarios. In either
case, the total processing capacity of each isolated network is
supposed to be the network size NA and NB , respectively.
In the first scenario, the processing capacity of each node
in individual networks is allocated uniformly and thus is one.
This allocation strategy is widely seen in literature about traffic
on complex networks [10,12]. We thus call it UNI for short.
In the other scenario, the processing capacity of each node
(Ci for network A and Cj for network B) is proportional to
the node’s algorithmic betweenness in individual networks.
They can be denoted as Ci = Bi/(

∑NA

s=1 Bs)NA and Cj =
Bj/(

∑NB

s=1 Bs)NB , respectively. A similar concept named node
usage probability can be used here to represent the ratio
between the algorithmic betweenness of a node and the
total algorithmic betweenness in each network [5]. Therefore,
Ci = UA(i)NA and Cj = UB(j )NB , where UA(i) and UB(j )
are the node usage probability of node i in network A and of
node j in network B, respectively. From the perspective of
mitigating traffic congestion, it has been proved to be the best
resource allocation strategy [15]. We can call it NUP for short.
In the simulation, for node k with Ck < 1, it is assumed to
process a packet with probability Ck per time step. In addition,
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if the processing capacity of node k is, for example, Ck = 1.4,
it processes two packets with probability 0.4 and otherwise
one packet per time step [16].

Due to the finite processing capacity, a queue of buffers
is needed at each node to accommodate packets waiting for
being processed. We assume that each buffer has a sufficient
length, and first-in-first-out (FIFO) discipline is adopted while
handling each queue.

Traffic model in this work includes mainly the following
two procedures:

(i) Packet processing. At each time step, node k can process
Ck packets at most. For each of these packets, if node k is not
its destination, it is then delivered to the next stop toward its
destination based on a specific routing algorithm. Otherwise,
it is removed from the network.

(ii) Packet generation. At each time step, the network
creates R new packets with randomly chosen sources and
destinations. For each packet, once its source and destination
are determined, a path from the source to the destination is
chosen based on a specific routing algorithm. If there are
multiple paths, we choose one randomly. Note that the chosen
path may be different at different time steps, even with the
same source-destination pair. The packet is then put at the end
of the queue at its source node.

In order to characterize traffic congestion, we use the order
parameter introduced in Ref. [3]:

η (R) = lim
t→∞

〈�L〉
R�t

, (3)

where L(t) is the total number of packets in the network at time
t , �L = L(t + �t) − L(t), and 〈· · · 〉 indicates the average
over time windows of width �t . Actually, the order parameter
indicates the traffic status at the macroscopic level. The traffic
tie-up will be observed when the packet generation rate R is
sufficiently high. A critical value Rc (the units are the number
of packets per time step) is thus expected to characterize the
phase transition from free flow to jamming. When R < Rc, the
number of packets in the network is a constant, making η zero.
While R > Rc, 〈�L〉, however, grows linearly with �t . So η

is a constant larger than zero. In short, Rc can be a measure of
the traffic capacity.

In this paper, we analyze two typical routing criteria. One
is the shortest path algorithm, which has been widely used in
many transport networks. Given a single general network, Ling
et al. showed analytically that the shortest path criterion can
achieve the largest traffic capacity if the processing capacity
of nodes is proportional to the corresponding algorithmic
betweenness (i.e., the NUP allocation strategy is applied)
[15]. The other is the efficient routing algorithm [10], which
can avoid collapse of hub nodes by redistributing the traffic
load from central nodes to other noncentral nodes. Such a
routing criterion can thus improve the traffic capacity greatly
on scale-free networks if all nodes share the same processing
capacity (i.e., the UNI allocation strategy is applied). For
simplicity, we suppose that routing protocols on two originally
isolated complex networks are identical and remain unchanged
on newly formed interconnected complex networks.

III. RESULTS

In Ref. [2], Zhao et al. give a theoretical estimate of the
traffic capacity Rc in isolated complex networks, which can be
denoted as

Rc = N (N − 1)(
Bk

Ck

)
max

, (4)

where Bk and Ck are the algorithmic betweenness and
processing capacity of node k, respectively. This formula can
apply to interconnected networks because interconnected links
provide routes for traffic between two networks.

When the NUP allocation strategy is applied, we can revise
Eq. (4) to estimate Rc in interconnected networks with size
NA + NB by

Rc = (NA + NB) (NA + NB − 1)
( B

′
i

UA(i)NA
,

B
′
j

UB (j )NB

)
max

, (5)

where i ∈ {1,2, . . . ,NA} and j ∈ {1,2, . . . ,NB}. B
′
i and B

′
j

are the corresponding algorithmic betweenness of node i in
network A and of node j in network B after the two networks
are interconnected.

If the UNI allocation scenario is adopted, the processing
capacity of each node in interconnected networks is one. We
can also obtain

Rc = (NA + NB) (NA + NB − 1)

(B
′
k)max

, (6)

where B
′
k is the algorithmic betweenness of node k in newly

formed interconnected networks.

A. Interconnected Barabási–Albert scale-free networks

In this section, we investigate how the interplay of inter-
connection and the traffic resource allocation scenario affects
traffic congestion for shortest path and efficient routing pro-
tocols in interconnected BA scale-free networks, respectively.
In order to maintain tractability and facilitate the analogy with
real-world interconnected Internet AS-level graphs of South
Korea and Japan, to be analyzed in the next section, we carry
out theoretical estimates on two BA scale-free networks of
the equal size NA = NB = 600 and average degree 〈kA〉 =
〈kB〉 = 4.

Given two networks, Fig. 1 exhibits how the traffic
capacity evolves with the coupling preference and probability
under different routing criteria and traffic resource allocation
scenarios.

Using Eq. (5), Figs. 1(a) and 1(c) are obtained based on
the shortest path and efficient routing strategies, respectively.
Obviously, according to either one of the two routing protocols,
assortative coupling greatly outperforms both disassortative
and random coupling when the coupling probability P in-
creases from 0.001 to 1. What is more, the traffic capacity
Rc increases continuously with the coupling probability P for
disassortative and random coupling. The evolution of Rc for
assortative coupling with P , however, is away from such an
increasing trend. In particular, Rc increases sharply at first
and then decreases slightly with P . That is to say, there is an
optimal coupling probability where the traffic capacity Rc can
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FIG. 1. (Color online) The traffic capacity Rc (the units are the number of packets per time step) as a function of the coupling probability
P for interconnected BA scale-free networks. The processing capacity is allocated based on node usage probability for (a) shortest path and
(c) efficient routing criteria, and uniformly for (b) shortest path and (d) efficient routing criteria. NA = NB = 600, and 〈kA〉 = 〈kB〉 = 4. Each
point is averaged over 50 independent runs.

achieve the maximum. These phenomena can be explained as
follows:

First, different coupling preferences have different effects
on the congestion status. According to Eq. (5), in order to
alleviate traffic congestion, the adjustment of interconnected
links is supposed to balance the traffic load of all nodes based
on the node processing capacity distribution. Furthermore,
two ends of each interconnected link share the same load
caused by traffic across two networks. Thus, if two ends of
an interconnected link have similar processing capacity, traffic
congestion can be mitigated to the largest extent. In our model,
two BA scale-free networks share the same size and average
degree; assortative coupling can thus meet such requirement
better than the other two coupling patterns.

Second, the interplay between coupling preference and
coupling probability makes the shape of curves in Figs. 1(a)
and 1(c) different. Regarding assortative coupling, when few
links are attached between two networks, the newly generated
traffic load between two networks is mainly accumulated
on nodes with large processing capacity. The accumulation
of load makes such nodes congested more easily. In this
sense, more links help to distribute such load and thus
alleviate traffic congestion. But with the continuous increment
of interconnected links, those nodes with small processing
capacity have to accommodate more load triggered by traffic
between two networks. When the ratio between the total load

(caused by traffic both within and across two networks) and the
processing capacity of nodes with small processing capacity
exceeds that of nodes with large processing capacity, the
former will trigger traffic congestion at first. Thus, more links
mean that more traffic load is distributed to nodes with small
processing capacity in general. That is to say, more severe
traffic congestion will occur accordingly. However, for both
disassortative and random coupling, due to the heterogeneity
of scale-free networks and the coupling mechanism, two nodes
both with large processing capacity in respective networks can
hardly be interconnected. Consequently, traffic congestion is
always caused by nodes with small processing capacity in all
the range of the coupling probability. Therefore, more links
facilitate the even distribution of traffic load.

Using Eq. (6), we can also produce Figs. 1(b) and 1(d)
based on the UNI resource allocation strategy. As one can
see, different from the NUP allocation strategy, here three
different types of coupling preferences achieve almost the
same traffic capacity with the increase of coupling probability.
Meanwhile, for each type of coupling preference, the traffic
capacity increases continuously. In other words, although the
disparity of locations of interconnected links can undoubtedly
trigger traffic load distribution adjustments of many nodes,
the largest traffic load of all nodes in interconnected networks
is immune to such variation to some extent. As regards the
coupling probability, more interconnected links mean more
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traffic paths between two originally isolated networks. This
makes traffic load distribution more even and thus reduces
the largest traffic load. In accordance with Eq. (6), traffic
performance will be improved continuously. Therefore, if the
processing capacity of all nodes is identical, we can choose
the coupling preference at random from the perspective of
controlling traffic congestion in interconnected networks.

Putting the four figures together, we can have some
further insights. First, with respect to traffic performance for
assortative coupling, Figs. 1(a) and 1(b) are respectively the
best and worst among the four figures. This is in agreement
with previous findings in isolated complex networks [15].
Second, for both shortest path and efficient routing criteria, the
NUP strategy can achieve better traffic performance compared
with the UNI strategy. Thirdly, the shortest path protocol
outperforms the efficient routing protocol when the NUP
strategy is adopted as exhibited in Figs. 1(a) and 1(c). Whereas
if the UNI strategy is used, the efficient routing protocol is
better than the shortest path protocol as shown in Figs. 1(b)
and 1(d). These results teach us that we have to clarify the
resource allocation strategy before we compare two routing
protocols.

It is worth mentioning that the aforementioned results
are obtained by using the formulas (5) and (6). In addition,
we have checked the corresponding simulation results on
interconnected BA scale-free networks. They are also in good
line with the theoretical estimation results.

B. Interconnected Internet AS-level graphs
of South Korea and Japan

Many real-world networks evolve by interconnecting orig-
inally isolated subsystems. As such, traffic congestion is
expected to be influenced greatly by these interconnected
links. As an example, we here focus on two interconnected
components of the Internet at the autonomous system level
in South Korea and Japan, which we label as SK and JP,
respectively (Fig. 2). These two networks are also connected
to networks of other countries or regions, which we ignore in
this paper. We obtained topological data from the Autonomous
System Ranking provided by the Cooperative Association
for Internet Data Analysis (dataset version 2013-04-01) [31].
Networks SK and JP are of sizes NSK = 677 and NJP = 509.
They have rather different average internal degrees (〈kSK〉 ≈
3.65 and 〈kJP〉 ≈ 4.40, respectively) but both exhibit a power-
law distribution of internal links, as shown in Fig. 3. It is also
found that these two networks are sparsely interconnected by
just fourteen external edges, which can be found in detail in
Table I.

The congestion thresholds for the interconnected Internet
graphs are shown as the corresponding intersections of dashed
lines in the four panels of Fig. 4, with different routing
protocols and resource allocation strategies. It is found that the
shortest path protocol along with the NUP allocation strategy
[Fig. 4(a)] achieves the highest Rc, whereas the shortest path
protocol along with the UNI allocation strategy [Fig. 4(b)]
performs the worst. This result is in perfect agreement with
our finding with the idealized interconnected BA networks
model.
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AS38631
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AS45405

Pajek

FIG. 2. (Color online) Visualization of interconnected Internet
AS-level topologies of South Korea (left side) and Japan (right side)
labeled SK and JP, respectively. The size of the nodes represents their
internal degree, and the node label is an autonomous system number
[30]. Interconnected links across SK and JP are listed and labeled
in Table I. NSK = 677, NJP = 509, 〈kSK〉 ≈ 3.65, and 〈kJP〉 ≈ 4.40.
Visualization: Pajek (Batagelj and Mrvar, 2013).

To verify our previous findings about the effect of coupling
preference or probability on traffic congestion in the idealized
network model, we conduct the same estimates on networks
SK and JP. Different from the idealized model of two networks
with the same size and average degree, here the network
sizes NSK �= NJP. So we modify the definition of coupling
probability P as

P = Nil

(NSK,NJP)min
. (7)
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FIG. 3. (Color online) The distribution function of internal edges
for networks SK and JP. Internet AS-level topologies of South Korea,
with NSK = 677 nodes and average internal connectivity 〈kSK〉 ≈
3.65. Inset: Internet AS-level topologies of Japan, with NJP = 509
and 〈kJP〉 ≈ 4.40.
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TABLE I. Fourteen interconnected links are labeled from 1 to
14, and the corresponding two ends of each link are listed. More
information is available in Ref. [30].

Label South Korea Japan Label South Korea Japan

1 AS3786 AS2516 8 AS9270 AS7660
2 AS4040 AS7660 9 AS9318 AS2497
3 AS4766 AS2497 10 AS9318 AS7660
4 AS4766 AS2516 11 AS17579 AS7660
5 AS4766 AS4680 12 AS17579 AS17934
6 AS4766 AS7679 13 AS23576 AS38631
7 AS6619 AS7660 14 AS45405 AS38638

Since one node has one interconnected link at most, P is still
in the interval [0,1]. In order to show the effect of coupling
preference, it is assumed that fourteen links are not established
yet. In other words, we only keep all the links within each
individual network and add interconnected links with the
specific coupling preference. Specifically, in the disassortative
coupling case, it is assumed that nodes in networks SK and
JP are sorted in descending and ascending order of load,
respectively.

Figures 4(a) and 4(c) demonstrate that assortative coupling
can outplay both disassortative and random coupling. In
Fig. 4(a), say, the minimum of the traffic capacity for
assortative coupling is even larger than the maximum of the
traffic capacity for the other two coupling patterns. Besides,
for disassortative and random coupling, Rc increases with P .
There is also a critical coupling probability for assortative
coupling in general. In Fig. 4(c), however, the critical coupling
probability can be found in both disassortative and random
coupling. This is different from what we obtained in the
idealized model. Furthermore, the trend of Rc for assortative
coupling is surprisingly irregular. These disparities to some
extent arise from the interplay between the difference in
size and average degree between networks SK and JP and
a few super-high-degree nodes. Nodes AS4766 and AS3786
in network SK, for example, have respectively 361 and 313
internal links, which are more than half the network size.
Although the efficient routing protocol is adopted here to
bypass hub nodes, a large amount of traffic load is still
accumulated on these super-high-degree nodes. That is to
say, they are inevitable for traffic between most of other
noncentral nodes. Despite such differences between real-world
network and the idealized network model, assortative coupling
is optimal if the processing capacity of nodes is allocated based
on node usage probability.

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

P

R
c

Assortative

Disassortative

Random

(14/509,88.19)

(a)

Shortest Path

NUP

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

P

R
c

Assortative

Disassortative

Random

(14/509,2.92) Shortest Path

UNI

(b)

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

P

R
c

Assortative

Disassortative

Random

(c)
NUP
Efficient Routing

(14/509,4.35)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

P

R
c

Assortative

Disassortative

Random

(14/509,3.80)

Efficient Routing
UNI

(d)

FIG. 4. (Color online) Evolution of the traffic capacity Rc (the units are the number of packets per time step) versus the coupling probability
P for interconnected Internet AS-level topologies of South Korea and Japan. The processing capacity is allocated based on node usage probability
for (a) shortest path and (c) efficient routing criteria, and uniformly for (b) shortest path and (d) efficient routing criteria. The corresponding
intersection of two dashed lines represents the real situation. NSK = 677, NJP = 509, 〈kSK〉 ≈ 3.65, and 〈kJP〉 ≈ 4.40. Each point is averaged
over 50 independent runs.
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Similarly to what we have concluded from Figs. 1(b) and
1(d), the traffic capacity remains unaffected by the coupling
preference as shown in Figs. 4(b) and 4(d). In particular, Rc

increases sharply at first and then remains steady or increases
slowly. In either case, the coupling preference makes no differ-
ence in terms of alleviating traffic congestion. This is in agree-
ment with the analysis in the aforementioned idealized model.
The intersection of two dashed lines in these two figures show
the actual traffic capacity of interconnected AS-level graphs of
South Korea and Japan. As one can see, although these fourteen
links do not follow any one of three types of coupling prefer-
ences here, the corresponding traffic capacities are surprisingly
similar. This result thus further confirms our conclusion.

As we can see from Figs. 4(a) and 4(c), fourteen established
links between networks SK and JP are not optimal. Thus, they
can be modified to mitigate traffic congestion and improve the
traffic capacity in interconnected networks. Actually, previous
studies have showed that both link addition and pruning can
accomplish such goals [32,33]. Considering the economical
and technical cost, link pruning is a better strategy than link
addition. Hence, we gradually remove these links one by
one and find the respective maximum and minimum of the
traffic capacity for each step; namely, (Rc)max and (Rc)min. This
procedure is shown in Fig. 5. It demonstrates the evolution
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FIG. 5. (Color online) The maximum and minimum of the traffic
capacity Rc (the units are the number of packets per time step) versus
the number of pruned links Npr between networks SK and JP for
(a) shortest path and (b) efficient routing protocols. The corresponding
inset shows the evolution of Q with the number Nil of interconnected
links.

of the traffic capacity with the number Npr of pruned links
for shortest path and efficient routing protocols, respectively.
As one can see, the traffic capacity is sensitive to both the
position and number of pruned links. In particular, when
more interconnected links are pruned, (Rc)max increases at
first and then decreases slightly for both shortest path and
efficient routing algorithms. Nonetheless, (Rc)min decreases
continuously with Npr . For the shortest path protocol, when
Npr = 9, we can obtain the largest traffic capacity through
just five remaining links labeled {1,3,4,9,10}. For the efficient
routing criterion, when Npr = 12, the largest traffic capacity
can be available through just two remaining links labeled {1,9}.

In real-world practice, however, the laying and maintenance
of cables between different countries or regions are usually
costly. Every cable is thus expected to contribute to the
improvement of traffic performance to the largest extent.
In this sense, we introduce a quantity Q to reflect such a
concern, which can be defined as Q = Rc

Nil
. We here focus on

the evolution of (Rc)max, thus Q = (Rc)max
Nil

. The corresponding
insets exhibit the relation between Q and the number Nil of
interconnected links. Q decreases monotonicly with Nil for
two kinds of routing strategies. Interestingly, this phenomenon
is in agreement with the law of diminishing marginal utility
in economics [34]. From the perspective of maximizing Q,
Nil = 1 is optimal. We find that the links labeled {4} and {9}
are the remaining links for shortest path and efficient routing
protocols, respectively. Furthermore, no matter maximizing Rc

or Q, the interconnected links labeled {4} and {9} cannot be
pruned for respective protocols. The two ends of the unpruned
link {4} are hub nodes. This complies with the shortest path
protocol. However, for the efficient routing protocol, two hub
nodes, namely AS9318 in network SK and AS2497 in network
JP, are unavoidable even though such a protocol is designed
to bypass hub nodes. This is how real-world networks differ
from the idealized model. Therefore, based on this work, our
future work is to explore possible effective routing protocols
in real-wold interconnected networks.

Similarly to Sec. III A, we conducted the simulation on
interconnected Internet AS-level graphs of South Korea and
Japan, which supports the theoretical estimates very well.

IV. DISCUSSIONS

The results of this paper are mainly based on coupled
BA scale-free networks and are verified by an analysis of
the Internet. For transportation networks, the situation seems
tricky. The airline systems contain well-connected hubs with
a very high number of neighboring airports, which resemble
scale-free networks [35]. However, node degree distributions
of many road networks and railway systems usually decay
exponentially [21]. Consider, for instance, the US highway
system consisting of nodes with randomly placed connections
resembles a random network [35]. In order to explore the
effect of non-scale-free transportation networks, we also check
other types of interconnected network models such as a BA
scale-free network coupled with an Erdös-Reyni (ER) random
graph and coupled ER random networks. The results remain
unchanged qualitatively although the degree distributions of
network models vary between homogeneity and heterogeneity.
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Another point worth mentioning is the routing strategy. In
this paper, both shortest path and efficient routing algorithms
are based on global static structural information. That is to say,
once the source and destination of a packet is determined, its
possible traffic paths are fixed. Alternatively, some routing
criteria based on local topological information are widely
applied to large networks such as peer to peer networks [36,37].
In this case, nodes usually only have the topological knowledge
of their neighbors. This is similar to the spreading process of
gossips or rumors in social networks [38]. Due to the absence
of fixed routing paths, the traveling time of the packet from its
source to destination is another necessary measure to catch the
onset of traffic congestion. Under local routing strategies, the
study of the effect of interconnections on traffic congestion is
also an extension of this work.

V. CONCLUSIONS

We investigated traffic congestion in interconnected com-
plex networks in this paper. For interconnected BA scale-free
networks, it is found that assortative coupling is more helpful
to mitigate traffic congestion than both disassortative and

random coupling if the NUP scenario is applied. In particular,
the optimal coupling probability can be found for assortative
coupling, whereas if all nodes share the same processing
capacity, traffic congestion is not swayed by the coupling
preference. In this case, traffic congestion can be alleviated
while more interconnected links are attached. Similar results
apply to interconnected Internet AS-level graphs of South
Korea and Japan. According to these results, we give some
practical proposals for optimization of interconnected links
in interconnected AS-level graphs. Altogether, this paper
provides a reasonable approach to layout of interconnected
links when traffic congestion is taken into account. Moreover,
our work will attract researchers to design more efficient in-
dividualized transport protocols for real-world interconnected
networks.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 61174153 and the
Hong Kong Research Grants Council under Grant No. PolyU
5262/11E. J.W. was supported by the Hong Kong Ph.D.
Fellowship Scheme.

[1] L. Cui, S. Kumara, and R. Albert, IEEE Circuits Syst. 10, 10
(2010).

[2] L. Zhao, Y.-C. Lai, K. Park, and N. Ye, Phys. Rev. E 71, 026125
(2005).

[3] A. Arenas, A. Dı́az-Guilera, and R. Guimerà, Phys. Rev. Lett.
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[7] R. Guimerà, A. Arenas, A. Dı́az-Guilera, and F. Giralt,
Phys. Rev. E 66, 026704 (2002).
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