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Information slows down hierarchy growth
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We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament
selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node
at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information
on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two
models are considered: a constant tournament (CT) model wherein the number of tournament participants is
constant throughout system evolution, and a proportional tournament (PT) model where this number increases
proportionally to the growing size of the system itself. The results of analytical calculations based on a rate
equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but
the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number
of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, “worst” hierarchy
level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase
linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of
system evolution to further stop growing at all. The results allow us to conclude that information available to
each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute
amount of information, not relative, which governs such behavior.
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I. INTRODUCTION

In the area of complex systems, evolving networks have
become an intensively studied topic following the introduction
of the Barabasi-Albert (BA) model [1,2], which offered a pos-
sible microscopic explanation of scale-free degree distribution
emergence matching a broad range of real scale-free networks.
The tenet of the BA model, namely a preferential attachment
rule, holds that a newly added node in a network connects
to the already existing nodes with probabilities proportional
to their current degrees. Various forms of preference have
been studied, e.g., nonlinear preferential attachment model
of Krapivsky and Redner [3,4]. The preference may refer
to diverse node attributes, such as their degree [1,5], at-
tractiveness [6], fitness [7,8], or age [9]. The above rules
of preferential attachment require full information about the
values of a relevant node attribute in the entire network.
Such information is usually infeasible in respect to larger,
real systems. It makes highly relevant the question as to
how the imposed information limit, the limit in the amount
of information new nodes possess about the entire system,
impacts the growth process of a network. In fact, a preferential
attachment where information is local and limited has already
been studied before [10–12]. Therein, new nodes could attach
only to a random subset of all nodes. A different approach
than preferential attachment was considered in [13]. There,
each new node was deterministically attached to a few highest
degree nodes of a randomly chosen subset, thereby producing
a scale-free topology over a range of degrees. This procedure
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can be thought of as a “tournament” selection, wherein out
of a randomly chosen pool of participants only the best nodes
“win” and get connected to. While the preference in attachment
may concern any given property of a node, our work focuses
solely on a hierarchy level. This level corresponds to the
node’s position within a certain hierarchical structure and may
be relevant in social systems which are by nature ordered
by some relations. We have selected the hierarchy level to
be an observable defining system dynamics both because
hierarchies constitute a backbone of many complex systems
and because node position in such a hierarchy often plays a
decisive role.

In fact, the very concept of hierarchy has not yet been
thoroughly explored and there exists no single, agreed upon
definition of a “hierarchy” [14]. The concept of hierarchy has
been applied in investigation of such diverse properties as
importance of a node in a community structure [15,16], partic-
ipation of a node in activity patterns in neural networks [17], a
node’s importance as a potential communication channel [18],
or a node’s relational importance in a knowledge structure [19].
Lane [20] distinguishes the following kinds of hierarchy:

(1) order hierarchy, where elements are ordered according
to increasing or decreasing values of ordering variable, e.g.,
cities that are ordered according to their size [20,21] or firms
ordered according to their market capitalization;

(2) inclusion hierarchy, describing a nested structure of
given entities, e.g., a holding consisting of companies, con-
sisting of departments, consisting of offices etc. [22,23];

(3) level hierarchy, where entities are posited to some
levels corresponding to scales or types of interactions and
a set of interacting entities of a lower level comprises a higher
level entity, e.g., biological ordering of cells comprising organ,
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of organs comprising individual, of individual comprising
species [22–25];

(4) control hierarchy, where elements are ordered accord-
ing to direction of control, e.g., an officer of a higher rank
can give an order to a lower rank officer or a Prime Minister
can instruct a Minister who can further instruct a Department
Director, etc.

While the order hierarchy has been studied since longer
time [26], recent studies in complex networks area mainly
address inclusion or level hierarchies [15–19]. The inclusion
hierarchy has been applied to synthetic models of hierarchical
networks [5] and the level hierarchy has been studied in
intracellular and intercellular networks, e.g., [27,28].

Here, we shall consider the control hierarchy that is
typical for directed networks where arcs define “higher-
lower” relations between nearest-neighboring nodes (see,
e.g., [29,30]). For simplicity, we shall study a network in a
form of a tree graph since it has a natural root definition
and natural control relations between directly connected
nodes. Moreover, one can naturally define different hierarchy
levels and thus such a system can be considered a “perfect”
hierarchy [29]. Various dynamics have been investigated in
such a topology [31–34] and the dynamics of the topology
itself has also been well researched, including real systems
such as internet news groups and forums [35] or directory
trees [36,37].

Let us consider the growth of a tree graph, with new
nodes being attached to the existing ones in respect to their
hierarchy levels and a limited access to information about
the entire system. We assume that new nodes representing
social agents will try to occupy the best place in the existing
social hierarchy. Information constraints are modeled through
limiting a random set of old nodes that they can connect to.
Thereby, a new node connects to an old one at the best possible
level of hierarchy in the subset of known nodes. While we
limit ourselves to tree graphs, this is only a representation of a
more general system that could also be considered in terms of
population dynamics.

The aim of this study is to examine how the imposed
information limit influences system structure or, more pre-
cisely, its influence on the emergence of consecutive hier-
archy levels. Our research is motivated by social dynamics
where issues of limited information [38–40] have been
recognized. In fact, the amount of information available to
community members has been considered in the perspective
of evolving behavioral patterns [39] and the emergence of
cooperation [38]. It has also been shown that individual
information constraints can significantly alter the way in
which cooperation arises [38] and that high information costs
lead to a steeper social hierarchy [40]. To the best of our
knowledge, however, no studies have addressed the question
as to how the amount of available information influences the
growth of hierarchical networks, which is the very aim of
this work.

The paper is organized as follows. Section II introduces two
models of tree evolution with a tournament selection where
the number of contestants is constant (CT model) or it is
proportional (PT model) to the current tree size. Sections III
and IV present analytical and numerical results of hierarchy

FIG. 1. (Color online) Evolving hierarchical system in the form
of a tree, with marked hierarchy levels h. A new node (red) is informed
of several randomly chosen existing nodes (marked with a square)
and chooses the one at best position in the hierarchy (lowest h). It
enters the hierarchy at a level worse by 1 than a chosen node (in this
example, at h = 2). Note that new level h = 3 emerges only when the
random set of nodes contains only nodes positioned at level h = 2.

growth in CT and PT models. Section V covers the main
conclusions of our work.

II. TOURNAMENT MODELS

Our model is a growing tree model, where at each time step
we add a new node and choose one existing node to connect
it to (see Fig. 1). We take the tree as a hierarchical system,
with hierarchy levels h defined in respect to the distance from
the tree root. We call our system a hierarchy regardless of the
actual emergent topology, including cases where it does not
appear hierarchical at all.

The root node, a node at level h = 0 (the “top” level),
is created at time step t = 0. There is always only one root
since introducing new roots would require adopting additional
dynamical rules, while a single initial root can be considered
the initial condition. Level h = 0 will be considered the best
hierarchy level, while the following h = 1, h = 2, etc., will
be considered worse levels. To avoid confusion, we refer to
these levels as better or worse, alternatively older or younger
instead of higher or lower since a smaller h value is better
and can be considered “higher” in the hierarchy. At each time
step t a new node is added (which means that the system size
is N = t + 1), and then it is connected to one of the existing
nodes j at a hierarchy level hj . A new node i is therefore at
hierarchy level hi = hj + 1 and this does not change in time.

The model could be also understood in terms of population
dynamics, with populations Nh of individuals occupying
different hierarchy levels h. At each time step t a new agent i

enters the system, with one of existing agents j becoming
his “superior.” The hierarchy hi of newcomer is one step
worse than his immediate superior’s, meaning hi = hj + 1.
This approach is equivalent to the tree representation, provided
that rules of nodes attachment are dependent only on node
hierarchies hj , and not on other nodes properties, e.g., nodes
degrees.

The choice of a node to connect to is that of a “tournament
selection” [13], where a subset of m random nodes is selected
from among the nodes already present, and a node at the best
hierarchy level (lowest h) from among these is chosen to be
connected to. Limited size of a tournament reflects limited
availability of information [41], whereby the choice is limited
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to the set of known nodes. Two tournament variants will be
studied: a model with a given constant tournament size m (CT
model) and a model with random, proportional tournament
size (PT model).

In the CT model, the number of contestants m > 0 is a fixed
integer parameter and thus new nodes have access to a constant
amount of information. The contestants are randomly chosen
without repetition from among the existing nodes. For t <

m − 1, all the existing nodes are participants. When m = 1,
the tournament has only one contestant and the tree is growing
randomly.

In the PT model, each existing node has a fixed probability
α of participating in the tournament. This means that the
number of participants is a random variable, with an average
〈m〉(t) = αt dependent on time. For higher t , the distribution of
tournament sizes m is Poissonian. This means that the average
amount of information available to new nodes increases with
time. In case the contest ends up with no participants, it is
redone until at least one contestant is present. Such cases
occur mainly in the initial stage of the tree evolution when
〈m〉(t) � 1. The redoing of empty tournament events ensures
that it is possible for a new node to attach somewhere at every
time step.

Although our approach to network dynamics takes into
account a selection pressure, it considerably differs from
both the Barabasi-Albert model of evolving networks [1] and
all similar models (e.g., [3,6]) using preferential attachment
where a temporary node degree defines the probability of
selection. In our models, the level of hierarchy of the existing
nodes does not change when new nodes attach to it, unlike the
degree of nodes in the BA model. Moreover, the mechanism
of selection takes into account limited amount of information
available to the nodes being attached.

III. EMERGENCE OF HIERARCHY LEVELS IN
CONSTANT TOURNAMENT MODEL

A. General approach

Since the edges do not play any role in the considered
attachment dynamics, one can ignore the details of evolving
network topology and analyze only the numbers of nodes Nh

at each hierarchy level h. We base our analytical description on
the average outcomes of the processes and use rate equations
to describe the dynamics of averages. Because new roots do
not emerge, the number of nodes at level h = 0 is constant in
time and equal to N0(t) = 1. Occupations Nh(t) of every level
h > 0 can grow in time when a node is added to level h. It
takes place in a situation when the best hierarchy level in the
tournament is h − 1, meaning that the set of randomly chosen
nodes at time t includes at least one node from level h − 1 and
m − 1 nodes from levels h′ � h − 1. It follows that the rate
equation can be written in the continuous time approximation
as

dNh(t)

dt
=

(
N+

h−1(t)

m

)
−

(
N+

h (t)

m

)
(

N (t)

m

) for h > 0, (1)
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FIG. 2. (Color online) CT model. Number of nodes Nh(t) at
each hierarchy level h increases as a logarithm to power h when
the attachment process is random (m = 1). Results of computer
simulations are presented by symbols, analytical results are presented
by solid lines of corresponding colors and follow from Eq. (5). Note
that a younger hierarchy level grows faster than older ones.

where we denote N+
h as the number of nodes at hierarchy level

h and worse

N+
h =

+∞∑
i=h

Ni = N −
h−1∑
i=0

Ni. (2)

The following initial conditions will be used for Eq. (1):

N0(0) = 1 and Nh>0(0) = 0. (3)

Since the complexity makes the rate equation (1) generally
unsolvable, the following sections will consider its specific
cases.

B. Number of nodes at different hierarchy levels

For m = 1, the CT model has only one contestant and the
dynamics is reduced to a random selection process. The rate
equation (1) simplifies to

dNh(t)

dt
= Nh−1(t)

N (t)
for h > 0, (4)

which corresponds to the probability that a randomly chosen
node will be at level h − 1. The solution of Eq. (4) with initial
conditions (3) can be written as

Nh(t) = 1

h!
[ln (t + 1)]h . (5)

Numerical and analytical results are presented in Fig. 2. Re-
sults of computer simulations at this and at all following plots
have been averaged over Q = 104 realizations. It is evident
that except for small times t , our analytic approach correctly
captures the dynamics of Nh. Equation (5), normalized by
N = t + 1, takes the form of a Poisson distribution of nodes
at hierarchy levels h, with the mean value increasing as a
logarithm of time 〈h〉 ∼ ln(t + 1). This kind of log-Poissonian
statistics appears in the dynamics of various complex systems
dominated by short events (called “quakes”), separated by
increasingly long times of inactivity [42]. The log-Poissonian
distribution of the number of these events after the lapse of time
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FIG. 3. (Color online) CT model. Logarithmic growth of number
of nodes N1(t) at the first hierarchy level h = 1 for different sizes of
the tournament m = 1,2,3,10. Results of computer simulations are
presented by symbols, analytical results from Eq. (7) are presented
by solid lines of corresponding colors.

t arises from the constant probability of an event happening
in logarithmic time scale P (t1,t2) ∼ ln(t2) − ln(t1). While such
quake distribution arises from aggregation of different possible
realizations, Eq. (5) represents a distribution over different
nodes in a single network. Although both distributions are
alike, no direct relation between dynamics of both systems
could be established.

For m > 1 and h = 1, Eq. (1) can be also simplified,
realizing that for h = 1 we have N+

h−1 = N (t) and N+
h (t) =

N (t) − 1. Thus,

dN1(t)

dt
= m

t + 1
. (6)

This means that the number of nodes at the first hierarchy level
increases logarithmically with t , and after taking into account
the initial condition (3) one gets

N1(t) = m ln(t + 1), (7)

which is in agreement with the numerical data (see Fig. 3).
What happens at the following levels? For h > 1 we have

not found analytical formula for Nh(t), but the numerical
integration of the rate equation (1) displays a good agreement
with numerical simulations of the tournament process (see
Fig. 4). It is worth noting that for times t smaller than τh

moment of emergence of hierarchy level h (see next section),
the variable Nh(t) received from the integration of gamma
function appearing in Eq. (1) can have nonphysical values (i.e.,
negative or imaginary). For that reason, we have performed a
numerical integration of Eq. (1) starting from t = τh and taking
into account the initial conditions Nh(t = τh) = 1. Values τh

for h = 1,2 . . . have been found in simulations of the tree
growth (see Sec. III C). Figure 4 demonstrates that Nh(t)
reveals an interesting and nontrivial behavior. Each following
hierarchy level h grows faster than the previous one (levels that
were born earlier than h) and consequently after some time the
number of nodes at level h is greater than the number of nodes
at other levels. A similar behavior is observed in Fig. 2. In
fact, if in a given time step the hierarchy level h makes for the
largest number of nodes Nh(t), then the majority of new nodes
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FIG. 4. (Color online) CT model. Hierarchy levels that were born
earlier grow slower than the ones following them. The graph shows the
evolution of hierarchy level occupancy Nh(t) for m = 10. Computer
simulations are presented by symbols, numerical solutions of the rate
equation (1) are presented by solid lines of corresponding colors.

are attached to nodes at this same level, and the following
level h + 1 grows very fast and it eventually becomes the most
occupied one.

The Poissonian character of the distribution of levels h in
the system [Eq. (5)], evident for m = 1 does not extend to
cases when m > 1. In fact, numerical simulations show that
the variance of h distribution does not scale linearly with mean
〈h〉 for m > 1 (Fig. 5).

C. Hierarchy level birth time

In terms of mean values, the emergence of hierarchy level
h at time τh means that the expected number of nodes at this
level equals one:

Nh(τh) = 1. (8)

 0
 5

 10
 15
 20

 0  5  10  15  20

σ
h2

<h>

(A) m=1

 0
 0.5

 1
 1.5

 0  2  4  6  8  10

σ
h2

<h>

(B) m= 2

 0
 0.2
 0.4
 0.6
 0.8

 0  2  4  6  8

σ
h2

<h>

(C) m= 3

 0
 0.1
 0.2
 0.3
 0.4

 0  2  4  6

σ
h2

<h>

(D) m=10

FIG. 5. (Color online) CT model. The variance σ 2 of the distri-
bution of levels h does not scale linearly with the mean 〈h〉 for the
dynamics for m > 1, which implies non-Poissonian character. The
oscillations are the result of discrete h values and are minimal when
〈h〉 is close to an integer number. Data obtained from numerical
simulations averaged over Q = 104 realizations.
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FIG. 6. (Color online) CT model. For m = 1, new hierarchy lev-
els emerge exponentially with time. Results of computer simulations
are presented by circles, analytical results following from Eq. (9) by
a solid line. The plateau for higher h is a consequence of a limited
simulation length (109 time steps). Dashed line shows the exponential
behavior τh ∝ exp(h/e).

For the CT model, taking the solution (5) one can write the
hierarchy level birth times as

τh = exp
[
(h!)

1
h

] − 1. (9)

The solution (9) and numerical simulations are presented
in Fig. 6. Let us note that

lim
h→∞

τh+1

τh

= e1/e ≈ 1.44, (10)

thus for large h the birth time of new levels increases
exponentially, τh ∼ exp(h/e).

The mean time τ2 can be analytically calculated by
considering the exact process (not the averages). We start with
one node at hierarchy level h = 0. At time steps t � m we
add nodes at level h = 1. Starting from time step m, there
is a chance to create hierarchy level h = 2; prior to that, all
nodes are always created at level h = 1. Since m nodes for the
tournament are chosen out of the total of t + 1 nodes, there
is ( t + 1

m ) such combinations in total. Out of all of them there

are ( t
m ) combinations where the root is not chosen, giving the

probability of creating hierarchy level h = 2 at time step t + 1
(provided it was not created before):

P2(t + 1) =
(

t

m

)
(
t+1
m

) = 1 − m

t + 1
. (11)

Since the probability to continue the growth of level h = 1 is

P1(t + 1) = 1 − P2(t + 1) = m

t + 1
, (12)

the total probability that the process will create the hierarchy
level h = 2 exactly at time step t is

P (t) =
[

t−1∏
k=m+1

P1(k)

]
P2(t) = mt−m−1 m!

(t − 1)!

(
1 − m

t

)
.

(13)
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FIG. 7. (Color online) CT model. Birth time τh for a given
hierarchy level h is delayed when size m of the tournament increases.
Results of computer simulations are presented by symbols. Solid line
for τ2(m) follows from Eq. (14) and solid lines for τ3(m) and τ4(m)
from Eq. (17).

It follows that the mean time τ2 when the hierarchy level h = 2
appears is

τ2 =
+∞∑

t=m+1

P (t)t = m

[
1 +

(
e

m

)m

[�(m) − �(m,m)]

]
,

(14)

where �(m) is Euler’s gamma function and �(m,m) is an
incomplete gamma function. In case m = 1, this formula can
be greatly simplified and one gets a value close to the result (9):

τ2|m=1 = e. (15)

The solution (14) is in a very good agreement with the
numerical simulations presented in Fig. 7.

To find τh for h > 2 and m > 1, one should take into
account that the emergence of new hierarchy levels is inhibited
by the presence of nodes at all older, better levels. Thus, it is
more difficult to precisely determine the time when a new level
will emerge for the first time. A new level h can appear if level
h − 1 consists of at least m nodes, but it is very unlikely that
such an event will take place at time τh−1 + m. Therefore,
one should take into account not only the number of nodes at
Nh−1 but also each number Ni for i < h. Without analytical
solutions for Nh(t) when m > 1 and h > 1, we are unable to
find an analytical result for τh(h) in the way presented above.
Instead of that, we can estimate time τh as follows. Between
times τh−1 and τh we added N (τh) − N (τh−1) nodes divided
between all existing hierarchy levels:

N (τh) − N (τh−1) =
h∑

i=0

[Ni(τh) − Ni(τh−1)] . (16)

When a new level h emerges there is Nh(τh) = 1, and
Nh(t < τh) = 0. Taking into account these two assumptions
and knowing that N (t) = t + 1, we obtain

τh −
h−1∑
i=0

Ni(τh) = τh−1 −
h−2∑
i=0

Ni(τh−1). (17)
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FIG. 8. (Color online) CT model. For m > 1 the rate of hierarchy
growth is slower than the exponential behavior observed in case
m = 1. Results of computer simulations for hierarchy level birth
times τh are presented by different symbols for different tournament
sizes m. Larger m slows down the emergence of new hierarchy levels.

Since we know τ2(m) and have numerical results for Nh(t),
we can find the numerical solution of Eq. (17) for a given
h > 2 (see Fig. 7). Figure 8 presents times of birth τh for
various hierarchy levels h and for various tournament sizes m.
The emergence of the following hierarchy levels is slower for
higher m. It means that the more nodes are participating in a
tournament, the lower the chance of a new level to appear. If
m → ∞, a new node is equipped with full information about
all node hierarchy levels and thus all nodes attach to the hub,
i.e., the network becomes a star graph and hierarchy levels
h > 1 do not emerge.

D. Number of nodes at maximal hierarchy level hmax

At each time step t , one can distinguish the maximal
hierarchy level (the worst one) h = hmax in the network
structure. Let us consider the changes of a number of nodes
Nhmax (t) in time at such a level.

For the case m = 1 corresponding to the random attachment
process one can use the explicit solutions (5) and (9), and after
some algebra one receives that Nhmax oscillates between 1 and
Nmax

hmax
= exp

[
(hmax + 1)!1/(hmax+1)

]
. The last value corresponds

to time τhmax+1 when hierarchy level hmax is replaced by
hierarchy hmax + 1 being the worst one. Let us note that for
hmax → +∞, the value Nmax

hmax
reaches the limit Nmax

∞ = e, and
thus the amplitudes of such oscillations are small. Since value
τhmax+1 is given by Eq. (9), one gets the estimate of Nhmax

in a discrete set of time steps. In Fig. 9 inset, the result is
compared to numerical simulations. Since the oscillations of
Nhmax are small, they are invisible when averaged over many
realizations of tree dynamics.

It can be understood as follows. When we consider only one
contestant, a new hierarchy level h can emerge if level h − 1
contains at least one node. For this reason, the level considered
to be the maximal level hmax at one time step can in principle
give birth to a new level at the following time step when a new
node is attached to it. Of course, when network is large it takes
longer for such a node to be selected.
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FIG. 9. (Color online) CT model. For m > 1 number of nodes
Nhmax (t) at maximal hierarchy level oscillates log-periodically with
time. For m = 1 the number Nhmax (t) increases slowly and oscillations
are negligible. The solid line in the inset is an estimation of Nhmax (t)
from combinations of Eqs. (5) and (9).

For m > 1, the number of nodes at the maximal level hmax

depends on stochastically determined hierarchy level birth
times τh and is nonmonotonous. The numerical dependence
Nhmax (t) is shown in Fig. 9. In this case, hierarchy level h can
emerge if level h − 1 is present in the system and the number of
nodes at this level is large enough [Nh−1(τh) � m]. It follows
that level h − 1 must attract a larger number of nodes than for
m = 1. The actual Nhmax increases until a new hierarchy level
is born at τh, which makes Nhmax = 1. Consecutively, number
Nhmax = 1 begins to grow again, forming a quasi-log-periodic
pattern. The average over many different realizations trans-
forms such a pattern into the observed log-periodic oscillations
of Nhmax , with amplitude increasing along tournament size m

and time t .

E. Total number of hierarchy levels

Let us consider how on average the total number of
hierarchy levels H (t) increases in time. Since we start labeling
levels from h = 0 thus H (t) = hmax + 1.

For m = 1 following hierarchy levels h emerge at time steps
τh which are given by Eq. (9). Using Eq. (9) and Stirling for-
mula n! = ( n

e
)n

√
2πn we can obtain an approximate solution

H (t) ≈ e ln(t + 1) [2πe ln (t + 1)]−
1

e ln(t+1) . (18)

In the limit of large t there is

Hlarge(t) ≈ e ln(t + 1). (19)

The solution (18) fits well to the numerical simulations
presented in Fig. 10.

For m > 1, we could not find an analytical formula for H (t)
since we do not have analytical form of τh. Figure 10 shows
numerical simulations of this observable. The behavior of H (t)
for m > 1 is more complex than in the case of random growth
m = 1. We observe a steplike growth being the consequence of
discrete values of hierarchy level h separated by much longer
time spans between emergence of new levels at times τh than
for m = 1. The larger the tournament m, the slower the increase

062810-6



INFORMATION SLOWS DOWN HIERARCHY GROWTH PHYSICAL REVIEW E 89, 062810 (2014)

 0

 10

 20

 30

 40

 50

100 101 102 103 104 105 106 107 108 109

H

t

m=1
m=2
m=3

m=10

FIG. 10. (Color online) CT model. Logarithmic growth of the
number of hierarchy levels in time H (t) for m = 1 and steplike growth
for m > 1. Results of computer simulations are presented by points,
analytical results for m = 1 [Eq. (18)] by a solid line.

of the total number of hierarchy levels H (t) and the more
evident the steplike behavior of such a process.

F. Mean hierarchy approach

We can approximate the hierarchy evolution in time by
calculating the mean hierarchy of newly added nodes. Since
the nodes are added one per a time step, we can identify a
node by time step τ it was added to the network. The mean
hierarchy level of a node added at time t is equal to the mean
level of the node it attaches to plus 1. Using the continuous
variable approximation, the above can be written as

h(t) = 1 +
t∫

0

P (τ,t)h(τ )dτ, (20)

where P (τ,t) is a probability to attach to a node τ at time step
t . The probability P (τ,t) depends on the parameter m. For
m = 1 it is simply a chance to randomly pick one node out of
t existing nodes

P (τ,t) = 1

t
. (21)

If m > 1, then we need to take into account that not all of the
nodes have the same probability of being chosen. We simplify
our approach by assuming that an older node will be on average
at a better hierarchy level than a node added at a later time step.
The hierarchy level relation is therefore by assumption mapped
on the age relation. Since there are m chances to pick a node
of age τ for a tournament, the probability of such an event is
m/t . For the node to be the winner, it needs to be the oldest.
It means that all other m − 1 nodes must be younger than τ .
Thus, the probability to have a node of age τ as the winner of
the tournament is

P (τ,t) = m

t

(
1 − τ

t

)m−1
. (22)
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FIG. 11. (Color online) CT model. Coefficient a(m) correspond-
ing to the rate of hierarchy level increase. Red triangles are results of
computer simulations and green squares follow from Eq. (25). Inset:
Evolution of average hierarchy level 〈h〉 (t) for m = 2, analytical
prediction [Eq. (24), line] and numerical results (symbols) showing
different coefficients.

With this, Eq. (20) changes to

h(t) = 1 + m

t

t∫
0

(
1 − τ

t

)m−1
h(τ )dτ. (23)

This equation can be solved by multiplying it by tm and
differentiating m times over t sidewise, thereby transforming it
into a differential equation. The only solution not diminishing
quickly to zero with time is

h(t) = a(m) ln t + 1 (24)

with constant 1 resulting from the imposed initial condition
h(1) = 1. Putting it into Eq. (23) allows one to find the value
of factor a(m) as

a(m) = 1

Hm

, (25)

where Hm is harmonic number Hm = ∑m
i=1 1/i.

Because the approach is based on mean values thus h(t)
behaves smoothly with time, but real h(t) will be rather noisy.
To obtain a relatively smooth variable for comparison we
consider the average hierarchy level in the network

〈h〉 (t) = 1

t

t∫
0

h(τ )dτ = a ln t + (1 − a). (26)

Numerical results for 〈h〉 confirm (Fig. 11) that it grows
logarithmically, as expected from Eq. (26). The coefficients
a(m) were calculated by fitting logarithmic curves h(t) =
a(m) ln t + const to the data. Figure 11 shows comparison
between numerical and analytical values of a(m). The exact
values do not match, although the observed coefficients
decrease with the tournament size m and therefore with
the availability of information, in accordance with analytical
prediction [Eq. (25)]. We can conclude that an analytical
approach is successful in predicting the logarithmic behavior,
but due to approximations we have used, it may not predict the
exact values. In fact, if we modify the model to prefer older,
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not best-level nodes (mirroring the approximation made in our
analytical approach), then numerical results fit the analytic
predictions, which means that the discrepancy comes from the
“older nodes have better hierarchy levels” approximation.

IV. EMERGENCE OF HIERARCHY LEVELS IN
PROPORTIONAL TOURNAMENT MODEL

A. Growth of hierarchy levels

In the PT model, with proportional tournament size, all
nodes have a fixed probability α to participate in a given
tournament. The overall tournament size is therefore a random
variable, and in the limit of large time it has Poissonian
distribution. The mean tournament size 〈m〉 = αt increases
in time, thus on average the amount of information available
for new nodes increases in time as well. We will note the
chance that a node does not participate in a tournament as
q = 1 − α. Let us look at a single tournament, and how much
on average the number of nodes at each hierarchy level h

changes afterwards. Since the root level h = 0 has always a
single node N0 = 1, therefore the mean change on this level is
zero �N0 = 0 similarly as in the CT model. The level h = 1
grows when the tournament is won by the root, which happens
every time it participates, i.e., with probability α. Similar line
of thought leads to a general rate equation for the mean change
�Nh during a single tournament for any h > 1:

�Nh = (1 − qNh−1 )
h−2∏
i=0

qNi . (27)

In our model, if no nodes participate in the tournament, then
the procedure is repeated until at least one node is present and
can be the winner. If the tournament ends up empty, then no
node is added and the system time clock t is at halt. Since the
chance there are no participants is qN = qt+1, we can write
the mean change of the time clock during a single tournament
as

�t = 1 − qt+1. (28)

To simplify calculations, we use a continuous variables
approach. For h = 1, Eqs. (27) and (28) give the rate equation

dN1

dt
= 1 − q

1 − qt+1
. (29)

When t � 1, the solution is

N1(t) ≈ αt (30)

thus hierarchy level h = 1 grows linearly in the large time
limit. The rate equation for hierarchy levels h � 2 is

dNh

dt
= (1 − qNh−1 )

∏h−2
i=0 qNi

1 − qt+1
. (31)

It follows that for large times the level h = 2 also grows
linearly

N2(t) ≈ qt. (32)

Thus, for t � 1 we have N1(N ) + N2(N ) ≈ N which implies
that new nodes only appear at levels h = 1 and 2, while worse
levels do not grow at all. This effect can be confirmed by
looking at the rate equation for levels h > 2 and observing that

FIG. 12. (Color online) Examples of typical shapes of systems
comprising 200 nodes in the CT (left, m = 2) and PT (right, α = 0.5)
models. Only nodes at different levels are shown, the links are omitted
for clarity. 10 newest nodes are marked in red, thus showing at which
levels the tree grows. Note that while in the CT model it is the worst
levels that grow fast, allowing the emergence of new levels; in the PT
model it is only levels 1 and 2 that do grow after lapse of time.

their growth is limited by the presence of nodes at levels h = 1
and 2 in the form of terms qN1 and qN2 . Since the numbers
N1 and N2 grow linearly, these terms go towards zero. This
behavior differs much from the evolution of CT model, where
all hierarchy levels emerge and grow when given enough time
(Fig. 12).

Let us look at system dynamics before the first two levels
monopolize its growth. The exact solution of Eq. (29) is

N1(t) = (1 − q)t + (1 − q)
ln(1 − q)

ln q

− (1 − q)
ln(1 − qt+1)

ln q
. (33)

Similarly, Eq. (31) can be solved for h = 2, obtaining

N2(t) = qt + q
ln(1 − q)

ln q
−q

ln(1 − qt+1)

ln q
− 1

ln q

(
q

1 − q

)q

×
[(

1 − qt+1

qt+1

)−(1−q)

−
(

1 − q

q

)−(1−q)
]

. (34)

For h > 2, we could not find an analytic solution for Eq. (31)
but we integrated it numerically to get N3(t) used in compari-
son with simulation results.

Equations (33) and (34) have linear behavior for t � 1/α,
but behave nonlinearly in the beginning. Figures 13 and 14

100

101

102

103

104

105

106

100 101 102 103 104 105 106

N
1

t

α=0.01
α=0.1

α=0.33

FIG. 13. (Color online) PT model. The hierarchy level directly
below the root (h = 1) grows linearly with time. The graph shows
N1(t) for α = 0.01,0.1,0.33. Results of computer simulations are
presented by symbols, analytical results [Eq. (33)] by solid lines.
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FIG. 14. (Color online) PT model. The growth of large trees is
monopolized by hierarchy levels h = 1 and 2 since in the course of
time levels h = 3 and worse stop growing. The graph shows Nh(t) for
α = 0.01. Results of computer simulations are presented by symbols,
corresponding analytical results [Eqs. (33) and (34)] by solid lines.
The number N3(t) shown as a numerical solution of Eq. (31) saturates
around time t = 104.

show that the analytical predictions agree very well with the
results obtained through numerical simulations of the model.
N1 starts at the same point, and then evolves differently for
different α, only converging to appropriate αt line after some
time, the longer the lower is α. N2 grows slow at the beginning,
but then accelerates as αt grows and finally converges to qt .
N3 initially grows, but then it stops and creates a plateau, at
about the same time N1 and N2 converge to their limit forms.

Knowing that for larger times, levels h = 1 and 2 contain
almost all nodes of the tree, it is possible to determine the
average hierarchy level in the graph at N → +∞. It is simply

〈h〉(t → +∞) → N1(t) + 2N2(t)

t + 1
→ 2 − α (35)

and therefore it is always between 1 and 2. The shape of the
evolution of average hierarchy level 〈h〉(t) can be estimated
(simply ignoring all hierarchies worse than h = 3) as

〈h〉(t) ≈ N1(t) + 2N2(t) + 3N3(t)

N1(t) + N2(t) + N3(t)
. (36)

Figure 15 shows the values obtained from numeric simulations
as well as from Eqs. (33) and (34) and numerical solution of
Eq. (31) for h = 3. The prediction attains the same general
shape, increasing at the beginning and then falling down
towards the limit value 2 − α, although due to considering
only first three levels one can not predict the full height of
the peak, which is caused by the presence of nodes at many
different levels, including those worse than h = 3.

B. Critical parameters for hierarchy level emergence

Similar to the case of CT model, the hierarchy level
emergence times τh are very hard to describe analytically,
aside from trivial τ0 = 0 and τ1 = 1. For very small α, if
we take into account that we force at least one participant
to be in tournament, the PT model can be approximated by
the CT model with m = 1. This basically means random
attachment, where τ2 ≈ e [Eq. (15)]. Since for higher α the
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FIG. 15. (Color online) PT model. After the initial increase of
the number of hierarchy levels, the trend reverses and levels 1 and 2
monopolize growth, causing the average hierarchy level 〈h〉 (t) to be
between 1 and 2. The graph shows the evolution of 〈h〉 (t) for different
α = 0.01,0.1,0.33. Results of computer simulations are presented by
symbols, approximate analytical solutions [Eq. (36)] by lines.

chance to choose nodes at hierarchy level h = 1 is lower than
this approximation, the resulting time τ2 is actually higher.
For α → 1, the level h = 2 never appears and τ2 → +∞.
Unlike in the CT model, where new hierarchy levels appear
and grow, in the PT model, the first two monopolize the growth
and appearance of levels h = 3 or worse is not certain. It is
possible to calculate the time when the growth of all levels
worse than h = 2 stops. First, we write the equation for growth
of hierarchy levels h = 3 and worse:

dN+
3

dt
= qN1+1(1 − qt−N1−1)

1 − qt+1
. (37)

If we integrate it from τ to infinity, we obtain the number
N++

3 (τ ) of nodes of levels h = 3 and worse that are expected
to appear after time τ . The exact expression is

N++
3 (τ ) =

−(
q

1−q

)q

ln q

(
qτ+1

1 − qτ+1

)(1−q)

− ln(1 − qτ+1)

ln q
.

(38)

Let us define τ ∗
h as the critical time after which no nodes are

expected to appear at levels h or worse, and the growth is
completely monopolized by better levels. The condition for τ ∗

3
can be written as

N++
3 (τ ∗

3 ) = 1. (39)

Using Eqs. (38) and (39), we get

τ ∗
3 ≈ ln(− ln q)

(1 − q) ln q
+ q

1 − q

(
ln(1 − q)

ln q
− 1

)
. (40)

Since the time τ ∗
3 decays with the probability α (see Fig. 16),

thus one can calculate the critical α∗
3 , which is the maximum

α where the levels worse than 2 are expected to appear at
all. Setting τ ∗

3 = 0 and N++
3 = 1 into Eq. (38), we obtain the

equation for α∗
3 :

1 − α∗
3

α∗
3

+ ln α∗
3 = − ln(1 − α∗

3 ). (41)
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FIG. 16. (Color online) PT model. The critical time τ ∗
3 of halting

the growth of hierarchy levels h = 3 or worse decreases with the
probability α of a node selection for a single tournament. Worse
levels stop growing even earlier and τ ∗

4 (α) < τ ∗
3 (α). For α 
 1, the

two approximations for τ ∗
3 represented by Eqs. (40) (red broken

line) and (44) (green solid line) are indistinguishable and time τ ∗
4

approximated by the solution (46) (blue dotted line) fulfills the
condition τ ∗

4 
 τ ∗
3 .

It follows the critical value α∗
3 ≈ 0.4138.

When α is small and τ ∗
3 is large, the critical value τ ∗

3 (α) can
also be estimated in a simpler way, without using Eq. (38). In
such a case, we approximate the growth of hierarchy levels h =
3 and worse by ignoring the influence of empty tournaments
and simplifying Eq. (37) to

�N+
3

�t
≈ qN1 ≈ qαt . (42)

The condition for critical τ ∗
3 can then be written as

+∞∑
t=τ ∗

3

qαt = 1, (43)

which leads to the approximate solution

τ ∗
3 ≈ − ln(α2)

α2
. (44)

Figure 16 shows that both methods of approximation give the
same dependence of τ ∗

3 (α) for small α values. It also shows an
estimate for the τ ∗

4 , the time after which no nodes are expected
to appear at levels h = 4 or worse. It could be obtained in the
same way as the approximation (44) for τ ∗

3 , except instead of
considering only level h = 1 obstructing the growth through
term qN1 , we take into account both qN1 and qN2 , which means
we get

�N+
4

�t
≈ qN1qN2 ≈ qt , (45)

thus

τ ∗
4 ≈ − ln α

α
. (46)

Note that in this approximation, all hierarchy levels worse than
h = 3 behave the same way and one would obtain the same
approximate for the critical time τ ∗

h for any h > 3, which is
smaller than τ ∗

3 .
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FIG. 17. (Color online) PT model. Number of hierarchy levels
H (t) grows during initial time, and then saturates as first two
levels monopolize the growth. The graph shows H (t) for different
values of α = 0.01,0.1,0.33. Results of computer simulations are
shown as symbols, analytical estimate [Eq. (18)] by the solid line.

The number of hierarchy levels behaves as one would
expect from earlier findings (Fig. 17). In the beginning,
when αt < 1, it is increasing logarithmically and then it
saturates. This can be explained as follows. When t < 1/α,
the tournament has usually just one contestant. In fact, a
probability of a larger tournament m > 1 is α(m−1) and
it is small when α 
 1. This means that the behavior is
approximately the same as for the CT model, with m = 1, and
the maximum hierarchy level will grow in a similar fashion
[Eq. (18)]. Once t > 1/α, the growth of levels slows down and
eventually stops, as the size of the tournament 〈m〉 increases
(Fig. 17).

The number of nodes Nhmax (t) at the maximum hierarchy
level hmax evolves in time as follows. When α > α∗

3 , the level
h = 3 does not appear at all, and hmax = 2, thus Nhmax grows
linearly with time. When α < α∗

3 levels worse than 2 do appear
and then stop growing, it means that Nhmax (t) is constant from
that time on.

V. CONCLUSIONS

We conclude that in a tree growth where nodes attach to the
best known place in hierarchy, the availability of information
restrains the emergence of hierarchy levels: the larger the
amount of available information, the slower the growth of
consecutive hierarchies. The nontrivial observation is that
it is the absolute amount of information, not relative, that
governs this behavior. If new nodes know about a constant
number of existing nodes, then the system grows steadily, as
in the CT model (Fig. 10). If new nodes know about a fixed
fraction of existing nodes, then the system dynamics changes
in time and hierarchy growth slows down to a complete
standstill, as in the PT model (Fig. 17). This is because
information about only one well positioned node is required
for the new node to connect well, regardless of how many
nodes there are in total. Repeated connections to nodes at
good hierarchy levels make it even easier for new nodes to
connect well, producing very wide and shallow tree (Fig. 12).
This behavior resembles models of group cooperation, where
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easy access to information causes a hierarchy to become
shallower [40] provided that system resources are evenly
distributed. Considering that the CT and PT models differ
only in respect to the dependency of information on system
size and yet display qualitatively different behavior, we may
conclude that there must exist a transition between these two
types of behavior and, consequently, a critical dependence
of information on system size. What is the actual critical
dependence for stopping a hierarchy growth is yet an open
question.
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